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Abstract

A complete description of resonances for rational toral Anosov diffeomorphisms preserving
certain Reinhardt domains is presented. As a consequence it is shown that every homotopy
class of two-dimensional Anosov diffeomorphisms contains maps with the sequence of reso-
nances decaying stretched-exponentially. This is achieved by introducing a certain group of
rational toral diffeomorphisms and computing the resonances of the respective composition
operator considered on suitable anisotropic spaces of hyperfunctions. The class of examples is
sufficiently rich to also include non-linear Anosov maps with trivial resonances, or resonances
decaying exponentially, as well as with or without area-preservation or reversing symmetries.
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1 Introduction

Anosov diffeomorphisms are the simplest truly hyperbolic dynamical systems, whose long term
asymptotic behaviour characterized by correlation decay or rates of mixing are classical topics in
smooth ergodic theory and statistical physics. The main tool for studying statistical properties for
Anosov maps T acting on a compact manifold M is the weighted composition operator1 defined by

CT,w : f 7→ w · f ◦ T,

where w is a smooth function on M and CT,w acts on a suitable space of distributions. There
is a considerable amount of recent literature devoted to the construction of so-called anisotropic
spaces for hyperbolic dynamical systems, on which the above operator is quasicompact, implying
a spectral gap and exponential decay of correlations. The general idea behind the construction of
these spaces is to create sufficient smoothness in the expanding direction and dual smoothness in
the contracting direction, see [Rug, BKL, GL, BT, FRS, B], to name but a few.

If the Anosov map is real-analytic, it is sometimes possible to prove compactess and even nu-
clearity of the above operator, see [Rug, J, FR], implying that its non-zero spectrum is a sequence
of isolated eigenvalues known as Pollicott-Ruelle resonances, which determine all intrinsic expo-
nential mixing rates of the given system. However, quantitative results such as location, or the
very existance, of non-trivial resonances are rare, a few instances in different hyperbolic settings
being [FGL, DFG]. Even for Anosov diffeomorphisms on the torus T2, arguably the simplest set-
ting of uniformly hyperbolic dynamical systems, it was established only recently in [A] (after an
idea of F. Naud) that non-trivial resonances exist generically. In [SBJ] the authors presented a
one-parameter family of Anosov maps, proving the presence of infinitely many distinct resonances
by calculating their location explicitly, and also conjectured locations of resonances for another
family of Anosov maps, which was recently proven in [PoS]. In both cases, after establishing com-
pactness of the transfer operator on a suitable anisotropic Hilbert space (originally introduced in
[FR]), the eigenvalues are read off from an upper triangular matrix representation of the operator
with respect to a weighted Fourier basis. These results, though valuable for rigorously establishing
the location of resonances for these particular families, are rather ad hoc as they do not reveal
the underlying spectral structure of the associated operator. In this context, a key contribution
of this article is to explain the underlying structure of resonances for a class of rational Anosov
diffeomorphisms. For this it will be helpful to work with simple anisotropic spaces, which, albeit
less general, interact well with the analytic structure of the underlying map.

For analytic Anosov maps on T2 with constant invariant stable and unstable cone fields we
define anisotropic Hilbert spaces of hyperfunctions as a closure of Laurent polynomials under a
weighted L2 norm with the weight function adapted to the invariant cones, and show that the
respective weighted composition operator is well defined and trace-class. These spaces are iso-
metrically isomorphic to a direct sum of Hardy-Hilbert spaces on log-conical Reinhardt domains,
with the logarithmic base induced by the stable and unstable cones. Using this viewpoint and
assuming additionally that these Anosov maps extend holomorphically to certain domains in Ĉ2,
we are able to explicitly compute all the eigenvalues of the respective composition operator. In
addition we present a group of (non-linear) toral diffeomorphisms which satisfy these assumptions
and provide examples in each homotopy class of toral Anosov diffeomorhisms for which the com-
position operator has infinitely many distinct non-trivial resonances (λn)n∈N whose rate of decay
is stretched-exponential, that is, the upper bound of exp(−an1/2) for some a > 0 is tight.

Results in [BJS] on resonances for analytic expanding circle maps of degree d, with |d| > 2,
arising from finite Blaschke and anti-Blaschke products, made it possible to establish exponential
lower bounds for the decay rate on a dense set of analytic expanding circle maps [BN]. In the
same vein, the class of non-linear toral diffeomorphisms presented in this paper will be an essential

1This operator is also referred to as the transfer operator or Koopman operator, depending on the weight.
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ingredient in proving that, generically, the stretched-exponential decay rate of resonances is optimal
within the class of analytic Anosov diffeomorphisms on T2. Moreover, as all constructions are very
explicit most of our results should extend to Anosov maps in higher dimensions. These are,
however, beyond the current scope and will be pursued in subsequent works.

1.1 Statement of results

We will only consider toral Anosov diffeomorphisms with constant expanding and contracting cone
fields. Restricting to constant invariant cone fields enables us to work with simple anisotropic
Hilbert spaces Hν , which can be seen as the completion of Laurent polynomials under the ν-
weighted L2

ν inner product for a cone-wise exponential weight function ν : Z2 → R≥0, that is
ν(n) = ef(n) where f : Z2 → R is piecewise linear, with the pieces being cones in R2. We will
make an additional assumption on the invariant cone fields, termed strongly expanding constant
invariant cone field condition or short-hand (sec), see Definition 2.12 for the precise definition. If
the (constant) unstable invariant cone field can be chosen to correspond to the positive/negative
quadrants ±R2

>0, we refer to these as positive, and call the respective condition (p-sec).

Theorem 1.1. Let T be an analytic Anosov diffeomorphism of T2 satisfying the (sec) assumption
and w : T2 → C an analytic function. Then there exists a cone-wise exponential ν : Z2 → R≥0 such
that

f 7→ w · f ◦ T
is a well-defined trace-class operator on Hν .

For a special subclass of analytic Anosov diffeomorphisms where cone fields can be chosen
to correspond to quadrants of R2 and the diffeomorphisms extend holomorphically to certain
domains of Ĉ2, we are able to compute all eigenvalues of the above operator explicitly in terms
of multipliers of fixed points on these domains. To state the results we introduce the notation
Σ = {σ = (σ1, σ2) : σ1, σ2 ∈ {±1}}, and Dσ = {z ∈ Ĉ2 : |z1|σ1 > 1, |z2|σ2 > 1} with σ ∈ Σ for

the four bidisks in Ĉ2. It will further be convenient to write N 1 = N2
0 \ {(0, 0)}, N−1 = N2, and

decompose Σ as Σ = Σ1 ∪ Σ−1 with Σ` = {σ ∈ Σ: σ1 · σ2 = `}, ` ∈ {±1}. The notation T ` for
` = −1 stands for the inverse of T . We write CT = CT,1 for the unweighted composition operator.

Theorem 1.2. Let T be an analytic Anosov diffeomorphism on T2 satisfying the (p-sec) assump-
tion. Then there exists a cone-wise exponential ν : Z2 → R≥0 such that CT is a well-defined
trace-class operator on Hν , and its spectral determinant is an entire function of the form

det(Id−zCT ) = (1− z)χT (z),

where χT is an entire function with zeros outside of cl(D). Moreover, if T ` holomorphically extends2

to Dσ for all σ ∈ Σ` and ` ∈ {±1} then χT is the product of two entire functions χ+1
T and χ−1

T ,
whose zeros are given explicitly. Specifically, for every ` ∈ {±1} exactly one of the following cases
holds:

(i) if T `(Dσ) ⊆ Dσ for all σ ∈ Σ`, then

χ`T (z) =
∏
n∈N `

∏
σ∈Σ`

(1− z`sλnσ)

where λσ = (λσ,1, λσ,2) are the multipliers3 of the unique attracting fixed point z∗σ ∈ Dσ of T `,
and s = 0 if T is orientation-preserving and s = 1 if it is orientation-reversing. Additionally,
it holds that z∗σ = 1/z∗−σ and λσ = λ−σ for σ ∈ Σ`.

2Here we view T2 as a subset of Ĉ× Ĉ and consider extensions of T and T−1 to subsets of Ĉ× Ĉ as holomorphic
in the same sense as for mappings of the Riemann sphere.

3The multipliers of T at a point z are the eigenvalues λ = (λ1, λ2) of DzT =
(

∂Tk
∂zl

)
k,l

at z. We write

λn = λn1
1 · λ

n2
2 for n ∈ Z2.
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(ii) if T `(Dσ) ⊆ D−σ for all σ ∈ Σ`, then

χ`T (z) =
∏
n∈N `

∏
σ∈Σ`

(1− z2λnσ)1/2,

where λσ = λ−σ are the multipliers of the unique attracting fixed point z∗σ ∈ Dσ of T 2`.
Additionally, λσ,1 and λσ,2 are either real, or complex conjugates of each other.

Clearly, certain linear toral diffeomorphisms satisfy the assumptions of this theorem. For
example, the well-known cat map (z1, z2) 7→ (z2

1z2, z1z2) satisfies assumption (i) and hence we
can compute all fixed points and their multipliers, which however are all trivial (that is, zero) in
this case. The group Aut(T2) of linear diffeomorphisms (automorphisms) of the torus is isomorphic
to GL2(Z). In order to construct non-linear maps, we shall consider a group of diffeomorphisms
generated by a finite set Γ of generators of Aut(T2) and a (uncountably infinite) set G of certain
rational diffeomorphisms preserving T2. One particular choice for this set is

G = {(z1, z2) 7→ (ba(z1), z2) : a ∈ D}

with ba(z) = (z − a)/(1 − az). We call F the group of diffeomorphisms generated by Γ ∪ G. A
certain subset of F comprises of hyperbolic diffeomorphisms satisfying the assumptions of Theo-
rem 1.2. The explicit construction of elements of this set (see Section 5.1) allows us to compute
the sequence of eigenvalues of the corresponding composition operators and present examples with
qualitatively different decay rates of this sequence (stretched-exponential, exponential, and triv-
ially super-exponential/all-zero). Using the structure of conjugacy classes of GL2(Z) we obtain the
following theorem.

Theorem 1.3. Every homotopy class of analytic Anosov diffeomorphisms on T2 contains (non-
linear) Anosov diffeormorphisms T ∈ F , such that for suitable Hν the corresponding operator CT
is well defined and trace-class, with the entire function z 7→ det(Id−zCT ) = (1 − z)χT (z) as its
spectral determinant. In particular, denoting by (λn)n∈N the sequence of eigenvalues of CT ordered
by modulus in decreasing order, and counted with multiplicities, we obtain the following.

(i) For every homotopy class H and η > 0, there exists T ∈ H ∩ F such that the eigenvalue
sequence of CT satisfies

lim
n→∞

− log |λn|
n1/2

= η.

(ii) For every homotopy class H of orientation-preserving Anosov diffeomophisms and η > 0,
there exists T ∈ H ∩ F such that the eigenvalue sequence of CT satisfies

lim
n→∞

− log |λn|
n

= η.

(iii) Every homotopy class H of Anosov diffeomorphisms not containing a linear conjugate of one
of {(z1, z2) 7→ (zk1z2, z1), k ∈ N} has an element T ∈ H ∩ F not smoothly conjugated to a
linear Anosov diffeomorphism, such that

χT (z) = 1

for all z ∈ C.

Remark 1.4. We note that the maps T ∈ F above can be written in closed form. In contrast
to the more common setting of analytic perturbations of linear maps (see, for example, [A, FR]),
these maps are not required to be C1 close to the respective linear automorphisms, that is, the C1
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distance can be arbitrarily large. In fact, as the proof of Theorem 1.3 will show, the spectral gap
for the composition operator associated to the maps in (i) and (ii) can take an arbitrary value in
(0, 1). Moreover, under the additional assumption that T is orientation-preserving, in case (i) the
second-largest eigenvalue λ2 ∈ D and the decay rate η > 0 can be chosen arbitrarily, independently
of each other. The behaviour in (i) is believed to be generic for two-dimensional Anosov maps,
whereas the cases (ii) and (iii) are exceptional. We also note that under the assumptions of
Theorem 1.2 (as well as of Theorem 1.3), the spectral determinant can be shown to coincide with
the usual dynamical determinant, as the usual trace formula (see, for example, [FR, Proposition
5]) can be established in this setting.

Remark 1.5. As shown in [FG], any homotopy class H of analytic Anosov diffeomorphisms on T2

is path-connected, so that in fact, in the cases (i)-(iii) in Theorem 1.3, any T ′ ∈ H is homotopic
via a continuous path of toral diffeomorphisms to a T ∈ H with the respective spectral property.
Moreover, by the famous Franks-Newhouse classification theorem, every Anosov diffeomorphism of
codimension 1 on a closed Riemannian manifold4 is topologically conjugate to a hyperbolic toral
automorphism, see for example [Hi]. Thus, since any two smooth surfaces that are homeomorphic
are also diffeomorphic, in the above theorem T2 can be replaced with any two-dimensional closed
Riemannian manifold.

This paper is organised as follows. Starting with a motivational example of the composition op-
erator for the cat map in Section 2.1, we discuss its boundedness and compactness on an anisotropic
space of hyperfunctions relevant to the current work. In Section 2.2 we consider a class of analytic
toral Anosov diffeomorphisms with strongly expanding constant invariant cone (sec) fields and
show how properties on the tangent bundle are translated into properties of the map in a small
complex neighbourhood of the torus. We start Section 3 by summarising properties of Hardy-
Hilbert spaces on log-conical Reinhardt domains and realizing the anisotropic Hilbert spaces of
hyperfunctions from Section 2.1 as direct sums of these Hardy-Hilbert spaces. The main theorem
of this section is Theorem 3.24, which together with a standard factorisation argument yields a
trace-class weighted composition operator for analytic Anosov maps with the (sec) property, thus
proving Theorem 1.1. Section 4 is devoted to the proof of Theorem 1.2, that is, the computation of
resonances of the composition operator associated to rational Anosov diffeomorphisms satisfying
the (p-sec) condition and preserving certain polydisks. In Section 5 we prove Theorem 1.3. For
this, we first introduce in Section 5.1 the group of diffeomorphisms F , discuss their properties and
present examples of Anosov maps with and without additional properties such as area-preservation
and symmetry reversal. In Section 5.2, using conjugacy classes of toral Anosov automorphisms,
we construct non-linear Anosov maps in F satisfying the assertions of Theorem 1.3.

2 Cone conditions for Anosov diffeomorphisms on T2

2.1 A pedestrian approach

In this section we want to explore functional-analytic properties of composition operators associated
to Anosov automorphisms on the torus on Hilbert spaces that can be defined as the completion of
the space of Laurent polynomials with a norm depending on a certain weight function. We take
the well-known cat map as an example of a toral automorphism, and discuss boundedness and
compactness of the associated composition operator depending on the weight function. The main
result of this section is to show that for a suitable weight function the composition operator is
Hilbert-Schmidt. Since most of our work in this paper focuses on the two-dimensional case, for
convenience we introduce the following shorthands.

4An Anosov diffeomorphism is said to be of codimension 1 if the codimension of either its stable or unstable
foliations has dimension 1.
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Notation 2.1. For α, β ∈ R2 (or Z2) we write α > β if α1 > β1 and α2 > β2, and moreover for
c ∈ R the notation α > c will be used as a shorthand for α1 > c and α2 > c (and analogously for
other comparison operators). For z ∈ C2 (or R2, Z2) and n ∈ Z2 we use the multiindex notation
zn = zn1

1 zn2
2 , and we write |z| = (|z1|, |z2|).

2.1.1 Weighted Hilbert spaces

Let T2 = {z ∈ C2 : |z1| = |z2| = 1}, and let P denote the space of Laurent polynomials on T2,

P = {f : T2 → C : f(z) =
∑

n∈Z2,|n|≤N

fnz
n, with fn ∈ C, N ∈ N} .

For any ν : Z2 → R>0, we define an inner product on P by

〈f, g〉ν =
∑
n∈Z2

fnḡnν(n)2,

where (fn)n∈Z2 and (gn)n∈Z2 are the Fourier coefficients of f and g, and we denote by ‖ · ‖ν the
corresponding norm. Note that ν(n) = ‖pn‖ν for n ∈ Z2, where pn is the monomial z 7→ zn.

Definition 2.2. We write Hν for the completion of P with respect to the norm ‖ · ‖ν .

It turns out that Hν is a separable Hilbert space, which contains the Laurent polynomials as a
dense subset, with an orthonormal basis given by the normalised monomials

en(z) =
zn

ν(n)
, n ∈ Z2.

2.1.2 Composition operator for the cat map

The hyperbolic matrix

A =

(
2 1
1 1

)
induces the well-known toral automorphism T : T2 → T2 given by (z1, z2) 7→ (z2

1z2, z1, z2), known
as the cat map. We shall study the properties of the composition operator CT associated to T when
considered on different Hilbert spaces Hν . In particular, we will see that for certain choices of ν the
operator CT is Hilbert-Schmidt. A bounded operator L on a Hilbert space H is Hilbert-Schmidt
if
∑
n ‖Len‖2 <∞ where {en} is an orthonormal basis of H. A sufficient condition for this is that

there are δ, c > 0 such that for all n it holds that

‖Len‖ ≤ δ exp(−c‖n‖). (1)

We can compute ‖CT en‖ν explicity, as

‖CT en‖2ν =
∑
m∈Z2

(
ν(m)

ν(n)

)2

δ2n1+n2,m1δn1+n2,m2 =

(
ν(An)

ν(n)

)2

. (2)

We first consider weight functions ν adapted to the dynamics of T introduced in [FR]. For this,
we denote the unstable/stable eigenvalues of A by λu/s = ϕ±2, where ϕ = (1+

√
5)/2 is the golden

mean, and write V = (vu, vs) for the matrix with the corresponding (normalised) unstable/stable
eigenvectors as its column vectors. We write 〈·, ·〉 for the standard inner product on R2.

Lemma 2.3. For any a = (a1, a2) > 0 and ν(n) = νa(n) = exp(−a1|〈n, vu〉| + a2|〈n, vs〉|), the
composition operator CT is a well-defined Hilbert-Schmidt operator on (Hν , ‖ · ‖ν).
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Proof. By using 〈An, vu/s〉 = 〈n,AT vu/s〉 = λu/s〈n, vu/s〉 and (2), we obtain

‖CT en‖ν = exp(−a1λu|〈n, vu〉|+ a2λs|〈n, vs〉|) · exp(a1|〈n, vu〉| − a2|〈n, vs〉|)
= exp(−a1(λu − 1)|〈n, vu〉| − a2(1− λs)|〈n, vs〉|).

As (λu − 1) > 0, (1− λs) > 0, and all norms on R2 are equivalent, we obtain inequality (1).

It turns out that replacing V by the identity matrix yields an operator that is not even compact.
We omit a proof, as this follows by a direct calculation.

Lemma 2.4. Let a = (a1, a2) ∈ R2
>0 and ν(n) = νa(n) = exp(−a1|n1|+ a2|n2|). The operator CT

is bounded on (Hν , ‖ · ‖ν) if and only if a1 = a2. It is never compact on (Hν , ‖ · ‖ν).

On the other hand, as will become apparent in the next section, working with a diagonal matrix
V yields more convenient function spaces (specifically, Hilbert spaces of holomorphic functions on
polydisks). We can restore the nice properties of the compositon operator in this setting, by
allowing a to be a function of n ∈ Z2.

Definition 2.5 (Quadrant-wise exponential weight). Let α, γ ∈ R2 and define a : Z2 → R2 as

aα,γ(n) =

{
α, if n1 · n2 ≥ 0

γ, if n1 · n2 < 0,

and ν(n) = να,γ(n) = exp(−〈aα,γ(n), |n|〉). We call such weight function quadrant-wise exponential.

