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1. Introduction

The notion of a generalized spectral decomposition of selfadjoint operators on a
Hilbert space goes back to Dirac [1], who assumed that a given selfadjoint operator

A must be of the form

A= /U(A) AN (1)

where o(A) is the spectrum of the operator A. This formula is a straightforward
generalization of the familiar decomposition of a selfadjoint operator on a finite-

dimensional Hilbert space
A= Jes)(edl (2)

where \; and e; are the eigenvalues and eigenvectors of A, respectively. In infinite
dimensional Hilbert spaces, however, the situation is not so simple. The notion
of an eigenvalue is replaced by the spectrum, but eigenvectors can be associated
only with the discrete part of the spectrum. Nevertheless, a precise meaning
can be given to the decomposition (2), if we replace eigenvectors by “generalized
eigenvectors”, which will in general lie outside the given Hilbert space. This is
achieved by replacing the initial Hilbert space H by a dual pair (&, ®*), where ®
is a locally convex space, which is a dense subspace of H endowed with a topology,
stronger than the Hilbert space topology. This procedure is referred to as rigging
and the triple

®CHCP™ (3)

is called a rigged Hilbert space (see [2-5] for details). Gelfand [3,4] was the first to
give a precise meaning to the generalized eigenvectors, which was later elaborated
by Maurin [5]. Although generalized eigenvectors have a very natural physical
interpretation, generalized spectral decompositions have not been used in physics
for a long time. Only a few papers had appeared by the end of the 60’s (see, for

example [6-8]), followed by a series of papers by Bohm an Gadella (see [2] and

2



references therein). The latter publications are particularly significant, because
they provide the basis for a rigorous and systematic approach to the problems
of irreversibility and resonances in unstable quantum systems like the Friedrichs
model [9]. The same ideas can be extended to chaotic dynamical systems, like
Kolmogorov systems or exact systems [14,15]. The obsevable phase functions of

dynamical systems evolve according to the Koopman operator [14]

V()= f(Sz),

where S is an endomorphism or an automorphism of a measure space, and f is a
square-integrable phase function.

The spectrum of the Koopman operator determines the time scales of the ap-
proach to equilibrium very much in analogy with quantum unstable systems, where
the spectra of the Hamiltonians determine the decay rates. More precisely, the
eigenvalues of the Koopman operator or that of its adjoint, known as Frobenius-
Perron operator, are the resonances of the power spectrum [24-27]. Eigenvalues
and eigenvectors of simple chaotic systems have recently been constructed by sev-
eral authors [10-13,26-33].

The question of the existence of a generalized spectral decomposition of exten-
sions of the Koopman operator was raised and resolved by Antoniou and Tasaki
[11-13]. This issue is delicate, because the original Gelfand-Maurin theory was
constructed for operators which admit a spectral theorem [34], like normal opera-
tors, giving a generalized spectrum identical with the Hilbert space spectrum. The
Koopman operator of unstable systems, however, either does not admit a spectral
theorem, as in the case of exact systems [12], or the generalized spectrum is very
different from the Hilbert space spectrum, as in the case of Kolomogorov systems

13].



The original Gelfand-Maurin theory had to be extended [11-13] to arbitrary
Mackey topologies [35] associated with dual pairs (®,®*) of linear topological
spaces.

Summarising for the reader’s convenience, a dual pair (®,®*) of linear topo-
logical spaces constitutes a rigged Hilbert space for the linear endomorphism V' of
the Hilbert space H if the following conditions are satisfied:

1) @ is a dense subspace of ‘H
2) ® is complete and its topology is stronger than the one induced by H
3) ® is stable with respect to the adjoint v of V,ie. vie c o

4) The adjoint VT is continuous on @

The extension Vgy of V' to the dual ®* of ® is then defined in the standard

way as follows:

(| VexsS) = (VTg|F)

for every ¢ € ®.

In the sequel we shall not distinguish between V and Ve if confusion is
unlikely to arise.

The choice of the test function space ® depends on the specific operator V and
on the physically relevant questions to be asked about the system. For selfadjoint
operators V', for example, the generalized spectral theorem can be justified for
nuclear test function spaces; for normal operators this condition may be relaxed
(36,37].

Here, we shall discuss the problem of rigging for the generalized spectral
decompositions of the Koopman operators for two specific but typical models of
chaotic systems, namely the Renyi maps and the baker maps.