Lemma 2.6. Let ν = να,γ be a quadrant-wise exponential weight. If α ∈ R2
>0 and γ ∈ R2

<0, then
the operator CT is a well-defined Hilbert-Schmidt operator on Hν .

Proof. For n ∈ Z2 we denote

ϕ(n) = 〈aα,γ(n), |n|〉 − 〈aα,γ(An), |An|〉,

so that

‖CT en‖ν =
ν(An)

ν(n)
= exp(ϕ(n)).

To prove the lemma, it suffices to show that there exists c > 0 such that

ϕ(n) < −c(|n1|+ |n2|) (∀n ∈ Z2). (3)

Set m = An. We note that since ‖n‖2 ≤ ‖A−1‖‖m‖2 and by the equivalence of norms in R2, there
exists c̃ > 0 such that |m1| + |m2| = ‖m‖1 ≥ c̃‖n‖1 = c̃(|n1| + |n2|), for all n ∈ Z2 and m = An.
There are three cases we need to take care of.

(i) n1 · n2 ≥ 0. Note that in this case |m| = |An| = A|n| and m1 ·m2 ≥ 0. It follows that

ϕ(n) = 〈α, |n| −A|n|〉 = 〈α−ATα, |n|〉 = −(α1 + α2)|n1| − α1|n2| < −c1(|n1|+ |n2|),

for any 0 < c1 < α1.

(ii) m1 ·m2 < 0, which implies n1 · n2 < 0 as n = A−1m and n1 · n2 = (m1 −m2)(2m2 −m1) =
3m1m2−2m2

2−m2
1 < 0. Noting that |n1| = |m1−m2| = |m1|+ |m2| and |n2| = |2m2−m1| =

2|m2|+ |m1| we obtain

ϕ(n) = 〈γ, |n| − |m|〉 = γ1|m2|+ γ2(|m1|+ |m2|) < −c2(|n1|+ |n2|),

for any 0 < c2 < −γ2c̃.
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(iii) n1 · n2 < 0 and m1 ·m2 ≥ 0. In this case

ϕ(n) = 〈γ, |n|〉−〈α, |m|〉 ≤ max(γ1, γ2)(|n1|+|n2|)−min(α1, α2)(|m1|+|m2|) < −c3(|n1|+|n2|),
for any 0 < c3 < 2 min(−γ1,−γ2, α1c̃, α2c̃).

Combining the above, we have that (3) holds for all n ∈ Z2 with c = min(c1, c2, c3).

Remark 2.7. It turns out that the use of quadrant-wise exponential weight functions is not
restricted to linear toral Anosov diffeomorphisms, but can also be applied to certain non-linear
maps. It is possible to show that for any map in the family of non-linear maps studied in [SBJ], one
can find suitable α and γ, such that the associated composition operator considered on the Hilbert
space Hν with ν = να,γ is Hilbert-Schmidt, and even trace-class. The proof is a straightforward but
lengthy calculation involving properties of the underlying map summarized in [SBJ, Lemma 2.3].
See also [PoS] for this and related results.

2.2 Anosov diffeomorphisms with strong mapping conditions

In this section, we establish more general conditions on the toral diffeomorphisms which will be
sufficient to prove that the associated composition operator is trace-class on a suitable weighted
Hilbert space. In particular, we characterise maps that satisfy the conditions of the main result
of the next section (Theorem 3.24). We start by recalling some well-known facts about cones and
Reinhardt domains.

2.2.1 Convex cones in R2

A cone Λ ⊂ R2 is a set such that if v ∈ Λ, then λv ∈ Λ for all λ > 0. A cone shifted by a vector,
that is a set of the form x + Λ, where x ∈ R2 and Λ ⊂ R2 is a cone, is called an affine cone. For
pu, ps ∈ R2 denote by P = (pu, ps) the matrix having pu and ps as its column vectors. For an
invertible matrix P denote by ΛP the convex open polyhedral cone in R2 (positively) spanned by
pu and ps, that is,

ΛP = {Px = x1pu + x2ps : x > 0} = P (R2
>0).

Writing W = (wu, ws) = (PT )−1, this can equivalently be expressed as

ΛP = {x ∈ R2 : 〈wu, x〉 > 0, 〈ws, x〉 > 0}.
Its polar cone is given by

(ΛP )o = {x ∈ R2 : 〈x, p〉 ≤ 0 for all p ∈ ΛP } = {x ∈ R2 : PTx ≤ 0} = W (R2
≤0).

While ΛP is the image of the positive quadrant of R2 under P , it will later be useful to consider

the images of all quadrants. For this, we write Iσ =

(
σ1 0
0 σ2

)
for σ ∈ Σ, where5

Σ := {σ = (σ1, σ2) : σ1, σ2 ∈ {±1}},
and denote by ΛσP the image of the quadrant Rσ = Iσ(R2

>0) under P , that is ΛσP = P (Rσ) for
σ ∈ Σ. A short calculation reveals that the cone ΛσP can be written as

ΛσP = {x ∈ R2 : σ1〈wu, x〉 > 0, σ2〈ws, x〉 > 0}.
All the above cones have (0, 0) as their apex. As we shall see shortly we will need to work with

cones translated by a vector. For this, let us denote by Rσδ the image under Iσ of the first quadrant
translated by δ ∈ R2, that is Rσδ = Iσ(R2

>0 + δ) = Rσ + vσδ with apex vσδ = Iσδ.

5For brevity, when using σ = (σ1, σ2) ∈ Σ as an index, we will often just write out its signs, e.g. writing R++

for R(+1,+1), R+− for R(+1,−1), etc.
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Definition 2.8. For δ ∈ R2, σ ∈ Σ and P ∈ GL2(R) we denote ΛσP,δ the convex affine cone

ΛσP,δ = P (Rσδ ) = ΛσP + vσP,δ, (4)

with apex vσP,δ = Pvσδ .

We note that σ1〈wu, vσP,δ〉 = σ1〈PTwu, Iσδ〉 = σ1〈(1, 0)T , Iσδ〉 = δ1 and σ2〈ws, vσP,δ〉 = δ2.
Using these equalities, ΛσP,δ can be rewritten as

ΛσP,δ = {x ∈ R2 : σ1〈wu, x− vσP,δ〉 > 0, σ2〈ws, x− vσP,δ〉 > 0}
= {x ∈ R2 : σ1〈wu, x〉 > δ1, σ2〈ws, x〉 > δ2}.

(5)

2.2.2 Log-conical Reinhardt domains of Ĉ2

The translated convex cones in (4) will be useful for defining certain two-dimensional complex
domains. For this we first require some definitions.

Notation 2.9. We denote the Riemann sphere by Ĉ = C∪{∞}, and write Ĉ2 = Ĉ×Ĉ. For z ∈ Ĉ2,
v ∈ R2 and a ∈ Z2 we write |z| = (|z1|, |z2|), za = za1

1 za2
2 , ev = (ev1 , ev2), and for z ∈ (C \ {0})2

we write log |z| = (log |z1|, log |z2|). For any domain D ⊆ Ĉ2, we write D+ = D ∩ (C \ {0})2.

Definition 2.10. A domain D ⊂ Ĉ2 is called polycircular or a Reinhardt domain if it is invariant
under polyrotations, that is, if z ∈ D implies ωz = (ω1z1, ω2z2) ∈ D for all ω ∈ T2. The set
|D| := {|z| : z ∈ D} ⊂ (R≥0 ∪ {∞})2 is called absolute domain of D, and Λ = log |D+| := {log |z| :
z ∈ D+} ∈ R2 the logarithmic base of D+. A Reinhardt domain D is called log-conical if the
logarithmic base of D+ is a convex open affine cone.

We define T2
ρ = {z ∈ C2 : |z1| = ρ1, |z2| = ρ2} for ρ ∈ R2

>0, and write eΛT2 :=
⋃
r∈Λ T2

er .
Further let E(Λ) ⊂ R2 denote the union of the set of faces of Λ, that is E(Λ) = ∂Λ \ {p} with p the
apex of Λ. Then, every convex open affine cone Λ ⊂ R2 induces a log-conical Reinhardt domain
in Ĉ2 via

D = cl(eΛT2) \ eE(Λ)T2,

where the closure is taken in Ĉ2 (that is, it may contain points of the form (z1, z2), with either
z1, or z2, or both, taking the values 0 or ∞). We shall denote by Dσ

P,δ the log-conical Reinhardt
domain induced by the convex affine cone ΛσP,δ in (4). We can calculate

(Dσ
P,δ)

+ = eΛσP,δT2 =
⋃

r∈ΛσP,δ

T2
er =

⋃
x∈ΛσP

T2
exp(vσP,δ+x)

= {z ∈ (C \ {0})2 : |z1| = e(vσP,δ)1+x1 , |z2| = e(vσP,δ)2+x2 , x ∈ ΛσP }
= {z ∈ (C \ {0})2 : |z|σ1wu > eδ1 , |z|σ2ws > eδ2},

which yields
Dσ
P,δ = {z ∈ Ĉ2 : |z|σ1wu > eδ1 , |z|σ2ws > eδ2}.

The distinguished boundary or Shilov boundary of Dσ
P,δ is a torus in C2 given by

TσP,δ := ∂∗Dσ
P,δ := {z ∈ C2 : |z1| = e(vσP,δ)1 , |z2| = e(vσP,δ)2}.
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2.2.3 Anosov toral diffeomorphisms with constant invariant cone fields

Definition 2.11 (Toral Anosov diffeomorphisms). Let M = ([0, 2π]/ ∼)2. A smooth diffeomor-
phism T̃ : M → M is called Anosov if there exist two uniformly transversal open continuous cone
fields Ku = {Ku(x)}, Ks = {Ks(x)} with cones Ku(x),Ks(x) ⊂ TxM , a norm ‖ · ‖ on TxM and
λ > 1 such that, for all x ∈M ,

(i) DxT̃ (cl(Ku(x))) ⊂ Ku(T̃ (x)) ∪ {0}, DxT̃
−1(cl(Ks(x))) ⊂ Ks(T̃−1(x)) ∪ {0} and

(ii) ‖DxT̃ (v)‖ > λ‖v‖ ∀v ∈ cl(Ku(x)) and ‖DxT̃
−1(v)‖ > λ‖v‖ ∀v ∈ cl(Ks(x)).

Without loss of generality, the cone fields can be chosen to be complementary, that is, Ks(x) =
TxM \ cl(Ku(x)) for all x ∈M .

If the expanding and contracting cones Ku(x) and Ks(x) can be chosen independently of x,
that is6 Ku,Ks ⊂ TxM such that Ku(x) = Ku and Ks(x) = Ks for all x ∈ M , then we say T̃ is
an Anosov diffeomorphism with constant invariant cone fields.

Let T̃ be a toral Anosov diffeomorphism with constant complementary cone fields Ku = {Ku}
and Ks = {Ks}. Then Ku can be decomposed as Ku = Ku

+∪−Ku
+, where Ku

+ is a convex cone, so
there exists a matrix P ∈ GL2(R) such that Ku

+ = ΛσP = PIσ(R2
>0) with σ = (+1,+1). Adopting

the notation
Σ1 = {σ ∈ Σ : σ1 = σ2} and Σ−1 = {σ ∈ Σ : σ1 = −σ2}

we can write Ku =
⋃
σ∈Σ1 ΛσP and Ks =

⋃
σ̃∈Σ−1 Λσ̃P .

Definition 2.12. Let T̃ : M →M be a smooth Anosov diffeomorphism.

(i) We say that T̃ has P -induced constant invariant cone fields if it has constant invariant cone
fields Ku = {Ku

0 } and Ks = {Ks
0} given by Ku

δ =
⋃
σ∈Σ1 ΛσP,δ and Ks

δ =
⋃
σ̃∈Σ−1 Λσ̃P,δ with

P ∈ GL2(R) and δ ∈ R2.

(ii) We say that T̃ has P -induced strongly expanding constant invariant cone fields (sec) if it has
P -induced constant invariant cone fields and if there are δ, δ̃ ∈ R2

>0 and σ ∈ Σ1, σ̃ ∈ Σ−1

such that, for all x ∈M ,

(DxT̃ )v ∈ Ku
δ and (DxT̃

−1)ṽ ∈ Ks
δ̃
, (6)

where v = vσP,δ, ṽ = vσ̃
P,δ̃

. In the special case P = I, we refer to Ku
0 = R2

>0 ∪ R2
<0 as positive,

and call (6) the (p-sec) condition.

Figure 1 illustrates the (p-sec) condition. Note that (i) is satisfied by all smooth toral Anosov
diffeomorphisms with constant invariant cone fields, whereas (ii) is a stronger condition, which
eventually will be required to prove compactness of the associated weighted composition operator
(see Section 3).

Remark 2.13. The cone conditions in (6) are often easy to check. For example, the (p-sec)

condition requires Ku
0 = R2

>0 ∪R2
<0 and Ks

0 = R2 \ cl(Ku
0 ). Assuming DxT̃ =

(
ax bx
cx dx

)
preserves

R2
≥0 for all x ∈ M , the first part of (6) is automatically satisfied if either infx∈M ax ≥ 1, or

infx∈M dx ≥ 1, or if

sup
x∈M

(
1− ax
bx

)
· sup
x∈M

(
1− dx
cx

)
< 1.

A similar condition for the first part of (6) in the case when DxT̃ maps R2
≥0 to R2

≤0 can be deduced
easily, as can be analogous conditions for the second part of (6).

6Here we slightly abuse notation, using the canonical identification TxM ∼= R2 for all x ∈M .
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Figure 1: Illustration of the (sec) condition in Definition 2.12(ii) for P = I and Ku
δ = Ku

± ± δ.

We shall next state conditions that can be easily deduced from the fact that the map T̃ possesses
constant invariant expanding and (co)-expanding cone fields, that is, from (i) in Definition 2.12.

Lemma 2.14. Let T̃ : M → M be a smooth Anosov diffeomorphism with P -induced constant
invariant cone fields for some P ∈ GL2(R). Then, for any δ, δ̃ ∈ R2

>0, σ ∈ Σ1 and σ̃ ∈ Σ−1, there

exists q ∈ Λσ̃
P,δ̃

with (DxT̃ )q ∈ ΛσP,δ for all x ∈M .

Proof. Fix δ, δ̃ ∈ R2
>0, σ ∈ Σ1 and σ̃ ∈ Σ−1, and recall that the (constant) (DxT̃ )-invariant cone

given by the matrix P is Ku = ΛP ∪ −ΛP , with ΛP = P (R2
>0), and either (DxT̃ )(ΛP ) ⊂ ΛP or

(DxT̃ )(ΛP ) ⊂ −ΛP (for all x ∈ M). For x ∈ M , we define Nx = P−1(DxT̃ )P , and observe that
either Nx(R2

≥0) ⊂ R2
>0 ∪ {0} or Nx(R2

≥0) ⊂ R2
<0 ∪ {0}, for all x ∈M .

Applying Lemma A.2 to {Nx : x ∈ M}, there exists q′ ∈ Rσ̃
δ̃

such that Nx(q′) ∈ Rσδ for all

x ∈ M . Using (4), we obtain that Pq′ ∈ P (Rσ̃
δ̃
) = Λσ̃

P,δ̃
, and (DxT̃ )(Pq′) ∈ P (Rσδ ) = ΛσP,δ for all

x ∈M , finishing the proof with q = Pq′.

Let π(x1, x2) = (eix1 , eix2) be the canonical diffeomorphism from M to T2. We denote by T
the diffeomorphism on T2 uniquely determined by the equation T ◦ π = π ◦ T̃ . We will say that
T : T2 → T2 satisfies the (sec) (or (p-sec)) condition, if the corresponding T̃ : M → M does. As
the next (key) lemma will show, for analytic toral Anosov diffeomorphisms with constant invariant
cone fields, properties of the derivative DT̃ on the tangent bundle can be translated into properties
of the map T in a small neighbourhood of T2. With slight abuse of notation, we continue writing
T for its analytic extension to such small neighbourhood of T2.

Definition 2.15. We say that a diffeomorphism T : T2 → T2 is orientation-preserving (orientation-
reversing) if the determinant of DxT̃ of the conjugated map T̃ : M →M is positive (negative) for
all x ∈M . We say T is area-preserving if |detDxT̃ | = 1 for all x ∈M .

Lemma 2.16. Let T̃ : M → M be an analytic Anosov diffeomorphism with P -induced constant
invariant cone fields for some P ∈ GL2(R), and T the conjugated diffeomorphism on T2. If there
are δ ∈ R2

>0, σ ∈ Σ, and q ∈ R2 such that (DxT̃ )q ∈ ΛσP,δ for all x ∈ M , then there exist ε > 0
and δ′ > δ such that for all t ∈ (0, ε) we have

T (T2
etq ) ⊂ Dσ

P,tδ′ ,

where Dσ
P,tδ′ is the Reinhardt domain induced by the logarithmic base ΛσP,δ′ .
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Proof. We denote w(1) = σ1wu and w(2) = σ2ws (recalling W = (wu, ws) = (PT )−1). Using (5),
we observe that (DxT̃ )q ∈ ΛσP,δ translates to the inequalities

∑
l=1,2

∑
k=1,2

∂T̃l
∂xk

qkw
(j)
l > δj , for j = 1, 2 and all x ∈M.

Next, for x ∈M , s ∈ R and a ∈ R2, we define

fax (s) =
∑
l=1,2

al log |Tl(ξx(s))|

with ξx(s) = (esq1+ix1 , esq2+ix2) ∈ T2
esq . We note that fax is continuously differentiable on (0, ε′)

for sufficiently small ε′, with

∂

∂s
fax (s) = <

∑
l=1,2

∑
k=1,2

eixk∂kTl(ξx(s))

Tl(ξx(s))
qke

sqkal

 ,

where ∂kTl denotes the (complex) derivative of the l-th component of T with respect to the k-th
variable. It follows that

∂

∂s
fw

(j)

x (s)|s=0 = <

∑
l=1,2

∑
k=1,2

eixk∂kTl(e
ix1 , eix2)

Tl(eix1 , eix2)
qkw

(j)
l

 = <

∑
l=1,2

∑
k=1,2

∂T̃l
∂xk

qkw
(j)
l

 > δj

for j = 1, 2 and all x ∈ M . By compactness of M and continuity, we can fix δ′ > δ, so that
∂
∂sf

w(j)

x (s) > δ′j , j = 1, 2, holds for all x ∈M and all s ∈ (0, ε′′) with a sufficiently small ε′′ ∈ (0, ε′).
Since fax (0) = 0, we obtain that

∑
l=1,2

w
(j)
l log |Tl(ξx(t))| = fw

(j)

x (t)− fw(j)

x (0) =

∫ t

0

∂

∂s
fw

(j)

x (s) ds > δ′jt,

for j = 1, 2 and t ∈ (0, ε′′). Exponentiating both sides, it follows that T (ξx(t)) ∈ Dσ
P,tδ′ for all

x ∈M . Since {ξx(t) : x ∈M} = T2
etq , this completes the proof.

If in addition T̃ satisfies the (sec) condition, then one can establish all the required properties
(for Theorem 1.1) for T in a neighbourhood of T2. First, we need to introduce corresponding
notions on Reinhardt domains induced by convex cones. For δ ∈ R2 and P ∈ GL2(R), let AP,δ
denote a two-dimensional ‘annulus’ containing T2, given by

AP,δ = {z ∈ C2 : − |δ| < P−1 log |z| < |δ|}.

For brevity we also write Aδ = AI,δ = {z ∈ C2 : − |δ| < log |z| < |δ|}.

Definition 2.17. Let T : T2 → T2 be an analytic map with holomorphic extension to a neigh-
bourhood of cl(AP,δ) for some δ ∈ R2

>0 and P ∈ GL2(R). For ` ∈ {1,−1} and ∆ ∈ R2
>0 the map

T is said to have the (`, δ,∆, P )-strongly expanding mapping property if one of the following two
alternatives holds:

(EP) T (TσP,δ) ⊆ Dσ
P,∆⊂⊂Dσ

P,δ for all σ ∈ Σ` (“T preserves expanding direction”),

(ER) T (TσP,δ) ⊆ D−σP,∆⊂⊂D−σP,δ for all σ ∈ Σ` (“T reverses expanding direction”).
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Proposition 2.18. Let T̃ : M → M be an analytic Anosov diffeomorphism with constant P -
induced strongly expanding invariant cone fields for some δ, δ̃ ∈ R2

>0 in (6). Then there exists
η ∈ R2

>0 such that the corresponding diffeomorphisms T and T−1 on T2 can be analytically extended

to AP,η, and there are ∆, ∆̃ ∈ R2
>0 with ∆ > δ and ∆̃ < δ̃, such that

(i) T is (1, tδ, t∆, P )-strongly expanding for all sufficiently small t > 0,

(ii) T−1 is (−1, t∆̃, tδ̃, P )-strongly expanding for all sufficiently small t > 0.

Moreover, for any σ ∈ Σ1, σ̃ ∈ Σ−1 and any δ̃,∆ ∈ R2
>0,

(iii) there exists q ∈ Λσ̃
P,δ̃

such that T2
etq ⊂ Dσ̃

P,tδ̃
and T (T2

etq ) ⊂ Dσ
P,t∆ for all sufficiently small t.

Proof. To prove (i), we apply Lemma 2.16 with q = vσP,δ, σ ∈ Σ1. Since tq = tvσP,δ = vσP,tδ and

therefore T2
etq = TσP,tδ, there exist ε > 0 and ∆ > δ, such that for all t ∈ (0, ε), T (TσP,tδ) ⊂

Dσ
P,t∆⊂⊂Dσ

P,tδ. Item (ii) follows analogously by applying Lemma 2.16 with q̃ = vσ̃
P,δ̃

, σ̃ ∈ Σ−1,

to the map T−1. Finally, for (iii), by Lemma 2.14 there exists q ∈ R2 satisfying tq ∈ Λσ̃
P,tδ̃

(i.e.

T2
etq ⊂ Dσ̃

P,tδ̃
) and DxT̃ (tq) ∈ ΛσP,t∆ for all t > 0 and x ∈ M . Then, by Lemma 2.16, there exists

∆′ > ∆ and ε′ > 0 such that T (T2
etq ) ⊂ Dσ

P,t∆′ ⊂ Dσ
P,t∆ for all t ∈ (0, ε′), as required.

Corollary 2.19. If an analytic Anosov diffeomorphism T̃ on M satisfies the (sec) condition for
some P ∈ GL2(R), then there exist α,A, γ,Γ, η ∈ R2

>0 with α < A < η and Γ < γ < η, such that
the corresponding diffeomorphisms T and T−1 on T2 can be analytically extended to AP,η and the
following mapping properties hold:

(i) T is (1, α,A, P )-strongly expanding;

(ii) T−1 is (−1,Γ, γ, P )-strongly expanding;

(iii) For any σ ∈ Σ1, σ̃ ∈ Σ−1, there exists q such that T2
eq ⊂ Dσ̃

P,γ ∩ AP,η and T (T2
eq ) ⊂ Dσ

P,A.

Proof. Using notation from Proposition 2.18, (i)-(iii) are satisfied with α = tδ, A = t∆, Γ = t∆̃,
γ = tδ̃, for sufficiently small t > 0.

3 Composition operator for Anosov maps with constant in-
variant cone fields

In this section, we shall consider (weighted) composition operators associated to analytic Anosov
diffeomorphisms satisfying the (sec) condition. In this setting, using Corollary 2.19, we will show
that there exist Hardy-Hilbert spaces induced by a suitable cone-wise exponential weight, such
that the operator is trace-class.

3.1 Hardy-Hilbert spaces on Reinhardt domains

Before moving to the more general case of Reinhardt domains, we present a few simplified examples
in which the domains are chosen to be polydisks.

Example 3.1. Let P be the identity matrix I. Then ΛδP,δ = Rσδ , that is, it is one of the four
quadrants translated by (±δ1,±δ2). For simplicity we write Dσ

δ = Dσ
I,δ for the disk induced by the

cone Rσδ . Its distinguished boundary is given by

∂∗Dσ
δ = Tσδ = {z ∈ C2 : |z1| = eσ1δ1 , |z2| = eσ2δ2}.
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Figure 2: Absolute domains of the four polydisks Dσ
δ for σ ∈ Σ and δ = (0.1, 0.2) (left) and

depiction of the dual domain (D+−
δ )′ of D+−

δ (right).

(i) Fix σ = (−1,−1). Then, for δ = (0, 0) we obtain a unit bidisk, that is, Dσ
δ = D2. If δ 6= 0,

then Dσ
δ is a bidisk centered at (0, 0) with radii eσ1δ1 and eσ2δ2 .

(ii) The four domains depicted in the left panel of Figure 2 (reduced representation in the plane
of absolute values (|z1|, |z2|)) corresponds to δ = (0.1, 0.2) for all σ ∈ Σ.

To proceed to the general case of Reinhardt domains, we introduce some general notation and
list simple facts about toral automorphisms.

Definition 3.2. For

A =

(
a11 a12

a21 a22

)
∈ GL2(Z)

we define τA : T2 → T2 to be the toral automorphism given by τA(z1, z2) = (za11
1 za12

2 , za21
1 za22

2 ).

With slight abuse of notation we also write τA for the extension of the map to Ĉ2.

Lemma 3.3. Let A,B ∈ GL2(Z) and f ∈ L2(T2). Then:

(i) τA ◦ τB = τA·B, and in particular τ−1
A = τA−1 .

(ii) The map τA preserves T2 and is holomorphic in a neighbourhood.

(iii) f ◦ τA ∈ L2(T2), and ‖f ◦ τA‖L2(T2) = ‖f‖L2(T2).

We note that by Lemma A.1 in the appendix, every Reinhardt domain Dσ
P,δ ⊂ Ĉ2 is the image

of a bounded Reinhardt domain in C2 under a holomorphic map of the form τA, A ∈ GL2(Z).

Remark 3.4. In analogy to the case of the one-dimensional Riemann sphere, here we extend the
notion of holomorphic functions on domains in C2 to those on domains in Ĉ2 in the obvious way.
For a domain D̂ ⊂ Ĉ2, a function f : D̂ → C is holomorphic if there exists a domain D ⊂ C2 and
a biholomorphic mapping φ : D → D̂ such that f ◦ φ : D → C is holomorphic.
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Definition 3.5. For δ ∈ R2, σ ∈ Σ and P ∈ GL2(R), the Hardy-Hilbert space Hσ
P,δ := H2(Dσ

P,δ)
consists of all holomorphic functions f : Dσ

P,δ → C such that

sup
r∈ΛσP,δ

1

(2π)2

∫
[0,2π]2

|f(er+it)|2 dt <∞.

In the case P = I (that is, Dσ
P,δ a polydisk), we will write Hσ

δ = Hσ
P,δ for brevity.

Remark 3.6. As the definition indicates, the next results (Lemma 3.7 and Proposition 3.9) will
establish that the space Hσ

P,δ with the inner product (7) indeed forms a Hilbert space.

We recall that ∂∗Dσ
P,δ = TσP,δ = T2

exp(vσP,δ)
, and proceed with the following generalization of a

classical result for the polydisk D2 = D−−I,0 .

Lemma 3.7. For any f ∈ Hσ
P,δ there exists f∗ ∈ L2(TσP,δ) (the “boundary value function” of f),

which satisfies

lim
r∈ΛσP,δ,r→v

σ
P,δ

∫
[0,2π]2

|f(er+it)− f∗(evσP,δ+it)|2 dt = 0.

Proof. Since Dσ
P,δ = D

(−1,−1)
P ′,δ and for P ′ = PIσ ∈ GL2(R), we can assume without loss of

generality that σ = (−1,−1). The case of P being a non-negative matrix and δ = 0 (i.e., Dσ
P,δ ⊆ D2

a bounded Reinhardt domain) is classical, see [U, Section 2.5] or [L], and the more general case
of δ ∈ R2 follows immediately. For general P ∈ GL2(R) and f ∈ Hσ

P,δ, we write P = AP̃ with

A ∈ GL2(Z) and P̃ ∈ GL2(R) non-negative (Lemma A.1). We use τA : Dσ
P̃ ,δ
→ Dσ

P,δ and consider

the function f̃ = f ◦ τA ∈ Hσ
P̃ ,δ

. By the previous case, there exists f̃∗ ∈ L2(Tσ
P̃ ,δ

) such that

lim
r∈Λσ

P̃ ,δ
,r→vσ

P̃ ,δ

∫
[0,2π]2

|f̃(er+it)− f̃∗(ev
σ
P̃ ,δ

+it
)|2 dt = 0.

Writing f∗ = f̃∗ ◦ τ−1
A , we obtain

lim
r∈ΛσP,δ,r→v

σ
P,δ

∫
[0,2π]2

|f(er+it)− f∗(evσP,δ+it)|2 dt

= lim
r∈Λσ

P̃ ,δ
,r→vσ

P̃ ,δ

∫
[0,2π]2

|f ◦ τA(er+it)− f∗ ◦ τA(e
vσ
P̃ ,δ

+it
)|2 dt = 0.

We define an inner product on Hσ
P,δ by setting

(f, g)HσP,δ := 〈f∗, g∗〉TσP,δ := (f∗, g∗)L2(TσP,δ), (7)

and we will omit the star notation for the boundary value function whenever there is no ambiguity.
Here the L2 inner product between f∗ and g∗ is defined conventionally as

(f∗, g∗)L2(TσP,δ) =

∫
[0,2π]2

f∗(ev
σ
P,δ+it)g∗(ev

σ
P,δ+it)

dt

(2π)2
=

∫
TσP,δ

f∗(z)g∗(z) dm(z),

where dm(z) = dz1
2πiz1

dz2
2πiz2

is the normalised Lebesgue measure on TσP,δ.

Notation 3.8. We denote by Λσ,oP the polar cone of ΛσP = P (Rσ), and note that Λσ,oP =
(PT )−1(cl(R−σ)). We write ZσP = Z2 ∩ Λσ,oP . For P = I, we will use the shorthand Zσ = ZσI .

Proposition 3.9 (Alternative charaterisations). Let δ ∈ R2, σ ∈ Σ and P ∈ GL2(R).
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(i) The function pn(z) = zn is in Hσ
P,δ iff n ∈ ZσP .

(ii) Let f be given by f(z) =
∑
n∈Z2 fnz

n. Then, f ∈ Hσ
P,δ iff fn = 0 for n /∈ ZσP and∑

n∈Z2 |fn|2e2〈n,vσP,δ〉 <∞.

(iii) Hσ
P,δ is a Hilbert space with inner product given by (7). Moreover, for f ∈ Hσ

P,δ with f(z) =∑
n∈ZσP

fnz
n, we have

‖f‖2HσP,δ = sup
r∈ΛσP,δ

1

(2π)2

∫
[0,2π]2

|f(er+it)|2 dt =
∑
n∈ZσP

|fn|2e2〈n,vσP,δ〉.

(iv) Hσ
P,δ is the closure of {pn : n ∈ ZσP } with respect to the norm ‖ · ‖HσP,δ .

Proof. We begin by recalling that ΛσP,δ = ΛσP + vσP,δ, and observe that

sup
r∈ΛσP,δ

1

(2π)2

∫
[0,2π]2

|pn(er+it)|2 dt = sup
r∈ΛσP,δ

e2〈n,r〉 = e2〈n,vσP,δ〉 sup
r∈ΛσP

e2〈n,r〉

for any n ∈ Z2. Since the supremum is finite if and only if 〈n, r〉 ≤ 0 for all r ∈ ΛσP , that
is, if and only if n ∈ ZσP = Z2 ∩ Λσ,oP , statement (i) follows. Next, we formally calculate for
f(z) =

∑
n∈Z2 fnz

n that

1

(2π)2

∫
[0,2π]2

|f(er+it)|2 dt =
1

(2π)2

∫
[0,2π]2

∑
n∈Z2

fne
n(r+it)

∑
m∈Z2

fmem(r+it) dt

=
∑
n∈Z2

|fn|2
1

(2π)2

∫
[0,2π]2

|pn(er+it)|2 dt

=
∑
n∈Z2

|fn|2e2〈n,r〉.

If fn 6= 0 for some n /∈ ZσP , by the above argument, the supremum over r ∈ ΛσP,δ is infinite, and

hence f /∈ Hσ
P,δ. On the other hand, for n ∈ ZσP and r ∈ ΛσP,δ, we have 〈n, r〉 = 〈PTn, P−1r〉 =

〈IσPTn, IσP−1r〉 with IσPTn ∈ R2
≤0 and IσP−1r ∈ R2

>0 + δ, so that

〈n, r〉 ≤ 〈IσPTn, δ〉 = 〈PTn, Iσδ〉 = 〈n, vσP,δ〉.

Therefore, if fn = 0 for all n /∈ ZσP and
∑
n∈Z2 |fn|2e2〈n,vσP,δ〉 <∞, then

sup
r∈ΛσP,δ

1

(2π)2

∫
[0,2π]2

|f(er+it)|2 dt = sup
r∈ΛσP,δ

∑
n∈Z2

|fn|2e2〈n,r〉 =
∑
n∈Z2

|fn|2e2〈n,vσP,δ〉

implies f ∈ Hσ
P,δ, proving (ii). For (iii), it remains to show the last equality, which follows

immediately from the last calculation and (7), as for any f ∈ Hσ
P,δ we have that

sup
r∈ΛσP,δ

1

(2π)2

∫
[0,2π]2

|f(er+it)|2 dt =
∑
n∈ZσP

|fn|2e2〈n,vσP,δ〉.

Finally for (iv), we assume without loss of generality that σ = (−1,−1) (since Hσ
P,δ = H

(−1,−1)
PIσ,δ ).

The case of P a non-negative matrix is proved in [MX, Proposition 3.6]. For general P ∈ GL2(R),
we write P = AP̃ with A ∈ GL2(Z) and P̃ ∈ GL2(R) non-negative, and use the biholomorphic
mapping τA : Dσ

P̃ ,δ
→ Dσ

P,δ, noting that ‖f ◦τA‖Hσ
P̃ ,δ

= ‖f‖HσP,δ for any f ∈ Hσ
P,δ. Since A maps Zσ

P̃

bijectively onto ZσP , we have {pn : n ∈ ZσP } = {pn ◦ τA : n ∈ Zσ
P̃
}, and the general case follows.
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We next show shows that two Hardy-Hilbert Hσ
P,δ and Hσ

P ′,δ are isomorphic, whenever P−1P ′ ∈
GL2(Z). For any δ ∈ R2, σ ∈ Σ, P ∈ GL2(R) and A ∈ GL2(Z), we observe that A(ΛσP,δ) =
(AP )(Rσδ ) = ΛσAP,δ, and AP ∈ GL2(R), from which it follows that

τA(Dσ
P,δ) = τA(eΛσP,δT2) = eΛσAP,δT2 = Dσ

AP,δ.

Proposition 3.10. Let δ ∈ R2, σ ∈ Σ, P ∈ GL2(R) and A ∈ GL2(Z). Then the operator CτA
given by CτAf = f ◦ τA is an isometric isomorphism from Hσ

AP,δ to Hσ
P,δ.

Proof. Let f =
∑
n∈Z2 fnpn ∈ Hσ

AP,δ, that is, by Proposition 3.9, fn = 0 for all n /∈ ZσAP , and∑
n∈Z2 |fn|2e2〈n,vσAP,δ〉 <∞, and write g = CτAf = f ◦ τA. For n ∈ Z2 we have

pn ◦ τA(z) = (za11
1 za12

2 )n1(za21
1 za22

2 )n2 = za11n1+a21n2
1 za21n1+a22n2

2 = pATn(z).

Therefore, it holds that

g =
∑
n∈Z2

fnpn ◦ τA =
∑
n∈Z2

fnpATn =
∑
n∈Z2

f(AT )−1npn,

and hence g =
∑
n∈Z2 gnpn with gn = f(AT )−1n. Further, since

Λσ,oAP = ((AP )T )−1(cl(R−σ)) = (AT )−1(PT )−1(cl(R−σ)) = (AT )−1(Λσ,oP ),

it follows that (AT )−1n ∈ Λσ,oAP iff n ∈ Λσ,oP . Therefore, gn = f(AT )−1n = 0 whenever n /∈ ZσP .
Moreover,

‖g‖2HσP,δ =
∑
n∈Z2

|gn|2e2〈n,vσP,δ〉

=
∑
n∈Z2

|fn|2e2〈ATn,Pvσδ 〉 =
∑
n∈Z2

|fn|2e2〈n,APvσδ 〉 =
∑
n∈Z2

|fn|2e2〈n,vσAP,δ〉 = ‖f‖2HσAP,δ ,

which by Proposition 3.9(ii) implies that g = CτAf ∈ Hσ
P,δ, and ‖CτAf‖HσP,δ = ‖f‖HσAP,δ for all

f ∈ Hσ
AP,δ, finishing the proof.

The next two propositions are important ingredients for proving the main result of this section.

Proposition 3.11. Let K be a compact subset of Dσ
P,δ ⊂ Ĉ2 and f ∈ Hσ

P,δ = H2(Dσ
P,δ). Then,

there is a CK > 0 such that
sup
z∈K
|f(z)| ≤ CK‖f‖HσP,δ .

Proof. For P = I and σ = (−1,−1) (that is, Dσ
P,δ a polydisk with radii (e−δ1 , e−δ2)) the result

follows directly from [BJ1, Lemma 2.9]. In particular, with D′⊂⊂Dσ
P,δ a domain containing K,

and U(D′) the space of functions holomorphic on D′ and continuous on cl(D′) endowed with
the supremum norm, the natural embedding H−−I,δ ↪→ U(D′) is bounded, and its operator norm
provides the constant CK .

For the general case, let ψ(z) = z−σ = (z−σ1
1 , z−σ2

2 ). By Proposition 3.10, the operator
Cψ◦τP : H−−I,δ → Hσ

P,δ is an isometric isomorphism, and the result follows by observing that

sup
z∈K⊂DσP,δ

|f(z)| = sup
z∈(ψ◦τP )−1(K)

|f ◦ ψ ◦ τP (z)|

with (ψ ◦ τP )−1(K)⊂⊂D−−δ .
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Definition 3.12 (Dual domains and dual space).

(i) We denote by (Hσ
P,δ)

′ the dual space of Hσ
P,δ = H2(Dσ

P,δ), that is the space of all continuous
linear functionals on Hσ

P,δ.

(ii) We denote by (Dσ
P,δ)

′ the dual domain of Dσ
P,δ, which is given by (Dσ

P,δ)
′ = D−σP,−δ (see the

right panel of Figure 2 for an illustration of the case P = I).

Clearly, ((Dσ
P,δ)

′)′ = Dσ
P,δ and TσP,δ = T−σP,−δ.

Proposition 3.13. (Hσ
P,δ)

′ = (H2(Dσ
P,δ))

′ is isometrically isomorphic to H−σP,−δ = H2((Dσ
P,δ)

′),

via the isomorphism J : H−σP,−δ → (Hσ
P,δ)

′ given by

g 7→ 〈·, g〉TσP,δ .