In the case of the Renyi map various riggings exist [22] and our task will be

to choose a tight rigging within spaces of analytic test functions. We call a rigging
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‘tight’ if the test function space is the (set-theoretically) largest possible within
a chosen family of test function spaces, such that the physically relevant spectral
decomposition is meaningful. This notion of tightness is more general than that
of Fredricks [7]. It turns out that the topology of this rigged Hilbert space enjoys
some of the properties of a strict inductive limit of Banach spaces, which greatly
simplifies convergence arguments.

The construction of the rigged Hilbert space for the baker map, on the other
hand, reveals a different aspect of the problem of rigging. In fact, here the problem
is to understand the very nature of the rigging, since the test function space is
the tensor product of the space of polynomials with the space of square-integrable
functions corresponding to the expanding and contracting fibres. Our task will be

to investigate the properties of this rigged Hilbert space.

2. Rigged Hilbert spaces for the Renyi maps
In this section we discuss the rigged Hilbert spaces for the Koopman operator of
the general S-adic Renyi map.

The p-adic Renyi map S on the interval [0,1) is the multiplication, modulo 1,

by the integer g > 2:
S:[0,1) —»[0,1) : x+— St =Pz (mod1l)., (1)

The probability densities p(x) evolve according to the Frobenius—Perron op-

erator U [15]:

Up(x) = Z

i S’ (y)

The Frobenius-Perron operator is a partial isometry on the Hilbert space L? of all

p(y) = %Z (2L (2)

square integrable functions over the unit interval; it is, moreover, the dual of the

isometric Koopman operator V:
Vo) = Ulp(z) = p(Sz) . (3)
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In [12] two of us (I.A. and S.T.) constructed a spectral decomposition of the
Koopman operator using a general algorithm based on the subdynamics decom-
positions.

The Koopman operator can be expressed as follows
o0 1 N
V=2

where B, (x) is the n-degree Bernoulli polynomial defined by the generating func-
tion [16, §9:

-y L (5)

n=0

and

B ), n=0
Bn) :{|<_127,${5("_1)(x—1)—5("_1)(37)}) n=to.. O

The bras (.| and kets |.) denote linear and antilinear functionals, respectively.
Formula (4) defines a spectral decomposition for the Koopman and Frobenius-

Perron operators in the following sense
oo 1 ~
(plVF) =Uplf) =) G (PIBn) (Balf):
n=0

for any density function p and obsevable f in the appropriate pair (®,®*). Con-

sequently, the Frobenius-Perron operator acts on density functions as

1 ®_ (n=1)(1) — p(n—1)

n=1

Bn(z) . (7)

The orthonormality of the system |B,) and (B,| follows immediately, while
the completeness relation is just the Euler-MacLaurin summation formula for the

Bernoulli polynomials [16, §9]

1 0 (n=1)(1) — H(n—1)
p(.’L‘) — /(; d.’L‘Ip(.’EI) + Z P (1) — P (0)

n=1

B, () . (8)



The Bernoulli polynomials are the only polynomial eigenfunctions as any
polynomial can be uniquely expressed as a linear combination of the Bernoulli
polynomials.

The spectral decomposition (4) has no meaning in the Hilbert space L2, as
the derivatives 6(™ (z) of Dirac’s delta function appear as right eigenvectors of V.
A natural way to give meaning to formal eigenvectors of operators which do not
admit eigenvectors in Hilbert space is to extend the operator to a suitable rigged
Hilbert space. A suitable test function space is the space P of polynomials. The
space P fulfills conditions 1-4:

1) P is dense in L? (see [17, ch.15]),

2) P is a nuclear LF-space [17, ch.51] and thus, complete and barreled,

3) P is stable with respect to the Frobenius-Perron operator U, and

4) U is continuous with respect to the topology of P, because U preserves the
degree of polynomials.

It is, therefore, an appropriate rigged Hilbert space, which gives meaning to
the spectral decomposition of V.

We shall, however, look for a tight rigging. The test functions should at
least provide a domain for the Euler-MacLaurin summation formula (8). The

requirement of absolute convergence of the series (8) means that

Z [—

(n-1) (y
W g @) <o, (y=01) (9)

This implies [12] that the appropriate test functions are restrictions on [0,1) of
entire functions of exponential type ¢ with 0 < ¢ < 27. For simplicity we identify
the test functions space with the space &. of entire functions ¢(z) of exponential

type ¢ > 0 such that

1p(2)| < Kel?l | Wz e C, for some K >0 . (10)
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Each member of the whole family £. , 0 < ¢ < 27 is a suitable test function
space, since properties 1-4 are fulfilled. Indeed, each space &, is a Banach space

with norm [17, ch.22]:

18]lc = sup [¢(z)[e=* , (11)
zeC

which is dense in the Hilbert space L2, as &, includes the polynomial space P.
Each &, is stable under the Frobenius-Perron operator U, and it is easily verified

that U is continuous on &.. Now, observe that the spaces are ordered:

E.C& c<c,

and consider the space

g27r = U gc . (12)

e<2m

The space Eon , also preserved by U, is the (set-theoretically) largest test
function space in our case. Since &, is a natural generalization of the space P of
polynomials, we want to equip it with a topology which is a generalization of the
topology of P.