Proof. We begin by showing that J is injective. Assume J(g) = 0 for some g ∈ H−σP,−δ, g(z) =∑
n∈Z−σP

gnz
n, that is, 〈f, g〉TσP,δ = 0 for all f ∈ Hσ

P,δ. In particular, for every m ∈ ZσP we have

0 = 〈pm, g〉TσP,δ =
∑

n∈Z−σP

gn〈pm, pn〉TσP,δ =
∑

n∈Z−σP

gne
〈m+n,vσP,δ〉δm,−n = g−m.

It follows that gn = 0 for all n ∈ Z−σP and hence g = 0, proving injectivity of J .
To show that J is surjective, let ` ∈ (Hσ

P,δ)
′. By the Riesz representation theorem, there

exists g ∈ Hσ
P,δ, so that ` = `g = (·, g)HσP,δ , and we can write g(z) =

∑
n∈ZσP

gnz
n. We define

h(z) =
∑
n∈Z−σP

g−ne
−2〈n,r〉zn with r = vσP,δ, and observe that h ∈ H2((Dσ

P,δ)
′) = H−σP,−δ. For

z = ereit ∈ TσP,δ, t ∈ [0, 2π)2, we have e−2rz = e−reit = 1/z, and hence

h(z) =
∑

n∈Z−σP

g−ne−2〈n,r〉zn =
∑

n∈Z−σP

g−nz
−n =

∑
n∈ZσP

gnz
n = g(z).

By (7) this implies
(J(h))(f) = 〈f, h〉TσP,δ = (f, g)HσP,δ = `(f),

for any f ∈ Hσ
P,δ. Hence J(h) = `, proving surjectivity of J .

Note that the Riesz representation theorem also yields ‖`g‖(HσP,δ)′ = ‖g‖HσP,δ . On the other

hand, for J(h) = `g as above, we have

‖h‖2
H−σP,−δ

=
∑

n∈Z−σP

|hn|2|e2〈n,r〉| =
∑

n∈Z−σP

|g−ne−2〈n,r〉|2|e2〈n,r〉| =
∑
n∈ZσP

|gn|2|e2〈n,r〉| = ‖g‖2HσP,δ ,

and so we obtain ‖J(h)‖(HσP,δ)′ = ‖h‖H−σP,−δ , proving that J is an isometry.

Remark 3.14. Using the above proposition we have the following reformulation: if f ∈ Hσ
P,δ then

‖f‖HσP,δ = sup
{∣∣∣〈f, g〉TσP,δ ∣∣∣ : g ∈ H2((Dσ

P,δ)
′) ∩ P , ‖g‖H2((DσP,δ)

′) ≤ 1
}
, (8)

where as before, P denotes the space of Laurent polynomials.

18



3.2 Hardy-Hilbert spaces for toral diffeomorphisms

For convenience, here we introduce notation to succinctly express monomial bases for various
Hilbert spaces which we will require below.

Notation 3.15. Let Rσ,o be the (closed) polar cone of Rσ for any σ ∈ Σ. Define

R̂σ,o =


Rσ,o if σ = (−1,−1),

Rσ,o \ {(0, 0)} if σ = (+1,+1),

int (Rσ,o) if σ ∈ Σ−1,

and let ẐσP = Z2 ∩P (R̂σ,o), noting that the R̂σ,o, σ ∈ Σ, form a partition of R2. In analogy to the
characterization of Hσ

P,δ in Proposition 3.9(ii), for σ ∈ Σ, δ ∈ R2 and P ∈ GL2(R) we define

Ĥσ
P,δ := Ĥ2(Dσ

P,δ) := {f ∈ Hσ
P,δ : (f, pn)HσP,δ = 0 for n /∈ ẐσP }.

Writing en = pn
ν(n) with ν(n) = ‖pn‖HσP,δ = e〈n,v

σ
P,δ〉, we note that {en : n ∈ ẐσP } forms an

orthonormal basis for Ĥσ
P,δ, which is a Hilbert space with the same norm ‖ · ‖HσP,δ . Furthermore,

for conveniently handling dual spaces, we set ŽσP = −ẐσP , and

Ȟσ
P,δ = {f ∈ H2(Dσ

P,δ) : 〈f, pn〉 = 0, n /∈ ŽσP }.

Remark 3.16. With the above notation, the isomorphism defined in Proposition 3.13 also forms
an isometric isomorphism between Ȟ−σP,−δ and (Ĥσ

P,δ)
′.

Notation 3.17. For ` ∈ {1,−1}, we write

D`P,δ :=
⋃
σ∈Σ`

Dσ
P,δ, and (D`P,δ)′ :=

⋃
σ∈Σ`

(Dσ
P,δ)

′ =
⋃
σ∈Σ`

D−σP,−δ,

and note that the distinguished boundary of D`P,δ is ∂∗D`P,δ =
⋃
σ∈Σ` TσP,δ.

See the left panel of Figure 2 for an illustration in the case P = I: the green and pink rectan-
gles represent D1

P,δ, whereas the orange and blue rectangles represent D−1
P,δ, with correspondingly

coloured stars representing the respective distinguished boundaries.

Definition 3.18. For ` ∈ {1,−1}, define H`P,δ =
⊕

σ∈Σ` Ĥ
σ
P,δ, which is a Hilbert space with the

inner product of f = (fσ)σ∈Σ` , g = (gσ)σ∈Σ` ∈ H`P,δ given by

(f, g)H`P,δ =
∑
σ∈Σ`

(fσ, gσ)HσP,δ .

As before, for the case P = I where the domains Dσ
P,δ are polydisks, we will use the shorthands

Ẑσ = ẐσI , Dσ
δ = Dσ

I,δ, D`δ = D`P,δ, Ĥσ
δ = Ĥσ

I,δ, and H`δ = H`I,δ.

Remark 3.19. Nominally, an f ∈ H`P,δ is a tuple f = (fσ)σ∈Σ` of two holomorphic functions

with distinct domains, fσ ∈ Ĥσ
P,δ = Ĥ2(Dσ

P,δ). It will be useful to alternatively consider H`P,δ as
(isomorphic to) a function space, which requires us to distinguish two cases:

(i) If δ ∈ R2
<0, then AP,δ = Dσ

P,δ ∩D−σP,δ 6= ∅, and for any f = (fσ, f−σ) ∈ H`P,δ we can define a

holomorphic function f̃ on AP,δ by f̃(z) = fσ(z)+f−σ(z), yielding an isometric isomorphism

between H`P,δ = Ĥ2(Dσ
P,δ)⊕ Ĥ2(D−σP,δ) and (a subspace of) H2(AP,δ).
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(ii) If δk ≥ 0 for some k ∈ {1, 2}, then Dσ
P,δ ∩ D−σP,δ = ∅, and for any f = (fσ, f−σ) ∈ H`P,δ we

can define a holomorphic function f̃ on D`P,δ = Dσ
P,δ ∪ D−σP,δ by f̃(z) = fσ(z) for z ∈ Dσ

P,δ,

σ ∈ Σ`, yielding an isomorphism between H`P,δ, and (a subspace of) the space of holomorphic

functions on D`P,δ which extend to square-integrable functions on ∂∗D`P,δ = ∂∗Dσ
P,δ ∪∂∗D−σP,δ.

0.0 0.5 1.0 1.5 2.0
|z1|

0.0

0.5

1.0

1.5

2.0

|z 2
|

(D−+
γ )′

(D+−
γ )′

D−−α
D++
α

0.0 0.5 1.0 1.5 2.0
|z1|

0.0

0.5

1.0

1.5

2.0

|z 2
|

(D−+
P,γ )′

(D+−
P,γ )′

D−−P,α

D++
P,α

Figure 3: Absolute domains for the Reinhardt domains underlying Hν = HP,α,−γ with α =
(0.1, 0.2), γ = (0.4, 0.3), for P = I (left) and the rotation matrix with rotation angle π/10 (right).

We can now express the weighted function spaces with respect to quadrant-wise exponential
weights considered in Section 2.1 as direct sums of Hardy-Hilbert spaces on certain disks, see Figure
3 (left). For this, let α, γ ∈ R2, ν = να,−γ the associated quadrant-wise exponential weight (see
Definition 2.5) and Hν = Hα,−γ the resulting Hilbert space, given as the completion of P with
respect to the norm ‖ · ‖ν (see Definition 2.2). Then

Hα,−γ ∼= H1
α ⊕H−1

−γ = Ĥ−−α ⊕ Ĥ++
α ⊕ Ĥ−+

−γ ⊕ Ĥ+−
−γ

= Ĥ2(D−−α )⊕ Ĥ2(D++
α )⊕ Ĥ2((D+−

γ )′)⊕ Ĥ2((D−+
γ )′)

with the isometric isomorphism given by

f =
∑
n∈Z2

fnpn 7→ (fσ)σ∈Σ, fσ =
∑
n∈Ẑσ

fnpn.

With the obvious generalization of the weight function ν = νP,α,−γ one can also define this for
P 6= I, obtaining the more general space Hν = HP,α,−γ ∼= H1

P,α ⊕H−1
P,−γ , see Figure 3 (right).

Remark 3.20. The above isomorphic representation of Hν reveals an intuitive structure of this
Hilbert space. For α, γ ∈ R2

>0, by Remark 3.19, the first partH1
P,α can be viewed as (isomorphic to)

“H2(D1
P,α)”, the space of functions holomorphic on D1

P,α extending to square-integrable functions

on ∂∗D1
P,α. The second part H−1

P,−γ , on the other hand, can be seen to be isomorphic to the dual

(H−1
P,γ)′ (see Lemma 3.29), with H−1

P,γ isomorphic to a space “H2(D−1
P,γ)”: the space of holomorphic

functions on D−1
P,γ extending to square-integrable functions on ∂∗D−1

P,γ .
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Notation 3.21. For f ∈ H`P,δ for some ` ∈ {1,−1}, or f ∈ H1
P,α⊕H−1

P,−γ , we denote the canonical

projection onto one of the components as Π̂σ (omitting the dependence on P ), given by

Π̂σpn =

{
pn if n ∈ ẐσP ,
0 otherwise,

so that if f =
∑
n∈Z2 fnpn (in the sense of Remark 3.19), then Π̂σf =

∑
n∈ẐσP

fnpn, where the

operator’s domain and range can be inferred from context. Similarly, we write Π̌σf =
∑
n∈ŽσP

fnpn.

Remark 3.22. With the isometric isomorphism Φ: H1
P,α ⊕ H−1

P,−γ → HP,α,−γ , we can now use
any well-defined operator L on HP,α,−γ to define a conjugated operator on the respective space of
function tuples. With slight abuse of notation, in such cases we will continue denoting the respective
operator on H1

P,α ⊕ H−1
P,−γ by the same symbol L. Furthermore, every toral automorphism τQ,

Q ∈ GL2(Z), yields an isometric isomorphism CτQ : Hσ
QP,δ → Hσ

P,δ for any P ∈ GL2(R), δ ∈ R2,

σ ∈ Σ (Proposition 3.10), which can be used to define an operatorH1
QP,α⊕H−1

QP,−γ → H1
P,α⊕H−1

P,−γ
given by (fσ)σ∈Σ 7→ (Π̂σ(fσ ◦ τQ))σ∈Σ, conjugated to the composition operator f 7→ f ◦ τQ viewed
as an operator from HQP,α,−γ to HP,α,−γ . We will refer to all three of these operators as CτQ .

The above decomposition of the space Hν will allow us to prove the main result of this section
(Theorem 3.24) for holomorphic maps on the torus satisfying the strongly expanding mapping
property from Definition 2.17, by adapting a method previously used in the one-dimensional setting
of analytic expanding circle maps τ : T→ T, see [BJS]. To summarize, writing Ur = {z ∈ C : |z| <
r} and Ur = Ur ∪ (Ĉ \ cl(U1/r)) with r ∈ (0, 1), analyticity and expansivity of τ imply that
there exists r ∈ (0, 1) such that τ extends holomorphically to a suitable neighbourhood of T, and

τ(∂Ur)⊂⊂Ur. This in turn guarantees compactness of Cτ on H2(Ur) ⊕ H2
0 (Ĉ \ cl(U1/r)). In the

same spirit, for T : T2 → T2 an analytic Anosov map, if T ` is (`, δ`,∆`, P )-strongly expanding for
` ∈ {1,−1} and suitable δ`,∆` ∈ R2

>0, then

T
(
∂∗D`P,δ`

)
⊂ D`P,∆`

⊂⊂D`P,δ` ,

which will be used to prove compactness of CT on H1
δ1
⊕(H−1

δ−1
)′ with similar techniques as in [BJS].

Lemma 3.23. Let T be a map with (`, δ,∆, P )-strongly expanding mapping property, then for
every σ, σ̃ ∈ Σ` there is σ̂ ∈ Σ` such that

Tσ̂P,δ ⊂ cl((Dσ
P,δ)

′) and T (Tσ̂P,δ) ⊂ Dσ̃
P,∆⊂⊂Dσ̃

P,δ.

Proof. The first property is obvious as Tσ̂P,δ ⊂ cl((Dσ
P,δ)

′) for all σ̂ ∈ Σ`. Next, if T satisfies the
(EP) property, pick σ̂ = σ̃, whereas if T satisfies (ER) pick σ̂ = −σ̃.

Theorem 3.24. Let T be an analytic diffeomorphism of T2. Further assume that there are
α, γ,A,Γ, η ∈ R2

>0 with α, γ < η, and P ∈ GL2(R), such that T and T−1 can be analytically
extended to AP,η and the following mapping properties hold:

(i) T is (1, α,A, P )-strongly expanding;

(ii) T−1 is (−1,Γ, γ, P )-strongly expanding;

(iii) For any σ̃ ∈ Σ1, σ ∈ Σ−1, there exist T2
q ⊂ Dσ

P,γ ∩ AP,η with T (T2
q)⊂⊂Dσ̃

P,A.

Then, the composition operator CT given by

f 7→ f ◦ T
maps HP,A,−Γ continuously to HP,α,−γ .
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Figure 4: Depiction of the 16 different cases for the absolute domains in the proof of Theorem
3.24. Each row corresponds to σ̃ ∈ Σk and σ ∈ Σl, for k, l ∈ {1,−1}. The blue rectangle
represents the domain of holomorphicity for the function f , and the orange rectangle the domain of
holomorphicity for the function g. We chose P = I, α = (0.05, 0.1), A = (0.15, 0.2),Γ = (0.35, 0.4)
and γ = (0.5, 0.5).

Proof. Let Sδ,δ′ = {Ĥσ
δ : σ ∈ Σ1} ∪ {Ĥσ

δ′ : σ ∈ Σ−1} be the collection of four spaces such that
HA,−Γ =

⊕SA,−Γ and Hα,−γ =
⊕Sα,−γ . By definition of the norm on HA,−Γ it is enough to
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prove that there is a constant K > 0 such that

‖ΠCT Π̃f‖H ≤ K‖f‖H̃ , f ∈ H̃, (9)

for any H ∈ Sα,−γ and H̃ ∈ SA,−Γ, where Π: Hα,−γ → H and Π̃ : HA,−Γ → H̃ are the respec-

tive projection operators. We will denote by D, D̃ the domains of holomorphicity of H and H̃,
respectively, and we will write D′ for the dual domain of D. Using (8), for any f ∈ H̃ we have

‖ΠCT f‖H = sup
{
|〈CT f, g〉∂∗D| : g ∈ H2(D′) ∩ P, ‖g‖H2(D′) ≤ 1

}
.

(Note that this holds for all H ∈ SA,−Γ without the need to adapt the function space for g.) By
the density of Laurent polynomials P in HA,−Γ, see Proposition 3.9(iv), it is enough to establish

|〈CT f, g〉∂∗D| ≤ C̃‖f‖H̃‖g‖H2(D′)

for some C̃ > 0, for all f ∈ H̃ ∩ P and g ∈ H2(D′) ∩ P. We shall prove this by breaking the 16
possible different configurations (see Figure 4) into several cases.

Fix H ∈ Sα,−γ and H̃ ∈ SA,−Γ (with corresponding domains D and D̃) and let g ∈ H2(D′).

(i) We first consider the case D = Dσ
P,α with σ ∈ Σ1 (so that ∂∗D = TσP,α) and D̃ = Dσ̃

P,A with

σ̃ ∈ Σ1. Since T is (1, α,A, P )-strongly expanding, Lemma 3.23 yields that there is a σ̂ ∈ Σ1

such that Tσ̂P,α ⊂ cl(D′) and T (Tσ̂P,α) is a compact subset of D̃.

We obtain

|〈CT f, g〉TσP,α | =
∣∣∣∣∣
∫
TσP,α

(f ◦ T )g dm

∣∣∣∣∣ =

∣∣∣∣∣
∫
Tσ̂P,α

(f ◦ T )g dm

∣∣∣∣∣
≤
(∫

Tσ̂P,α
|f ◦ T |2 dm

)1/2(∫
Tσ̂P,α
|g|2 dm

)1/2

,

where the integral equality (in the case σ̂ 6= σ) follows by Cauchy’s Theorem and the holo-
morphicity of T on cl(AP,α), and the last step is the Cauchy-Schwarz inequality.

As T (Tσ̂P,α) ⊂ D̃ is compact, Proposition 3.11 yields a C1 > 0 such that supz∈T (Tσ̃P,α) |f(z)| ≤
C1‖f‖H̃ . Since Tσ̂P,α ∈ cl(D′) and g ∈ H2(D′), we obtain

|〈CT f, g〉TσP,α | ≤ C1‖f‖H̃‖g‖H2(D′).

(ii) The case D = Dσ
P,α with σ ∈ Σ1 and D̃ = (Dσ̃

P,Γ)′ with σ̃ ∈ Σ−1 is similar to the previous

one. In this case, it holds that T (T2) = T2⊂⊂D′ ∩ D̃, and using holomorphicity of T on
cl(AP,α) and the Cauchy-Schwarz inequality, as before we obtain

|〈CT f, g〉TσP,α | =
∣∣∣∣∫

T2

(f ◦ T )g dm

∣∣∣∣ ≤ (∫
T2

|f ◦ T |2 dm
)1/2(∫

T2

|g|2 dm
)1/2

.

By Proposition 3.11, we again have that |〈CT f, g〉TσP,α | ≤ C2‖f‖H̃‖g‖H2(D′) for some C2 > 0.

(iii) Next we consider the case D = (Dσ
P,γ)′, σ ∈ Σ−1 and D̃ = Dσ̃

P,A, σ̃ ∈ Σ1. From assumption

(iii) we have that there exists a torus T2
q ⊂ Dσ

P,γ ∩AP,η such that T (T2
q) is a compact subset

of D̃. As in case (i), we obtain

|〈CT f, g〉TσP,γ | ≤
(∫

T2
q

|f ◦ T |2 dm
)1/2(∫

T2
q

|g|2 dm
)1/2

≤ C3‖f‖H̃‖g‖H2(D′)

for some C3 > 0.
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(iv) Finally we consider the case D = (Dσ
P,γ)′, D̃ = (Dσ̃

P,Γ)′ with σ, σ̃ ∈ Σ−1. As T and T−1 are
holomorphic on a neighbourhood of cl(AP,γ), by Cauchy’s Theorem we have

〈CT f, g〉TσP,γ =

∫
TσP,γ

(f ◦ T )g dm =

∫
T2

(f ◦ T )g dm =

∫
T2

f(g ◦ T−1)w dm

=

∫
TσP,Γ

f(g ◦ T−1)w dm,

where w(z) = ωT det(DT−1(z)) · z/T−1(z) with ωT = 1 if T is orientation-preserving and
ωT = −1 otherwise. As T−1 is (−1,Γ, γ, P )-strongly expanding, by Lemma 3.23, there is
σ̂ ∈ Σ−1 such that Tσ̂Γ ∈ cl((Dσ̃

P,Γ)′) = cl(D̃) and T−1(Tσ̂P,Γ) is a compact set in Dσ
P,γ = D′.

By the same argument as before we obtain a C4 > 0 such that

|〈CT f, g〉TσP,γ | ≤ sup
z∈TσP,Γ

|w(z)|
(∫

TσP,Γ
|f |2 dm

)1/2(∫
TσP,Γ
|g ◦ T−1|2 dm

)1/2

≤ C4‖f‖H̃‖g‖H2(D′).

Setting C̃ = max{C1, C2, C3, C4}, we obtain the required inequality.

Corollary 3.25. Let T be an analytic Anosov diffeomorphism of T2 satisfying the (sec) condition
for some P ∈ GL2(R). Then there are α,A, γ,Γ ∈ R2

>0 with α < A and Γ < γ such that the asso-
ciated composition operator CT is a well-defined and bounded operator from HP,A,−Γ to HP,α,−γ .

Remark 3.26. Note that the (sec) condition is sufficient, but not necessary for the above corollary.
For example, take P = I and T̃ (x, y) = (x+ y, x), then the union of the first and third quadrants
of R2 is not an expanding invariant cone, as DxT̃ (0, 1)T = (1, 0)T for all x ∈ M . However, it
is not difficult to find α,A, γ,Γ satisfying the assumptions of Theorem 3.24 (for P = I) for the
corresponding map T : (z1, z2) 7→ (z1z2, z1) on T2.

Using a standard factorisation argument we can now deduce that the composition operator
from the above theorem is trace-class when considered as an operator on HA,−Γ. We defer the
proof of the following lemma to the appendix.

Lemma 3.27. For α,A, γ,Γ ∈ R2
>0 with α < A and Γ < γ let J : HP,α,−γ → HP,A,−Γ be the

canonical embedding operator. For n ∈ N, denote by sn(J) the n-th singular value of J . Then

lim
n→∞

− log sn(J)

n1/2
= η,

where η =
(

1
log(A1−α1) log(A2−α2) + 1

log(γ1−Γ1) log(γ2−Γ2)

)−1/2

.

Corollary 3.28. Let T be as in Theorem 3.24. Then the are α, γ ∈ R2
>0 such that the composition

operator CT associated to T is well-defined as an operator from HP,α,−γ to HP,α,−γ . Moreover,
there are constants c̃1, c̃2, ĉ1, ĉ2 > 0 such that

sn(CT ) ≤ c̃1e−c̃2n
1/2

(n ∈ N),

and
|λn(CT )| ≤ ĉ1e−ĉ2n

1/2

(n ∈ N),

where sn(CT ) and λn(CT ) are the n−th largest (counted with multiplicity) singular values and
eigenvalues of CT , respectively. In particular, CT : HP,α,−γ → HP,α,−γ is trace-class.
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Proof. By Theorem 3.24 the composition operator lifts to a continuous operator C̃T : HP,A,−Γ →
HP,α,−γ . Let J be the embedding operator from Lemma 3.27, then CT = C̃TJ is a well-defined

trace-class operator from HP,α,−γ to HP,α,−γ , as C̃T is bounded and J is trace-class. By [Pi,

2.2] we have sn(CT ) ≤ Csn(J) with C = ‖C̃T ‖HP,A,−Γ→HP,α,−γ , and by Lemma 3.27 we have

sn(J) ≤ c1e−η·n
1/2

for some c1 > 0. Using the multiplicative Weyl inequality [Pi, 3.5.1] we obtain

|λn(CT )| ≤ ĉ1e−ĉ2n
1/2

with ĉ1 = Cc1, ĉ2 = 2/3η (see, for example, [BJ2, Lemma 5.11]).

We are now ready to precisely state and prove our first main theorem.

Theorem 1.1. Let T be an analytic Anosov diffeomorphism of T2 satisfying the (sec) condition
for some P ∈ GL2(R), and let w : T2 → C be analytic. Then there exist α, γ ∈ R2

>0 such that the
weighted composition operator

f 7→ w · f ◦ T
is a well-defined trace-class operator on HP,α,−γ .

Proof. Corollary 3.28 proves the theorem for w ≡ 1, and remains valid if the operator CT is replaced
by MwCT , with Mw the multiplication operator with a weight function that is holomorphic on
AP,η for some η > α, γ. Since w is analytic on T2, for η sufficiently small we can assume without
loss of generality that w holomorphically extends to AP,η, proving the general case.

3.3 Relation to transfer operator

The following lemma is analogous to Proposition 3.13, replacing the Hilbert space Hσ
P,δ by H1

P,δ,

H−1
P,δ or H1

P,α ⊕H−1
P,−γ , with the respective inner products as in Definition 3.18.

Lemma 3.29.

(i) For ` ∈ {1,−1} and δ ∈ R2, the dual (H`P,δ)′ = (
⊕

σ∈Σ` Ĥ
σ
P,δ)

′ is isometrically isomorphic to⊕
σ∈Σ` Ȟ

−σ
P,−δ via the isomorphism J `P,δ :

⊕
σ∈Σ` Ȟ

−σ
P,−δ → (H`P,δ)′, g 7→ lg, given by

lg(f) =
∑
σ∈Σ`

〈Π̂σf, Π̌−σg〉TσP,δ .

(ii) For α, γ ∈ R2, the dual (H1
P,α ⊕H−1

P,−γ)′ = (Ĥ−−P,α ⊕ Ĥ++
P,α ⊕ Ĥ−+

P,−γ ⊕ Ĥ+−
P,−γ)′ is isometrically

isomorphic to Ȟ++
P,−α ⊕ Ȟ−−P,−α ⊕ Ȟ+−

P,γ ⊕ Ȟ−+
P,γ via the isomorphism JP,α,γ : g 7→ lg, given by

lg(f) =
∑
σ∈Σ1

〈Π̂σf, Π̌−σg〉TσP,α +
∑

σ∈Σ−1

〈Π̂σf, Π̌−σg〉TσP,−γ .

Remark 3.30. As before we can identify the Hardy-Hilbert space HP,−α,γ associated to a cone-
wise exponential weight (similar to Definition 2.5), with a topological direct sum of Hardy-Hilbert
spaces on corresponding Reinhardt domains, that is,

HP,−α,γ ∼= Ȟ++
P,−α ⊕ Ȟ−−P,−α ⊕ Ȟ+−

P,γ ⊕ Ȟ−+
P,γ

Note that in particular this implies (HP,α,−γ)′ ∼= HP,−α,γ .

Let T̃ : M → M be a smooth diffeomorphism of M , then the associated Perron-Frobenius
operator LT̃ given by g 7→ | detDT̃−1| · (g ◦ T̃−1) is a well-defined operator on L2(M). The
respective operator on L2(T2) is given by7

(LT g)(z) = w(z) · (g ◦ T−1)(z), (10)

7Use the relation π ◦ T̃ = T ◦ π with π(x, y) = (exp(ix), exp(iy)). Also observe that detDT̃−1(x, y) =
(detDT−1(z)) · z1z2

(T−1(z))1(T−1(z))2
= w(z) for z = (eix, eiy).
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with w(z) = ωT · (detDT−1(z)) · p1,1(z)
p1,1(T−1(z)) , where p1,1(z) = z1 · z2 and ωT = 1 if T is orientation-

preserving and ωT = −1 otherwise.

Proposition 3.31. Let T satisfy the assumptions of Theorem 3.24 and let CT be the respective
operator on a suitable space HP,α,−γ . Then the isomorphism J = JP,α,γ from Lemma 3.29 conju-
gates the adjoint (CT )∗ of CT to the operator LT given by (10), which is well defined and bounded
as an operator on HP,−α,γ .

Proof. For notational simplicity, we assume P = I, the proof for general P ∈ GL2(R) being
identical. We want to show that C∗TJ = JLT . By the density of Laurent polynomials in HP,−α,γ
and HP,α,−γ , it suffices to show this for monomials, i.e. (C∗TJ (pn))(pm) = (JLT (pn))(pm) for all
n,m ∈ Z2. For any n,m ∈ Z2 we have that

(C∗TJ (pn))(pm) = (J (pn))(CT pm) =
∑
σ∈Σ

〈Π̂σ(CT pm), Π̌−σpn〉Tσ
δ(σ)

with δ(σ) = α for σ ∈ Σ1, and δ(σ) = −γ otherwise. We note that Z2 =
⋃
σ∈Σ Žσ is a disjoint

union, so that for every n ∈ Z2 there exists exactly one σ′ ∈ Σ such that Π̌−σ
′
pn = pn and

Π̌−σpn = 0 for all σ 6= σ′. Moreover we have 〈Π̂σf, Π̌σ′g〉Tσδ = 0 whenever σ′ 6= −σ. It follows that∑
σ∈Σ

〈Π̂σ(CT pm), Π̌−σpn〉Tσ
δ(σ)

= 〈Π̂σ′(CT pm), Π̌−σ
′
pn〉Tσ′

δ(σ′)
= 〈CT pm, pn〉Tσ′

δ(σ′)
,

where the second step follows from
∑
σ∈Σ Π̂σ(CT pm) = CT pm. Analogously,

(JLT (pn))(pm) =
∑
σ∈Σ

〈Π̂σpm, Π̌
−σ(LT (pn))〉Tσ

δ(σ)
= 〈pm,LT (pn)〉Tσ′′

δ(σ′′)
,

with suitable σ′′. Finally, we have that

〈CT pm, pn〉Tσ′
δ(σ′)

=

∫
Tσ′
δ(σ′)

(pm ◦ T )pn dm =

∫
T2

(pm ◦ T )pn dm

=

∫
T2

pm(pn ◦ T−1)w dm =

∫
Tσ′′
δ(σ′′)

pm(pn ◦ T−1)w dm = 〈pm,LT (pn)〉Tσ′′
δ(σ′′)

,

where w(z) = ωT det(DT−1(z)) · z/T−1(z) and we have used that the integrands are holomorphic
on a neighbourhood of cl(Aγ). Combining the above, we obtain the claim of the proposition.

Remark 3.32. Using Theorem 1.1 with the weight function being (the complex version of) the
determinant of DT gives rise to a transfer operator corresponding to the map T−1, which is well
defined and trace-class on a suitable HP,α,−γ . Now, using the previous proposition, it follows that
the operator f 7→ f ◦ T−1 is well-defined and trace-class on HP,−α,γ .

4 Resonances for certain rational Anosov maps

This section is devoted to proving Theorem 1.2, that is, determining the explicit form of eigenval-
ues of composition operators associated to analytic maps with holomorphic extensions to certain
domains of Ĉ2. In order to capture all the intricacies of the resonances in this result, we will use
a fundamental result by Rudin and Stout [Rud, Theorem 5.2.5] characterising inner functions on
polydisks. An inner function on Dn is a function f ∈ H∞(Dn) whose radial boundary values satisfy
|f∗(z)| = 1 almost everywhere8 on Tn = ∂Dn. We denote by U(Dn) the class of all continuous
complex functions on cl(Dn) whose restriction to Dn is holomorphic.

8 Knese [Kn, Cor. 14.6] proved that the radial limit exists and is unimodular at every point z ∈ Tn. However, in
general f∗ need not be continuous on Tn.
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Theorem 4.1. Every rational inner function f on Dn, n ∈ N, has the form

f(z) =
M(z)Q̃(1/z)

Q(z)
, (11)

where M is a monomial, Q a polynomial with no zeros in Dn, and Q̃ is the polynomial whose
coefficients are the complex conjugates of the coefficients of Q. Moreover, every function f ∈ U(Dn)
which is inner is rational, and in this case Q has no zeros in cl(Dn).

A direct consequence of this theorem is a characterization of the form that analytic Anosov
diffeomorphisms on T2 from Theorem 1.2 can take, namely that each component is necessarily
a rational function satisfying a certain set of properties. For for k, l ∈ {0, 1}, we denote by
Ikl : T2 → T2 the map

Ikl(z1, z2) = (z1−2k
1 , z1−2l

2 ),

noting that Ikl = τIσ with σ = (1− 2k, 1− 2l).

Corollary 4.2. Let T be an analytic diffeomorphism of T2 with holomorphic extension to a neigh-
bourhood of T2. Assume there exist σ, σ′ ∈ Σ so that T holomorphically extends to Dσ with
T (Dσ) ⊂ Dσ′ . Then each component of T can be written as a rational function. Moreover, writing
T = TA with A = (a1, . . . , an) the collection of all coefficients occurring in T (in any order), and
denoting A = (a1, . . . , an), we have the following properties:

(i) I11 ◦ TA ◦ I11 = TA,

(ii) TA(z) = TA(z) for any z ∈ Ĉ2.

Proof. We define φσ : D2 → Dσ by φσ(z) = z−σ = (z−σ1
1 , z−σ2

2 ), then each component of T̂ =

(φσ
′
)−1 ◦ T ◦ φσ : D2 → D2 is a rational inner function in D2 continuous on all of cl(D2). By

Theorem 4.1, each component is a rational function of the form (11), and this property is preserved
under composition with φσ. Furthermore, property (i) holds for maps whose components are of
the form (11). Since I11 and φσ commute for any σ ∈ Σ, we have that

I11 ◦ TA ◦ I11 = φσ
′ ◦ I11 ◦ T̂A ◦ I11 ◦ (φσ)−1 = φσ

′ ◦ T̂A ◦ (φσ)−1 = TA,

proving that property (i) is preserved under composition with φσ. Lastly, (ii) holds for all maps
whose components are rational functions, and hence for the given map T = TA.

We shall require the following lemma, a direct consequence of the maximum modulus principle.

Lemma 4.3. Fix σ, σ′ ∈ Σ, a ∈ R2
>0, and let T : Dσ → Dσ′ be holomorphic with T (Tσa) ⊂ Dσ′

a .

Then T (Dσ
a )⊂⊂Dσ′

a .

Proof. We write σ̂ = (−1,−1), and begin with the case σ = σ′ = σ̂ (i.e. Dσ = Dσ′ = D2), whose
proof is a direct application of the (multivariate) maximum modulus principle. By compactness,
there exists z∗ = (z∗1 , z

∗
2) ∈ cl(Dσ

a ) such that |T1(z∗)| = maxz∈cl(Dσa ) |T1(z)|. Defining f : D → D
by f(z1) = T1(z1, z

∗
2), the maximum modulus principle implies that

|T1(z∗)| = max
|z1|≤e−a1

|f(z1)| = max
|z1|=e−a1

|f(z1)|,

and hence without loss of generality we can assume |z∗1 | = e−a1 . Analogously, z∗2 can be assumed to
have modulus e−a2 . It follows that maxz∈cl(Dσa ) |T1(z)| = maxz∈Tσa |T1(z)| < e−a1 (using T (Tσa) ⊂
Dσ
a ). Repeating the argument for T2 yields maxz∈cl(Dσa ) |T2(z)| < e−a2 , and hence T (Dσ

a )⊂⊂Dσ′

a .

For general σ, σ′ ∈ Σ, let φσ : D2 → Dσ be given by φσ(z) = z−σ = (z−σ1
1 , z−σ2

2 ), so that

φ(Dσ̂
a ) = Dσ

a and φ(Tσ̂a) = Tσa . Then T̃ = (φσ
′
)−1 ◦ T ◦ φσ : D2 → D2 is holomorphic and satisfies

T̃ (Tσ̂a) ⊂ Dσ̂
a . It follows that T̃ (Dσ̂

a )⊂⊂Dσ̂
a , and the assertion T (Dσ

a )⊂⊂Dσ′

a follows.
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The explicit form of the spectral determinant in Theorem 1.2 will follow by computing traces
of certain trace-class operators. If L : H → H is a trace-class operator on a separable Hilbert space
(H, (·, ·)) and {en}n∈I is an orthonormal basis of H with some index set I, then the trace of L is

Tr(L) =
∑
n∈I

(Len, en), (12)

and its determinant is given by

det (Id−zL) = exp

(
−
∞∑
k=1

zk

k
Tr(Lk)

)
, (13)

for all z ∈ C in a suitable neighbourhood of 0. Moreover, both Tr and det are spectral, that is,
Tr(L) =

∑∞
k=1 λk(L), and counting multiplicities, the zeros of the entire function z 7→ det (Id−zL)

are precisely the reciprocals of the eigenvalues λk(L) of L (see [Pi, 4.62, 4.7.14, 4.7.15]).

Notation 4.4. The multipliers at a fixed point z∗ ∈ Ĉ2 of a rational map T : Ĉ2 → Ĉ2 are given
by the eigenvalues of DT (z∗) if z∗ ∈ C2, and by the eigenvalues of DT̂ (Ikl(z

∗)) with (k, l) =
(1, 1), (1, 0) or (0, 1) for z∗ = (∞,∞), (∞, w) or (w,∞) respectively, where w ∈ C and T̂ =
Ikl ◦ T ◦ Ikl.
Lemma 4.5. For σ ∈ Σ and δ ∈ R2 let ϕ : Dσ

δ → Dσ
δ be a holomorphic map such that ϕ(Dσ

δ )⊂⊂Dσ
δ .

Let Cϕ denote the corresponding composition operator and Mw the multiplication operator with w
a holomorphic function on a neighbourhood of cl(Dσ

δ ). Then MwCϕ is trace-class on Hσ
δ and

Tr((MwCϕ)k) =
w(z∗)k

det(I−Dϕk(z∗))
=

w(z∗)k

(1− µk1)(1− µk2)
,

with µ1, µ2 the (not necessarily distinct) multipliers at the unique attracting fixed point z∗ ∈ Dσ
δ of

ϕ.

Proof. Let σ̂ = (−1,−1) and consider the case σ = σ̂. As H σ̂
δ is a ‘favourable Hilbert space’ (see

[BJ1, Definition 2.7]), the result follows by [BJ1, Proposition 2.10 and Theorem 4.2].
For general σ ∈ Σ, Dσ

δ is biholomorphically equivalent to Dσ̂
δ under the map φσ : Dσ̂

δ → Dσ
δ

given by φσ(z) = z−σ, and ϕ̂ = (φσ)−1◦ϕ◦φσ : Dσ̂
δ → Dσ̂

δ satisfies ϕ̂(Dσ̂
δ )⊂⊂Dσ̂

δ . Defining ŵ = w◦φσ
on a neighbourhood of cl(Dσ̂

δ ), the first case implies the statement of the lemma for the operator
MŵCϕ̂ on H σ̂

δ . By Proposition 3.10 the operator Cφσ : Hσ
δ → H σ̂

δ is an isometric isomorphism,
which conjugates MwCϕ to MŵCϕ̂. The statement for MwCϕ follows, as the multipliers of z∗ ∈ Dσ

δ

for ϕ coincide with those of the unique attracting fixed point (φσ)−1(z∗) ∈ Dσ̂
δ for ϕ̂.

Lemma 4.6. Let T be a smooth diffeomorphism of T2, and let ωT = 1 if T is orientation-
preserving, and ωT = −1 otherwise. Let r, s ∈ {0, 1}, and write T̂ = Irs ◦ T−1 ◦ Irs and ŵ =
ωT detDT̂ . Then for any n ∈ Z2and k ∈ N we have

(CkT pn, pn)L2(T2) = ((MŵCT̂ )kpm, pm)L2(T2) with m = ((−1)1−rn1 − 1, (−1)1−sn2 − 1).

Proof. All the steps follow by change of variables. For any n ∈ Z2, we have

(CkT pn, pn)L2(T2) =
1

(2π)2

∫
T2

pn(T k(z))p−n(z)
dz1

z1

dz2

z2

=
ωkT

(2π)2

∫
T2

pn(w)p−n(T−k(w)) detDT−k(w)
dw1

(T−k(w))1

dw2

(T−k(w))2

=
ωkT

(2π)2

∫
T2

pn+1(w)p−(n+1)(T
−k(w)) detDT−k(w)

dw1

w1

dw2

w2
,
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using the shorthand n+ 1 = (n1 + 1, n2 + 1). Next, observe that

detD(T−k ◦ Irs)(z) = detD(Irs ◦ T̂ k)(z) = (−1)r+sp−2r,−2s(T̂
k(z)) · detDT̂ k(z).

Substituting w = Irs(z) and using that Irs is orientation-preserving iff r + s is even, we obtain

(CkT pn, pn)L2(T2) =
(−1)r+sωkT

(2π)2

∫
T2

pn+1(Irs(z))p−(n+1)(T
−k(Irs(z))) detD(T−k ◦ Irs)(z)

dz1

z1−2r
1

dz2

z1−2s
2

,

=
ωkT

(2π)2

∫
T2

p−m(z)pm(T̂ k(z)) detDT̂ k(z)
dz1

z1

dz2

z2

= ((ωkT detDT̂ k) · Ck
T̂
pm, pm)L2(T2),

with m = (−(−1)rn1 − 1,−(−1)sn2 − 1), as claimed.

Remark 4.7. If T : T2 → T2 has an analytic extension to a neighbourhood of cl(Aδ) for some δ,
then one can check that (CT pn, pn)L2(T2) = 〈CT en, en〉Tσδ = (CT en, en)Hσδ for any n ∈ Z2, σ ∈ Σ.

We recall that H1
δ = Ĥ−−δ ⊕ Ĥ++

δ and H−1
δ = Ĥ−+

δ ⊕ Ĥ+−
δ , and that {en : n ∈ Ẑσ} forms an

orthonormal basis for Ĥσ
δ for σ ∈ Σ.

Lemma 4.8. Let δ ∈ R2 and T : Ĉ2 → Ĉ2 be holomorphic on a neighbourhood of cl(Aδ). As-
sume additionally that T is holomorphic on Dσ

δ and T (Dσ
δ )⊂⊂D−σδ for every σ ∈ Σ1. Let w be a

holomorphic function on a neighbourhood of cl(Aδ). Then MwCT is a well-defined and trace-class
operator on H1

δ with trace Tr(MwCT ) =
∑
σ∈Σ1

∑
n∈Ẑσ 〈MwCT en, en〉Tσδ . Moreover,

(i) if w ≡ 1, then Tr(MwCT ) = Tr(CT ) = 1,

(ii) if w = detDT , then Tr(MwCT ) = 0.

Proof. We define T̃ = I11 ◦ T , so that T̃ is holomorphic on a neighbourhood of cl(Aδ), and
moreover, for every σ ∈ Σ1 it is holomorphic on Dσ

δ with T̃ (Dσ
δ )⊂⊂Dσ

δ . By Lemma 4.5 the

composition operator CT̃ is trace-class on Ĥσ
δ , and hence CT is well-defined and trace-class viewed

as an operator on H1
δ . Since Mw is well-defined and bounded as an operator on H1

δ , it follows that
MwCT is also trace-class. Since en(z) = p−n(z)ν(n) for z ∈ Tσδ and n ∈ Z2, we have that

(MwCT en, en)Ĥσδ
= 〈MwCT en, en〉Tσδ = 〈w · pn ◦ T, p−n〉Tσδ = 〈w · p−n ◦ T̃ , p−n〉Tσδ .

Moreover, p−n ◦ T̃ ∈ Hσ
δ for any σ ∈ Σ1 and −n ∈ Ẑσ, that is, p−n ◦ T̃ =

∑
m∈Zσ cmpm. For w ≡ 1,

recalling that 〈pk, pl〉Tσδ = 0 whenever k 6= −l, and noting (−Ẑσ) ∩ Zσ ⊂ {(0, 0)}, it follows that

(MwCT en, en)Ĥσδ
= δn,0 · 〈p0 ◦ T̃ , p0〉Tσδ = δn,0,

which yields Tr(CT ) = 1.
For w = wT = detDT , it is easy to see that w =

∑
m∈Z2

<0
wmpm for suitable wm ∈ C. We

consider first the case n ∈ Ẑ−−. In this case we have pn◦T =
∑
m∈Z2

≤0
cmpm, and hence w ·pn◦T =∑

m∈Z2
<0
dmpm, for suitable coefficients cm, dm ∈ C. It follows that 〈wT · pn ◦ T, p−n〉Tσδ = 0. For

n ∈ Ẑ++, let T̃ = I11 ◦ T ◦ I11. Direct calculation using a change of variables y = I11(z) yields

〈wT · pn ◦ T, p−n〉Tσδ = 〈wT̃ · p−(n+2) ◦ T̃ , pn+2〉Tσδ .

Noting that −(n + 2) ∈ Ẑ−− and that T̃ and wT̃ also satisfy the assumptions of the lemma,
we can apply the previous case and obtain that again 〈wT · pn ◦ T, p−n〉Tσδ = 0. The conclusion
Tr(MwCT ) = 0 follows.
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Lemma 4.9. Let ` ∈ {±1}, δ ∈ R2, and let T be an analytic diffeomorphism of T2, holomorphic
on a neighbourhood of cl(Aδ). Assume additionally that T extends holomorphically to Dσ

δ with
T (Dσ

δ )⊂⊂D−σδ for every σ ∈ Σ`. Then for any σ ∈ Σ`, T ◦T has a unique fixed point zσ ∈ Dσ
δ , and

D(T ◦ T )(zσ) = DT̂ (zσ)DT̂ (zσ),

where T̂ = I11 ◦ T .

Proof. We first note that (T ◦T )(Dσ
δ )⊂⊂Dσ

δ for σ ∈ Σ`, implying the existence of a unique fixed point

zσ ∈ Dσ
δ for σ ∈ Σ`. The map T̂ = I11 ◦ T also satisfies T̂ (Dσ

δ )⊂⊂Dσ
δ for σ ∈ Σ`, so by Corollary

4.2 each component of T̂ is a rational function, and we write T̂ = T̂A with A = (a1, . . . , an) the
collection of all coefficients occurring in T (in any order). Using Corollary 4.2(i) we obtain

T ◦ T = I11 ◦ T̂A ◦ I11 ◦ T̂A = T̂A ◦ T̂A.

Next, observe that on the one hand, we have

(T̂A ◦ T̂A)(T̂A(zσ)) = T̂A(T̂A ◦ T̂A(zσ)) = T̂A(zσ),

and on the other hand, using Corollary 4.2(ii), we have

(T̂A ◦ T̂A) (zσ) = T̂A

(
T̂A(zσ)

)
= (T̂A ◦ T̂A)(zσ) = zσ,

so that T̂A(zσ) = zσ. It follows that

D(T ◦ T )(zσ) = D(T̂A ◦ T̂A)(zσ) = DT̂A (zσ)DT̂A(zσ) = DT̂A(zσ)DT̂A(zσ). .

Remark 4.10. The above lemma implies that the two multipliers of a fixed point zσ of T ◦ T are
either real or complex conjugates of each other, as

det(D(T ◦ T )(zσ)) = det(DT̂A(zσ)) · det(DT̂A(zσ)) = |det(DT̂A(zσ))|2

and Tr(D(T ◦ T )(zσ)) = Tr
(
DT̂A(zσ)DT̂A(zσ)

)
∈ R. In contrast to the one-dimensional setting

of anti-Blaschke products [BN], examples of orientation-reversing circle maps allowing for explicit
determination of resonances, the multipliers are no longer necessarily real. Note also that under
the assumptions of the lemma for ` = 1 or ` = −1 the two attracting fixed points of T ◦ T in D`δ
(zσ, σ ∈ Σ`) have identical sets of multipliers.

We are now ready to prove our second main theorem.

Proof of Theorem 1.2. By Theorem 1.1, CT is trace-class on Hα,−γ for suitable α, γ ∈ R2
>0, and

its trace is given by TrCT =
∑
n∈Z2〈CT en, en〉να,−γ . Using the isometric isomorphism between

Hα,−γ and H1
α ⊕H−1

−γ and the fact that CkT = CTk , for every k ∈ N we have

Tr(CkT ) =
∑
σ∈Σ1

∑
n∈Ẑσ

(CkT en, en)Ĥσα
+
∑

σ∈Σ−1

∑
n∈Ẑ−σ

(CkT en, en)Ĥ−σ−γ
=: S1(k) + S−1(k), (14)

as well as

log det(Id−zCT ) = −
∞∑
k=1

zk

k
S1(k)−

∞∑
k=1

zk

k
S−1(k). (15)

We note that the assumptions and Lemma 4.3 imply that for every ` ∈ {±1} and σ ∈ Σ`, T `

is holomorphic in a neighbourhood of cl(Dσ
δ ) and T `(Dσ

δ )⊂⊂D±σδ , where δ = α for ` = 1 and
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δ = −γ for ` = −1. We will calculate (15) by handling the two sums S`, ` ∈ {±1}, separately,
considering for each the two possible cases T `(Dσ

δ ) ⊆ Dσ
δ and T `(Dσ

δ ) ⊆ D−σδ for all σ ∈ Σ`.

The claim of the theorem will follow with (1 − z)χ1
T (z) = exp(−∑∞k=1

zk

k S1(k)) and χ−1
T (z) =

exp(−∑∞k=1
zk

k S−1(k)). We first calculate S1(k):

(1) Consider first the case T (Dσ
α)⊂⊂Dσ

α for σ ∈ Σ1. For σ = (−1,−1) ∈ Σ1, the composition
operator C̃T associated to T on Hσ

α = Ĥσ
α is trace-class, and its trace, computed using (12),

coincides with the term in (14) corresponding to σ (note that C̃kT = C̃Tk). By Lemma 4.5,
we obtain the value ((1− λk1)(1− λk2))−1, where λ1, λ2 are the multipliers of the unique fixed
point zσ ∈ Dσ

α. Similarly, for σ = (+1,+1) ∈ Σ1, the associated composition operator C̃T is
trace-class on Hσ

α . Writing T = TA for some A ∈ Cm, m ∈ N0, by Corollary 4.2(i) we have
TA = I11 ◦TA ◦ I11, where TA is a holomorphic map on D−σα with unique attracting fixed point

zσ (see Corollary 4.2(ii)). Moreover, it follows that DTA(zσ) = DTA(zσ), thus by Lemma 4.5

we have Tr C̃kT = ((1− λ1
k
)(1− λ2

k
))−1. Since

Tr C̃kT = (C̃kT e0, e0)Hσα +
∑

n∈Ẑ++

(C̃kT en, en)Hσα = 1 +
∑

n∈Ẑ++

(CkT en, en)Ĥσα
,

we obtain
S1(k) = 1 +D(λk1 , λ

k
2) +D(λ1

k
, λ2

k
),

where D(a, b) := 1
(1−a)(1−b) − 1 =

∑
n∈N 1 an1bn2 for a, b ∈ D, N 1 = N2

0 \ {(0, 0)}. Calculating

−
∞∑
k=1

zk

k
D(ak, bk) = −

∑
n∈N 1

∞∑
k=1

zkakn1bkn2

k
=
∑
n∈N 1

log(1− zan1bn2),

we finally obtain

−
∞∑
k=1

zk

k
S1(k) = log(1− z) +

∑
σ∈Σ1

∑
n∈N 1

log(1− zλnσ).

(2) Next we consider the case T (Dσ
α)⊂⊂D−σα for σ ∈ Σ1. For k ∈ N odd, T k satisfies the assump-

tions of Lemma 4.8, and the trace of the composition operator associated to T k on H1
α exactly

corresponds to the first sum in (14), yielding S1(k) = 1. For k even, T k satisfies T k(Dσ
α)⊂⊂Dσ

α

for σ ∈ Σ1, and so we can apply case (1). Moreover, by Remark 4.10 in this case the fixed
point multipliers λ1, λ2 of T 2 are either real or complex conjugates of each other, and hence

S1(k) =

{
1 for k odd,

1 + 2D(λ
k/2
1 , λ

k/2
2 ) for k even.

A straightforward calculation using the fact that λσ = λ−σ now yields

−
∞∑
k=1

zk

k
S1(k) = log(1− z) +

1

2

∑
σ∈Σ1

∑
n∈N 1

log(1− z2λnσ).

Next, we proceed to calculate S−1(k). The approach to calculating S1(k) does not immediately
translate to this case, as the bidisks Dσ

δ , σ ∈ Σ−1, are not invariant under the map T , and so do
not directly give rise to trace-class composition operators on the respective spaces Hσ

δ . Instead,
we will show that the sums in S−1(k) correspond to the traces of certain weighted composition
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operators MŵCT̂ on H−−δ , where T̂ will be a map conjugated to T−1 from Lemma 4.6. Combining
Remark 4.7 with Lemma 4.6, we calculate for σ = (−1,+1) that∑

n∈Ẑ−σ
(CkT en, en)Ĥ−σ−γ

=
∑

n∈Ẑ−σ
(CkT pn, pn)L2(T2) =

∑
n∈Ẑ−−

((MŵσCT̂σ )kpn, pn)L2(T2),

with ŵσ = ωT detDT̂σ and T̂σ = I01 ◦ T−1 ◦ I01. For σ = (+1,−1), Lemma 4.6 yields the exact
same equality with T̂σ = I10 ◦ T−1 ◦ I10. We now consider two cases again.

(1’) If T−1(Dσ
γ )⊂⊂Dσ

γ for σ ∈ Σ−1, then T̂σ(D−−γ )⊂⊂D−−γ . We can then apply the same argument
as in the above case (1), using that ŵσ(ζ∗) = ωTµ1µ2 for µ1, µ2 the multipliers of the unique
fixed point ζ∗ ∈ D−−γ of T̂σ, which corresponds to the unique fixed point zσ ∈ Dσ

γ of T−1. By
the same argument as before, the multipliers of the respective fixed points in Dσ

γ and D−σγ
are complex conjugates of each other, and we obtain

S−1(k) =
(ωTµ1µ2)k

(1− µk1)(1− µk2)
+

(ωTµ1µ2)k

(1− µ1
k)(1− µ2

k)
= (ωT )k

∑
n∈N−1

((µn1
1 µn1

2 )k + (µ1
n1µ2

n2)k),

where N−1 = N2. A similar calculation to above yields

−
∞∑
k=1

zk

k
S−1(k) =

∑
σ∈Σ−1

∑
n∈N−1

log(1− zωTλnσ).

(2’) Finally, we consider the case T−1(Dσ
γ )⊂⊂D−σγ for σ ∈ Σ−1, which implies T̂σ(Dσ

γ )⊂⊂D−σγ for

σ ∈ Σ1. If k ∈ N is odd, we can apply Lemma 4.8 to T̂ kσ and the weight function ŵσ. The
trace of (MŵσCT̂σ )k on H1

γ in the lemma exactly coincides with S−1(k), yielding S−1(k) = 0.

For k even, we can apply case (1’) to T−2 instead of T−1, again using the fact that the fixed
point multipliers µ1, µ2 are either both real or complex conjugates of each other, which yields

S−1(k) =

0 for k odd,
2(µ1µ2)k/2

(1−µk/21 )(1−µk/2
2 )

for k even,

and again using λσ = λ−σ we obtain

−
∞∑
k=1

zk

k
S−1(k) =

1

2

∑
σ∈Σ−1

∑
n∈N−1

log(1− z2λnσ).

Claims (i) and (ii) of the theorem now follow by combining the cases (1)-(2) and (1′)-(2′) for ` = 1
and ` = −1, respectively.

Using the explicit form of the zeros of det(Id−zCT ) obtained in Theorem 1.2, we can calculate
the decay rate of their reciprocals, the eigenvalues of CT . For a map T satisfying the assumptions
of Theorem 1.2, for any ` ∈ {±1} and σ ∈ Σ`, we denote by λσ = (λσ,1, λσ,2) the multipliers of the
unique attracting fixed point in Dσ of T ` if T `(Dσ) ⊆ Dσ, and of T 2` otherwise.

Corollary 4.11. Let T satisfy the assumptions of Theorem 1.2, and let λ = λ(−1,−1) and µ =
λ(−1,+1). Let ωT = 1 if T is orientation-preserving9, and ωT = −1 otherwise. Then the nonzero

9T is orientation-preserving exactly if either both, or neither of T and T−1 satisfy the case (i) in Theorem 1.2.
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eigenvalues of CT on Hα,−γ are {1} ∪ E1 ∪ E−1, where

E1 =

{
{λn, λn : n ∈ N 1}, if T (Dσ) ⊆ Dσ, σ ∈ Σ1,

{±λn/2 : n ∈ N 1}, if T (Dσ) ⊆ D−σ, σ ∈ Σ1,

E−1 =

{
{ωT · µn, ωT · µn : n ∈ N−1}, if T−1(Dσ) ⊆ Dσ, σ ∈ Σ−1,

{±µn/2 : n ∈ N−1}, if T−1(Dσ) ⊆ D−σ, σ ∈ Σ−1.

Moreover, the algebraic multiplicity of each nonzero eigenvalue is exactly the number of its occur-
rences in the above sets.

Corollary 4.12. Let T satisfy the assumptions of Theorem 1.2, (λn)n∈N be the sequence of eigen-
values of CT sorted in order of decreasing modulus, and NT (r) = #{n ∈ N : |λn| ≥ r}. Then

lim
r→0

logNT (r)

log | log r| = d,

where

(i) if λσ,1 · λσ,2 6= 0 for some σ ∈ Σ, then d = 2 (stretched-exponential decay), and

lim
n→∞

− log |λn|
n1/2

= η2

with η2 =
(

1/2
∑
σ∈Σ:λσ,1·λσ,2 6=0(log |λσ,1| · log |λσ,2|)−1

)−1/2

.

(ii) if λσ,1 · λσ,2 = 0 for all σ ∈ Σ, and λσ,k 6= 0 for some σ ∈ Σ1 and k ∈ {1, 2}, then d = 1
(exponential decay), and

lim
n→∞

− log |λn|
n

= η1,

with η1 =
(∑

σ∈Σ1

∑
k:λσ,k 6=0(log |λσ,k|)−1

)−1

.

(iii) if λσ = 0 for all σ ∈ Σ1, and λσ,1 · λσ,2 = 0 for all σ ∈ Σ−1, then d = 0 (super-exponential
decay). In this case the set of eigenvalues of CT is trivial, and spec(CT ) = {0, 1}.

Proof. This follows directly from Lemma A.3 applied to the eigenvalues of CT written as the values
of a cone-wise exponential function f : Z2 → C. In the case when both T and T−1 satisfy the case

(i) in Theorem 1.2, this function is given by f(n) = λ
|n|
σ with σ = σ(n) ∈ Σ such that either

n ∈ Z2 ∩Rσ, σ ∈ Σ1, or n ∈ (Z \ {0})2 ∩Rσ, σ ∈ Σ−1. The other cases are similar.

5 Anosov maps with different decay rates for resonances

Based on the results of the previous section, in this section we shall prove our last main result,
Theorem 1.3. The proof will use the classical result that every toral Anosov diffeomorphism is
homotopic to a toral automorphism, and exploit the algebraic structure of GL2(Z), which is iso-
morphic to the group of toral automorphisms Aut(T2). To explicitly construct diffeomorphisms
whose corresponding composition operators have resonances exhibiting a desired decay rate, we
shall introduce a special group F of toral diffeomorphisms, containing the automorphisms as a
subgroup. The extension will consist of diffeomorphisms each of which is homotopic to an auto-
morphism in an explicit way.
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Beyond its immediate usefulness for our proof, the group F provides a rich source of explicit
examples of toral diffeomorphisms whose resonances can often be explicitly computed, and which
includes both area-presering and non-area-preserving, orientation-preserving and -reversing exam-
ples, as well as examples satisfying various symmetries. As we believe this might be of broader
interest, we include in Appendix B a more comprehensive discussion and illustrative set of exam-
ples, while constraining ourselves to a minimal introduction in this section.

5.1 A special group of toral diffemorphisms

The group Aut(T2) of linear diffeomorphisms of T2 is isomorphic to GL2(Z), with any A = (aij) ∈
GL2(Z) giving rise to the toral automorphism τA(z1, z2) = (za11

1 za12
2 , za21

1 za22
2 ). For our purposes it

will be convenient to view Aut(T2) as generated by the following automorphisms, which can also

be viewed as rational maps of Ĉ2:

(i) a map F given by F (z1, z2) = (z1z2, z2), with F−1(z1, z2) = (z1/z2, z2),

(ii) an involution R given by R(z1, z2) = (z2, z1),

(iii) involutions Ikl for k, l ∈ {0, 1} given by Ikl(z1, z2) = (z1−2k
1 , z1−2l

2 ).

The set Γ = {F,R, I01} generates Aut(T2). To create a richer group of toral diffeomorphisms, we
extend the above by a continuous family of maps. Utilising automorphisms of D, the so-called
Moebius maps ba : Ĉ→ Ĉ, a ∈ D, given by

ba(z) =
z − a
1− az ,

we define the additional set of generators as

(iv) a family G = {Ga,b : a, b ∈ D} of maps given by

Ga,b(z1, z2) = (ba(z1), bb(z2)),

satisfying G−1
a,b = G−a,−b.

Definition 5.1. Denote by F the group of diffeomorphisms of T2 generated by the set Γ ∪ G.

Remark 5.2. The proof of Theorem 1.3 will be based on Theorem 1.2, in particular we will require
all constructed maps T to analytically extend to a neighbourhood of T2, and to satisfy that

T ` extends holomorpically to Dσ and T `(Dσ) ⊆ D±σ (σ ∈ Σ`, ` ∈ {±1}). (16)

A convenient class of maps satisfying (16) is the semigroup of finite compositions of {F,R, I11}∪G.
We remark that the choice of generators G is not the only possible, though arguably the simplest

choice of non-linear maps satisfying (16). More generally, this property is satisfied by a certain
class of rational inner skew products, see [ST], taking the form

(z1, z2) 7→ (eiθ
p̃(z1, z2)

p(z1, z2)
, z2),

with θ ∈ R and p a polynomial of bidegree (1, k) for k ∈ N0, that is, of degree 1 in z1 and
degree k in z2. Here, p̃ is the reflection of p defined as p̃(z1, z2) = z1z

k
2p(1/z1, 1/z2). The map

Ga,0(z) = (ba(z1), z2) corresponds to the polynomial p(z) = 1−az1 of bidegree (1, 0), and a general
Ga,b can be written as Ga,b = Ga,0 ◦R ◦Gb,0.
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5.2 Explicit homotopies of Anosov diffeomorphisms

We proceed by stating an algebraic fact about conjugacy classes of GL2(Z), which will allow us
to establish an analytic conjugacy between an arbitary hyperbolic automorphism of T2 and an
element of F . While our proof is based on results from [He], for variants of this result see, e.g.,
[Ka, BR] and references therein. We defer the proof of the lemma to Appendix A.

Lemma 5.3. Every hyperbolic matrix M ∈ GL2(Z) is similar (in GL2(Z)) to a matrix of the form

±
(
k1 1
1 0

)(
k2 1
1 0

)
· · ·
(
kn 1
1 0

)
, k1, . . . , kn ∈ N, n ≥ 1. (17)

Corollary 5.4. Every hyperbolic automorphism of T2 is conjugated via an (analytic) toral auto-
morphism to an automorphism of the form

Is11 ◦ (F k1 ◦R) ◦ (F k2 ◦R) ◦ · · · ◦ (F kn ◦R), k1, . . . , kn ∈ N, n ≥ 1, s ∈ {0, 1}. (18)

Proof. Let τA be a hyperbolic automorphism of T2 associated to a hyperbolic matrix A ∈ GL2(Z).
By the previous lemma, A is similar to a matrix B of the form (17), that is, there existsQ ∈ GL2(Z),
such that A = Q−1BQ with B decomposing into a product of matrices

−I =

(
−1 0
0 −1

)
and

(
k 1
1 0

)
=

(
1 1
0 1

)k (
0 1
1 0

)
, k ∈ N.

We note that for every k ∈ N, the latter is equal to (MF )kMR, where MF , MR correspond to the
toral automorphisms F and R (i.e., τMF

= F and τMR
= R), and τ−I = I11. It follows that τB has

the desired form, and τA = τ−1
Q ◦ τB ◦ τQ.

Next, for any hyperbolic automorphism of the form (18) we construct non-linear area-preserving
Anosov diffeomorphisms from F in the same homotopy class with easily computable resonances.
For this, we derive from the linear map F k ◦R, k ∈ N, the one-parameter family of non-linear toral
diffeomorphisms

Uk,a(z) = (G0,a ◦ F k ◦R ◦G−a,0)(z) = (b−a(z1)kz2, z1), a ∈ D.

Applying this to (18), we define

ΨK,A = Is11 ◦ Uk1,a1 ◦ · · · ◦ Ukn,an , (19)

where s ∈ {0, 1}, n ∈ N, A = (a1, . . . , an) ∈ Dn,K = (k1, . . . , kn) ∈ Nn. We write Ao = (a1, a3, . . .)
and Ae = (a2, a4, . . .) for the respective tuples only involving odd or even indices (analogously for
Ko, Ke). For convenience, we shall use the multiindex notation AK := ak1

1 · · · aknn for arbitrary
n-tuples A and K, n ∈ N0, with the convention AK = 1 when A and K are of length 0.

Proposition 5.5 (Area-preserving maps homotopic to (18)). For s ∈ {0, 1}, A = (a1, . . . , an) ∈
Dn and K = (k1, . . . , kn) ∈ Nn, n ∈ N, the map ΨK,A is an area-preserving hyperbolic toral
diffeomorphism satisfying the conclusions of Theorem 1.2. In particular, ΨK,A satisfies Theorem
1.2(i) if s = 0, and (ii) if s = 1, and Ψ−1

K,A satisfies (i) if n + s is even, and (ii) if n + s is

odd. Moreover, denoting λσ the multipliers of the unique attracting fixed point of Ψ`
K,A in Dσ for

σ ∈ Σ`, ` ∈ {±1} if Ψ`
K,A(Dσ) ⊂ Dσ and of Ψ2`

K,A otherwise, we have:

(i) If s = 0 and n is odd, then

λ−− = λ++ = ((AK)1/2,−(AK)1/2) and λ−+ = λ+− = (AKoo AKee , AKoo AKee ).
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(ii) If s = 0 and n is even, then

λ−− = λ++ = (AKoo , AKee ) and λ−+ = λ+− = (AKoo , AKee ).

(iii) If s = 1 and n is odd, then

λ−− = λ++ = (AKoo AKee , AKoo AKee ) and λ−+ = λ+− = ((AKoo AKee )1/2,−(AKoo AKee )1/2).

(iv) If s = 1 and n is even, then

λσ = (|AKoo |2, |AKee |2) for all σ ∈ Σ.

Proof. We begin by showing that CΨK,A is trace-class on a suitable Hilbert space Hα,−γ . In the
case n > 1 this will follow from Theorem 1.2 by proving that ΨK,A satisfies the (p-sec) condition,
while the case n = 1 will be handled separately.

For any map T : T2 → T2 and M = ([0, 2π]/ ∼)2, we denote by T̃ : M →M the map determined
by π ◦ T̃ = T ◦ π with π(x) = eix for x ∈M , and analogously for maps on T and ([0, 2π]/ ∼). By
Lemma B.1 in the appendix, we have b̃−a(eiθ) = θ + g−a(θ) with g′−a(θ) > −1 for all a ∈ D, and

Ũk,a(x1, x2) = (k(x1 + g−a(x1)) + x2, x1). Thus we obtain

DŨk,a(x) =

(
sk,a(x) 1

1 0

)
, (20)

where sk,a(x) = k(1 + g′−a(x1)) > 0 for all x = (x1, x2) ∈M .

Consider first the case ΨK,A = Is11 ◦ Uk1,a1
◦ · · · ◦ Ukn,an with s = 0 and n > 1. Then DΨ̃K,A

is positive and hence (DΨ̃K,A(x))(R2
≥0) ⊂ R2

>0 ∪ {0} for every x ∈M . Using (20) we obtain

DΨ̃K,A(x) = Mx +



(
1 0

0 1

)
, if n is even,(

0 1

1 0

)
, if n is odd,

(21)

withMx ≥ 0. By the criterion in Remark 2.13, this implies that the first half of the (p-sec) condition

(6) is satisfied. Since detDΨ̃K,A(x) = (−1)n, we also have that DΨ̃−1
K,A(x) =

(
1 + ax −bx
−cx 1 + dx

)
if n is even, and DΨ̃−1

K,A(x) =

(
−ax 1 + bx

1 + cx −dx

)
for n odd, with ax, bx, cx, dx > 0. It is easy to

see that these are conjugated to matrices of the form (21) via the matrix

(
1 0
0 −1

)
or

(
−1 0
0 1

)
,

which via the criterion in Remark 2.13 implies the second half of the (p-sec) condition (6). The
case of s = 1 follows immediately, since condition (6) holds for a map T̃ if and only if it holds for
−T̃ , finishing the proof of the (p-sec) condition for ΨK,A with n > 1.

In the case n = 1 the (p-sec) condition does not hold, however one can verify that the assump-
tions of Theorem 3.24 still apply (similar to the case in Remark 3.26), so that by Corollary 3.28,
CΨK,A is trace-class in this case also.

Next, we observe that for any k ∈ N, a ∈ D and σ ∈ Σ1, the map Uk,a extends holomorphically
to Dσ with Uk,a(Dσ) ⊆ Dσ, and fixes z∗ = (0, 0) with

DUk,a(z∗) =

(
0 ak

1 0

)
,
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while for σ ∈ Σ−1 the map U−1
k,a extends holomorphically to Dσ with U−1

k,a(Dσ) ⊆ D−σ, which

implies the claim about how the cases Theorem 1.2(i)-(ii) apply to ΨK,A and Ψ−1
K,A.

We now proceed to show the assertions (i)-(iv). Denoting UK,A = Uk1,a1
◦ · · · ◦ Ukn,an with

A = (a1, . . . , an) and K = (k1, . . . , kn), we note that DUK,A(z∗) = DUk1,a1
(z∗) · · ·DUkn,an(z∗),

allowing us to compute the relevant multipliers for ΨK,A = Is11 ◦ UK,A, starting with the case of
s = 0.

(i) If s = 0 and n is odd, then

DΨK,A(z∗) = DUK,A(z∗) =

(
0 AKoo

AKee 0

)
.

Thus, the multipliers of ΨK,A at z∗ are λ = (v,−v) with v = (AK)1/2.

(ii) If s = 0 and n is even, then

DΨK,A(z∗) = DUK,A(z∗) =

(
AKoo 0

0 AKee

)
,

and, the multipliers of ΨK,A at z∗ are λ = (AKoo , AKee ).

For s = 1 we shall use Lemma 4.9 with T̂ = UK,A and T = I11 ◦ UK,A = ΨK,A, which yields

D(ΨK,A ◦ΨK,A)(z∗) = DUK,A(z∗)DUK,A(z∗).

(iii) If s = 1 and n is odd, then the multipliers of Ψ2
K,A at z∗ are λ = (v, v) with v = AKoo AK

e

e .

(iv) If s = 1 and n is even, then the multipliers of Ψ2
K,A at z∗ are λ = (|AKoo |2, |AKee |2).

Now, it remains to compute the multipliers of the inverse of Is11 ◦ UK,A. We set S = I01 ◦ R
(so that S2 = S−2 = I11), and observe using Lemma B.2 in the appendix that the inverse U−1

k,a =

Ga,0 ◦R ◦ F−1 ◦G0,−a obeys the relations

U−1
k,a ◦ S = S−1 ◦ Uk,a,

U−1
k,b ◦ S−1 = S ◦ Uk,b,

and hence we have S−1 ◦ U−1
k,a ◦ S = I11Uk,a and S−1 ◦ (Uk,a ◦ Uk,b)−1 ◦ S = Uk,b ◦ Uk,a. Iterating,

we obtain the conjugation

S−1 ◦ U−1
K,A ◦ S = In11 ◦ Ukn,ãn ◦ · · · ◦ Uk4,a4 ◦ Uk3,a3 ◦ Uk2,a2 ◦ Uk1,a1 =: ŨK,A, (22)

where ãn is an if n is even or an if n is odd. With the same conjugacy S, we obtain a conjugation

S−1 ◦ (I11 ◦ UK,A)−1 ◦ S = In−1
11 ◦ Ukn,ǎn ◦ · · · ◦ Uk4,a4

◦ Uk3,a3
◦ Uk2,a2

◦ Uk1,a1
=: ǓK,A, (23)

where ǎn is an if n is even or an if n is odd. We can now compute the relevant multipliers for
Ψ−1
K,A = (Is11 ◦ UK,A)−1. For s = 0, by (22) these are given by the fixed-point multipliers of ŨK,A.

(i) If s = 0 and n is odd, by Lemma 4.9 the multipliers of Ũ2
K,A at z∗ are λ = (v, v), v = AKoo AKee .

(ii) If s = 0 and n is even, then the multipliers of ŨK,A at z∗ are λ = (AKoo , AKee ).

For s = 1, the fixed-point multipliers of Ψ−1
K,A can be computed via those of ǓK,A by (23).

(iii) If s = 1 and n is odd, the multipliers of ǓK,A at z∗ are λ = (v,−v) with v = (AKoo AKee )1/2.
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(iv) If s = 1 and n is even, by Lemma 4.9 the multipliers of Ǔ2
K,A at z∗ are λ = (|AKoo |2, |AKee |2).

Claims (i)-(iv) follow by combining the respective cases for the multipliers of ΨK,A and Ψ−1
K,A.

Corollary 5.6. Let ΨK,A be as in Proposition 5.5. Then:

(i) If ai 6= 0 for all i, then the fixed point multipliers λσ in Theorem 1.2 satisfy λσ,1 · λσ,2 6= 0
for all σ ∈ Σ. Moreover, |λσ,1| and |λσ,2| can (independently) be chosen to take any value in
(0, 1) via suitable choice of A ∈ Dn.

(ii) If n is even and exactly one of the ai is zero, then either case (i) or (ii) of Theorem 1.2
applies to both ΨK,A and Ψ−1

K,A, and all fixed point multipliers are of the form (λ1, 0) with
λ1 6= 0. Moreover, |λ1| can be chosen to take any value in (0, 1) via suitable choice of A ∈ Dn,
and in the case (ii) of Theorem 1.2, λ1 ∈ R.

(iii) If n > 2 and at most one of the ai is nonzero, then all multipliers are (0, 0).

We shall next construct non-linear non-area-preserving maps in F homotopic to maps of the
form (18) with n > 1, yielding trivial resonances. For this we define the toral diffeomorphisms

Wk,a(z) = (F k ◦R ◦G0,a)(z) = (zk1 ba(z2), z1) (k ∈ N, a ∈ D, z ∈ T)

and
ΞK,a = Is11 ◦Wk1,0 ◦Wk2,0 ◦ · · · ◦Wkn−1,0

◦Wkn,a,

where s ∈ {0, 1}, n > 1, a ∈ D and K = (k1, . . . , kn) ∈ Nn.

Lemma 5.7 (Non-area-preserving maps homotopic to (18)). For any s ∈ {0, 1}, a ∈ D, K ∈ Nn
with n > 1, the map ΞK,a satisfies the assumptions of Theorem 1.2. Moreover χΞK,a = 1.

Proof. Following similar calculations and notations as in the proof of Proposition 5.5 we first show

that ΞK,a satisfies the (p-sec) condition. We have that DW̃k,a(x) =

(
k sa(x)
1 0

)
with sa(x) > 0

for all x ∈M . Thus, for s = 0 and n > 1 it follows that DΞ̃K,a(x) can be written as Mx +

(
1 0
0 0

)
with Mx ≥ 0 and thus satisfies the first part of the (p-sec) condition (6) by Remark 2.13. The case
s = 1 and the second part of the (p-sec) condition follow similarly.

To show that ΞK,a does not yield any non-trivial resonances, first note that for ` ∈ {1,−1} the
map W `

k,a extends holomorphically to Dσ with W `
k,a(Dσ) ⊆ D`σ for all σ ∈ Σ`. As the forward

map Wk,a fixes z∗ = (0, 0) and

DWk,a(z∗) =

(
−aδk,1 0

1 0

)
,

we see that the multipliers of ΞK,a at z∗ are trivial for any n > 1 and s ∈ {0, 1}. For the inverse
map we use the conjugation S = I01 ◦R, obtaining the relations

W−1
k,a ◦ S = S−1 ◦G−a,0 ◦Wk,0,

W−1
k,a ◦ S−1 = S ◦G−a,0 ◦Wk,0,

yielding S−1 ◦Ξ−1
K,a ◦S = G−a,0 ◦ In+s

11 ◦Wkn,0 ◦ · · · ◦Wk1,0 := EK,a. One can calculate that (a, 0) is

a fixed point of EK,a for n+ s is even, and of (EK,a)2 if n+ s is odd. In both cases, its multipliers
are λ = (c, 0) for some c ∈ D. Thus, by Corollary 4.12(iii) all resonances are trivial.
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Proposition 5.8. The homotopy class of every map of the form (18) contains non-linear Anosov
diffeomorphisms T ∈ F , such that the corresponding operator CT is well defined and trace-class on
Hα,−γ for some α, γ ∈ R2

>0. Moreover, T can be chosen such that the eigenvalue sequence of CT
satisfies either of the cases (i)-(iii) from the conclusions of Theorem 1.3.

Proof. To prove cases (i) and (ii) from Theorem 1.3, we choose T to be of the form ΨK,A from
(19), noting that for any fixed s ∈ {0, 1} and K ∈ Nn, n ∈ N, the map ΨK,0 is an area-preserving
hyperbolic automorphism of the form (18), homotopic to any ΨK,A, A ∈ Dn. The claim follows
directly from Proposition 5.5 together with Corollaries 5.6 and 4.12.

The case (iii) follows from Lemma 5.7, noting that the maps ΞK,a are not area-preserving and
hence not C1-conjugated to toral automorphisms for a 6= 0, but have trivial resonances.

We will also need the following well-known result (see, e.g., [F, Lemma 1.1] and [M, Theorem
A]):

Lemma 5.9. For any Anosov diffeomorphism f : Tn → Tn there exists a hyperbolic automorphism
g : Tn → Tn which is homotopic to f . That is, there exists a continuous one-parameter family of
maps h : [0, 1]× Tn → Tn, such that h(0, ·) = f and h(1, ·) = g.

We are now ready to prove our last main theorem, concluding that every homotopy class of toral
Anosov diffeomorphisms contains elements with resonances exhibiting any of stretched-exponential,
exponential, or trivially super-exponential decay rate.

Proof of Theorem 1.3. Let H be any homotopy class of toral Anosov diffeomorphisms. By Lemma
5.9, there exists a hyperbolic matrix B ∈ GL2(Z) with τB ∈ H. Corollary 5.4 yields that there
are A,Q ∈ GL2(Z) such that τA is of the form (18), and τB is analytically conjugated to τA, via
τA = τQ◦τB◦τ−1

Q . We callH′ the homotopy class containing τA. We note that because of its special
form (18) and using Remark 3.22, the operator CτA given by f 7→ f ◦ τA yields an isomorphism
from Hα,−γ to itself, while τQ gives rise to the isometric isomorphism CτQ : HQ,α,−γ → Hα,−γ ,
conjugating CτA : Hα,−γ → Hα,−γ and CτB : HQ,α,−γ → HQ,α,−γ , for any α, γ ∈ R2.

Finally, by Proposition 5.8, there exists an Anosov diffeomorphism τ ′ ∈ H′ whose corresponding
composition operator on Hα′,−γ′ for suitable α′, γ′ ∈ R2

>0 has an eigenvalue sequence with any one
of the desired decay rates. Writing out the homotopy explicitly, we have a one-parameter family
of maps h′ : [0, 1] × T2 → T2, h′t = h′(t, ·) ∈ H′, such that h′0 = τA and h′1 = τ ′. Conjugating
with τQ we obtain a homotopy ht = τ−1

Q ◦ h′t ◦ τQ ∈ H with h0 = τB and h1 = τ−1
Q ◦ τ ′ ◦ τQ.

Since CτQ : HQ,α′,−γ′ → Hα′,−γ′ is an isometric isomorphism, the spectra of Cτ ′ and Ch1
=

Cτ−1
Q
◦ Cτ ′ ◦ CτQ coincide, and so the composition operator associated to T = h1 satisfies the

assertion of the proposition for ν = νP,α,−γ with P = Q, α = α′ and γ = γ′.

A Auxiliary results

Here we list a number of auxiliary results and proofs omitted but used in the main text.

Lemma A.1. For every P ∈ GL2(R), there exist A ∈ GL2(Z) and P̃ ∈ GL2(R) with P̃ having
only non-negative entries, such that P = AP̃ .

Proof. It suffices to show that for P ∈ GL2(R), there exists B ∈ GL2(Z) such that (BP )ij > 0 for
i, j = 1, 2. Writing the rows of B as bu, bs, and the columns of P as pu, ps and denoting the cone
C = {v ∈ R2 : 〈v, pu〉 > 0, 〈v, ps〉 > 0}, this is equivalent to there existing bu, bs ∈ Z2 ∩C, such that

bu1b
s
2 − bu2bs1 = 1. (24)
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We fix any bu ∈ Z2 ∩ C (non-empty since C is an open convex cone), without loss of generality

satisfying gcd(bu1 , b
u
2 ) = 1. By Bezout’s identity, there exist b̂s = (b̂s1, b̂

s
2) ∈ Z2 such that bs1(k) =

b̂s1 + kbu1 , b
s
2(k) = b̂s2 + kbu2 are solutions to (24) for every k ∈ Z. Moreover, it is easy to see that for

sufficiently large k ∈ Z, bs = (bs1(k), bs2(k)) = b̂s + k · bu lies in the cone C, finishing the proof.

Lemma A.2. Let σ̂ ∈ Σ1, and let {Dc : c ∈ C} ⊂ GL2(R) be a continuous family of matrices
indexed by some compact set C, satisfying Dc(R2

≥0) ⊂ Rσ̂ ∪ {0} for all c ∈ C. Then, for any

σ ∈ Σ1, σ̃ ∈ Σ−1, δ, δ̃ ∈ R2
>0, there exists q ∈ Rσ̃

δ̃
such that Dc(q) ∈ Rσδ for all c ∈ C.

Proof. Let us first assume that σ̂ = (1, 1), that is, Dc(R2
≥0) ⊂ R2

>0 ∪ {0}. This implies (Dc)kl > 0

for all k, l ∈ {1, 2} and all c ∈ C. By compactness of C it follows that there are D,D > 0 such that
D < (Dc)kl < D for all k, l ∈ {1, 2} and all c ∈ C. We fix δ, δ̃ ∈ R2

>0, and set δ = max{δ1, δ2, δ̃1, δ̃2}.
We first consider the case σ = (1, 1), σ̃ = (−1, 1). Setting q1 = −δ < −δ̃1 and q2 =

δmax{1, 1+D
D } > δ̃2, we have q = (q1, q2) ∈ Rσ̃

δ̃
, and since (Dc)k,1q1 +(Dc)k,2q2 ≥ −Dδ+D 1+D

D δ =

δ > δk for k = 1, 2 and all c ∈ C, we obtain Dc(q) ∈ R2
>0 + δ = Rσδ , for all c ∈ C, as required.

The case σ = (−1,−1), σ̃ = (1,−1) is similar, with q′ = −q ∈ Rσ̃
δ̃

and Dc(q
′) = −Dc(q) ∈

R2
<0 − δ = Rσδ for all c ∈ C. The other two cases (σ = (1, 1), σ̃ = (1,−1) and σ = (−1,−1),

σ̃ = (−1, 1)) can be shown analogously by swapping the roles of q1 and q2 in the above construction.
Finally, for σ̂ = (−1,−1), we note that the claim holds for −Dc by the above, and hence it

follows for Dc by replacing q by −q.

Lemma A.3. Let f : Z2 → C be a cone-wise exponential function with cones being the quadrants
R̂σ,o, σ ∈ Σ; that is, for all σ ∈ Σ there exist λσ ∈ D2, such that f(n) = λnσ whenever n ∈ Z2∩R̂σ,o.
Denote by (λn)n∈N be an enumeration of {f(n) : n ∈ Z2} sorted by decreasing modulus, and
N(r) = #{n ∈ N : |λn| ≥ r} for r ∈ (0, 1). Then (λn)n∈N satisfies

lim
r→0

logN(r)

log | log r| = d,

where:

(i) if λσ,1 · λσ,2 6= 0 for some σ ∈ Σ, then d = 2 (stretched-exponential decay) and

lim
n→∞

− log |λn|
n1/2

= η2

with η2 =
(

1/2
∑
σ∈Σ:λσ,1·λσ,2 6=0(log |λσ,1| · log |λσ,2|)−1

)−1/2

.

(ii) if λσ,1 · λσ,2 = 0 for all σ ∈ Σ, and λσ,k 6= 0 for some σ ∈ Σ1 and k ∈ {1, 2}, then d = 1
(exponential decay), and

lim
n→∞

− log |λn|
n

= η1,

with η1 =
(∑

σ∈Σ1

∑
k:λσ,k 6=0(log |λσ,k|)−1

)−1

.

(iii) if λσ = 0 for all σ ∈ Σ1, and λσ,1 · λσ,2 = 0 for all σ ∈ Σ−1, then d = 0 (super-exponential
decay). In this case (λn)n∈N is the trivial sequence with λn = δn,1.
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Proof. We write `s(r) = log r/ log |s| for s ∈ D and r ∈ (0, 1). For p, q ∈ D, r ∈ (0, 1) we have

Nr
p :=#{n ≥ 1 : |p|n ≥ r} = b`p(r)c,

Nr
p,q :=#{n,m ≥ 1 : |p|n|q|m ≥ r}

=#{n,m ≥ 1 : n(− log |p|) +m(− log |q|) ≤ − log r}

=
b`p(r)cb`q(r)c

2
+ δ, with |δ| ≤ 1 + b`p(r)c+ b`q(r)c,

where the last equality is obtained from counting the number of integer lattice points in the triangle
spanned by (0, 0), (`p(r), 0) and (0, `q(r)), and subtracting those lying on one of the axes. From
the definition of f we obtain

N(r) = 1 +
∑
σ∈Σ

(b`λσ,1(r)cb`λσ,2(r)c
2

+ δσ

)
+
∑
σ∈Σ1

(
b`λσ,1(r)c+ b`λσ,2(r)c

)
,

with |δσ| ≤ 1 + b`λσ,1(r)c+ b`λσ,2(r)c.
We now prove (i). Since `s(r)→∞ as r → 0 for any s ∈ D and λσ,1 · λσ,2 6= 0 for some σ ∈ Σ,

we have that for every ε > 0 there exists rε > 0 such that for r ∈ (0, rε) it holds that

(1− ε) ·
(

log r

η2

)2

≤ N(r) ≤ (1 + ε) ·
(

log r

η2

)2

. (25)

The assertion d = 2 immediately follows. Moreover, since n > (1 + ε) · (log r/η2)2 ≥ N(r) implies
|λn| < r, a short calculation yields that log |λn| < log r holds for any sufficiently large n and
log r ∈

(
−(1 + ε)−1/2η2

√
n, log rε

)
, which implies

− log |λn|√
n

≥ (1 + ε)−1/2η2.

Conversely, n < (1− ε) · (log r/η2)2 ≤ N(r) implies |λn| ≥ r, and hence for large n we obtain

− log |λn|√
n

≤ (1− ε)−1/2η2.

Since the choice of ε > 0 was arbitrary, assertion (i) follows.
The proof of (ii) is very similar; replacing (25) by

(1− ε) · | log r|
η1

≤ N(r) ≤ (1 + ε) · | log r|
η1

(26)

yields d = 1, as well as η1/(1 + ε) < − log |λn|/n < η1/(1− ε) for sufficiently large n.
Finally, (iii) follows directly by observing that in this case f(n) = δn1,0δn2,0.

Proof of Lemma 3.27. The proof follows the same steps as [BJ2, Propositions 3.4 & 3.5]. Let
J∗ : HP,A,−Γ → HP,α,−γ denote the Hilbert space adjoint of J , then J∗J is diagonal in the or-
thogonal basis of monomials, as (J∗Jpn, pm)HP,α,−γ = (Jpn, Jpm)HP,A,−Γ

= (pn, pm)HP,A,−Γ
=

ωn(pn, pm)HP,α,−γ with ωn = νP,A,−Γ(n)/νP,α,−γ(n). Therefore the eigenvalues of J∗J , which are
square roots of the singular values of J , are given by {√ωn : n ∈ Z2}, which can be written as the

set of all λn, n ∈ N2
0, and µn, n ∈ N2, with λ = e

A−α
2 and µ = e

γ−Γ
2 . Since A − α, γ − Γ ∈ R2

>0,
Lemma A.3(i) applies, with

η = η2 =

(
1

log(A1 − α1) log(A2 − α2)
+

1

log(γ1 − Γ1) log(γ2 − Γ2)

)−1/2

.

41



Proof of Lemma 5.3. We first note that it is sufficient to consider the case TrM ≥ 0, as the
general case easily follows by considering −M in the opposite case. By [He, Theorem 3], every
M ∈ GL2(Z) with TrM ≥ 0 is similar to a so-called ‘standard matrix’ (see [He, Definition 1]),
which in the case of a hyperbolic matrix (implying TrM 6= 0 and real eigenvalues 6= −1, 1) reduces
to two (alternative) cases:

(i) M is similar to

(
1 1
1 0

)
in the case TrM = 1,

(ii) M is similar to

(
a b
c d

)
, 0 ≤ d ≤ b, c < a in the case TrM ≥ 2.

We are left to show that every matrix in case (ii) is similar to one of (17). We note that
every matrix of this form satisfies a > 0, since c < a ≤ 0 would imply d = TrM − a ≥ 2, and
hence 1 ≥ detM = ad − bc ≥ (a − c)d ≥ 2, a contradiction. We also note that c = 0 yields a
non-hyperbolic matrix, so we can assume c 6= 0.

For c > 0 the claim follows immediately from [He, Theorem 4]. For c < 0, we note that
0 ≤ d ≤ b implies b > 0 (as otherwise detM = 0), and hence −bc ≥ 1. Since ad− bc ≤ 1, it follows
that ad = 0 and hence d = 0, as well as b = 1 and c = −1. We obtain that M is similar to a matrix

of the form Ma =

(
a 1
−1 0

)
, which is only hyperbolic for a ≥ 3. The claim follows by observing

that Ma, a ≥ 3, is similar to

Na =

(
a− 1 1
a− 2 1

)
=

(
1 1
1 0

)(
a− 2 1

1 0

)
∈ GL2(Z)

via Ma = C−1NaC with C =

(
1 0
1 1

)
.

B Notes on the special group of toral diffeomorphisms

Here we briefly restate the definition of the group of toral diffeomorphisms F from Section 5,
before expanding on the various types of maps that can be constructed within this group via a set
of examples. For a ∈ D, let ba : Ĉ→ Ĉ be an automorphism of D (or Moebius map) given by

ba(z) =
z − a
1− az .

Every such map satisfies ba(T) = T, and a straightforward calculation yields the following lemma.

Lemma B.1. Fix a = |a|eiα ∈ D and let ba be as above. For M = ([0, 2π]/ ∼) let b̃a : M →M be
the map determined by π ◦ b̃a = ba ◦ π with π(θ) = eiθ for θ ∈M . Then

b̃a(θ) = θ + ga(θ),

with ga(θ) = 2 arctan
(
|a| sin(θ−α)

1−|a| cos(θ−α)

)
and g′a(θ) = 2

(
|a| cos(θ−α)−|a|2

1−2|a| cos(θ−α)+|a|2

)
> −1.

We recall the definition of the maps F : (z1, z2) 7→ (z1z2, z2), R : (z1, z2) 7→ (z2, z1), Ikl : (z1, z2) 7→
(z1−2k

1 , z1−2l
2 ) for k, l ∈ {0, 1}, and G = {Ga,b : (z1, z2) 7→ (ba(z1), ba(z2)) : a, b ∈ D} from Sec-

tion 5, as well as the definition of F as the group of toral diffeomorphisms generated by these
maps. The group of toral automorphisms Aut(T2) is generated by the set Γ = {F,R, I01}. Any
T ∈ {F, I00, I11}∪G yields an orientation-preserving diffeomorphism of T2, while all of {I01, I10, R}
are orientation-reversing. The next lemma summarises some basic properties of these maps.
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Lemma B.2. Let a, b ∈ D and k, l,m, n ∈ {0, 1}. The following commutation relations hold.

(i) F ◦ Ikl = Ikl ◦ F−1 and F−1 ◦ Ikl = Ikl ◦ F for k 6= l,

(ii) F ◦ I11 = I11 ◦ F and F−1 ◦ I11 = I11 ◦ F−1,

(iii) R ◦ Ikl = Ilk ◦R,

(iv) Ikl ◦ Imn = I1−δkm, 1−δln ,

(v) Ga,b ◦ Ikl = Ikl ◦G(1−k)a+ka, (1−l)b+lb,

(vi) Ga,b ◦R = R ◦Gb,a.

Proof. All statements follow by direct computation, with part (v) using ba(z−1) = ba(z)−1.

We now provide examples from various interesting sub-classes of diffeomorphisms in F .

Anosov diffeomorphisms in F . For a ∈ D let Ta : T2 → T2 be given by

Ta = G0,−a ◦ F ◦R ◦Ga,0.

Using Lemma B.1, we can see that the derivative of the respective map T̃a : M →M is given by

DT̃a(x) =

(
sa(x) 1

1 0

)
,

with sa(x) = (1 + g′a(x1)) > 0 for all x = (x1, x2) ∈M .

Example B.3.

(i) For a = 0 the map T0(z) = (z1z2, z1) is an Anosov automorphism induced by

(
1 1
1 0

)
with

eigenvalues λu/s = ϕ±1 where ϕ = (1 +
√

5)/2 is the golden mean.

(ii) One can check that Ta(z) = (ba(z1)z2, z1) is Anosov for all a ∈ D by finding suitable cone
fields (see Definition 2.11).

(iii) The maps Tb ◦ Ta given by

(Tb ◦ Ta)(z) = (bb(ba(z1)z2)z1, ba(z1)z2)

are Anosov for all a, b ∈ D, and in fact R2
>0 ∪ R2

<0 can be chosen as the invariant expanding
cone, and its complementary cone as the invariant contracting one. These are the maps
considered in [SBJ] and [PoS].

The maps in (iii) are orientation-preserving while the ones in (i) and (ii) are orientation-reversing.

Area-preserving diffeomorphisms in F .

Lemma B.4. Let Fa = G0,−a ◦ F ◦G0,a for a ∈ D. Then any finite composition of the elements
of Γap = Γ ∪ {Fa : a ∈ D, k ∈ N} is area-preserving.

Proof. For z ∈ T2 we have Fa(z1, z2) = (z1ba(z2), z2). As ba preserves T we have |detDFa(z)| =
|ba(z2)| = 1 for all z ∈ T2. As all elements in Γap are area-preserving, so is their composition.

Example B.5.
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(i) The maps in Example B.3 are area-preserving Anosov diffeomorphisms as Ta = G0,−a ◦ F ◦
G0,a ◦R = Fa ◦R with Fa as in Lemma B.4.

(ii) The map T = F ◦R ◦G0,a ◦ F ◦R given by

T (z1, z2) = (z1ba(z1)z2, z1z2)

is not area-preserving for a ∈ D \ {0} as |detDT (z)| = |z2
1b
′
a(z1)z2| = |b′a(z1)| for z ∈ T2.

(iii) The map T = F ◦R ◦G0,−a ◦ F ◦R ◦Ga,b given by

T (z1, z2) = (z1ba(z1)bb(z2), ba(z1)bb(z2)), (a ∈ D),

is area-preserving for b = 0 (see Example B.3(ii)), but is not area-preserving for b 6= 0.

Maps with symmetries. An automorphism T of some topological space is said to have a
symmetry if there exists an automorphism H so that

H−1 ◦ T ◦H = T,

and to have a reversing symmetry if there exists an automorphism H so that

H−1 ◦ T ◦H = T−1.

Clearly, for any rational map T with only real coefficients, Corollary 4.2(i) implies that I11 is a
symmetry of T , which by Theorem 1.2 and its proof induces symmetry relations on the resonances.

On the other hand, presence of reversing symmetries is of considerable interest in classical and
quantum mechanics. For systems with time-reversal symmetry the reverse motion satisfies the
same laws of motion as the forward motion. Usually this time-reversal symmetry corresponds to a
particular involution map H. However, the notion of reversible systems was extended to include
all involutions and even non-involutary reversing symmetries, see for example the survey [LR]
adapted to dynamical systems or [BR] specifially for toral automorphisms. We will next present
some Anosov diffeomorphisms in F which have reversing symmetries.

Lemma B.6. Let k ∈ N and a ∈ (0, 1), and define the maps Tk,a = F k ◦ R ◦Ga,−a ◦ F k ◦ R and
Uk,a = G0,−a ◦ Tk,a ◦Ga,0.

(i) The map Tk,a is a non-area-preserving Anosov diffeomorphism with a reversing symmetry.

(ii) The map Uk,a is an area-preserving Anosov diffeomorphism with a reversing symmetry.

Proof. Using Lemma B.1 it is not difficult to see that both Tk,a and Uk,a are Anosov with the
first and third quadrant of R2 forming an unstable, and the second and forth quadrant forming a
stable invariant cone. Area preservation of Uk,a and non-preservation for Tk,a can be computed
directly, noting that Uk,a = (G0,−a ◦ F k ◦ R ◦ Ga,0)2. For the symmetries, a calculation with
H = I01 ◦ R using Lemma B.2 and the fact that a ∈ R reveals that H−1 ◦ T−1

k,a ◦H = Tk,a. Since

G0,a ◦H = H ◦Ga,0 we also have H−1 ◦ U−1
k,a ◦H = Uk,a.

Comparison to Blaschke product diffeomorphisms. In [PS] the authors coined the notion
of Blaschke product diffeomorphisms, which are maps of the form

T (z1, z2) = (A(z1)B(z2), C(z1)D(z2)),

where A,B,C,D are Blaschke products in one variable. They state that these are precisely the
analytic maps on a neighbourhood of the open bidisk D2, mapping D2 to itself and T2 diffeomor-
phically to itself, and provide an explanation of this in [PS, Remark 5.2]. Here we observe that this
claim is inaccurate: while Examples B.5(ii)-(iii) are instances of Blaschke product diffeomorphisms,
Example B.3(iii) is a hyperbolic diffeomorphism in F containing Blaschke factors of a product of
two variables, and cannot be written as a Blaschke product diffeomorphism.
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[FRS] F. Faure, N. Roy and J. Sjöstrand, Semi-classical approach for Anosov diffeomorphisms and
Ruelle resonances, Open Math. J. 1 (2008) 35–81.
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