Recall that P was given the strict inductive limit topology of the spaces P"
of all polynomials of degree < n. A very important property of this topology
is that the strict inductive limit of complete spaces is complete. Moreover, it
is exceptionally simple to describe convergence in this topology. For example, a
sequence {wy} of polynomials converges in P if and only if the degrees of all w,,
are uniformly bounded by some ng and {w,} converges in P".

We cannot, however, define the strict inductive topology on Ean, because for
¢ <  the topology on &. induced by &. is essentially stronger than the initial
one. Nevertheless, as we shall see in the theorem below, it is possible to define a
topology on 67277, which is a natural extension of the topology on P in the following

sense:



Theorem. There is a locally convex topology T on Eyn for which it is a nuclear,
complete Montel space. Moreover, a sequence {f,} C Eon s convergent in the T
topology if and only if there is ¢y € (0,27) such that

1° f,, n=1,2,..., are of exponential type cg

2° {fn} converges in || - ||, - norm.

Proof. Denote by f the Fourier transform of a function f and by f its converse.
By Schwartz’s extension of the Paley-Wiener Theorem [19, vol.II, p.106] a function
f belongs to &, if and only if f is a distribution with compact support contained
in the interval [—c, ].

Note that, if the function f € &, is integrable or square integrable then f is
a function. However, for an arbitrary function its Fourier transform is correctly
defined only as a distribution with compact support, i.e. as a continuous linear
functional on the space C°(2) of all infinitely differentiable functions on the
interval @ = (—27,27), endowed with the topology of uniform convergence on
compact subsets of €2, of functions together with all their derivatives.

The Fourier transform, therefore, establishes an isomorphism between Eor and
the topological dual C*°(2)* of the space C'*°(2).

Consequently, the strong dual topology of C*°(Q2)* can be transported through
the inverse Fourier transform to the space ,. The strong dual topology is the
topology of uniform convergence on bounded subsets of C*°(€2). Then C*°(Q)* is
nuclear [17, p.530], complete [19, vol.I, p.89] and a Montel space [17, prop. 34.4
and 36.10]. In this way we obtain on Eor 2 topology with the same properties.

We shall now prove the second part of the theorem. Let {f,} be convergent
to zero in Ez,. This means that {f,} converges in C°°(Q)*. Therefore {f,} is a
bounded subset of C*°(Q)*, which implies [17, th. 34.4, p.359] that the supports

of all f,, are contained in a compact set K C Q.
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Take ¢ with ¢ < 27 and K C (—c¢,c¢). Therefore (see [19, vol.I, th.XXVI]
and the remark afterwards which remain true if we replace R! by the open set
Q2 = (—2m, 2m)), there is a number p > 0 and a family of continuous functions g, ,,

such that the supports of g, are contained in the interval (—c, c),

fa=) _Digin (13)

J<p
(D7 denotes the j-th derivative, classical or in the sense of distributions) and
9jn(z) converges uniformly to zero as n — oo.
Using the above representation of f,, we obtain that f, converges to zero

uniformly on each set Uyz

UAE{fECOO(Q) sup ‘—f(.’L')|<A, .7:07]-,,p}7 (14)

where A > 0. Indeed, for each j

(Digs = 17 [ gyal) )

—c 7

(¢4
<A [ lgynl@)] do 0.

—cC

as n — oQ.

Let us take any cg € (¢, 2mw). Then for each z € C the function
z— eFTem0lZl g < ¢, (15)

belongs to U4. Indeed

‘dd_](eizxe—COIZI)‘ < |Z|je|z|(|x|—co) — |Z|je|z|(|m|—c)6_(co_c)|Z|
Tj

S |Z‘-76_(CO_C)|Z| .
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The right hand side is bounded, for each j = 0,1, ..., p, by some constant A;. Thus
taking

A= Orélaa%(p Aj (16)

we see that the functions (15) belong to Uy, for each z € C.

From

fn(2) = (fu) (2) (17)

and uniform convergence of f, on Ug we have

sup |fn(z)\e_co|z| = sup \(fn,eiz'e_°°|z|)| — 0,
zeC z€eC

as n — oo , whaich means that
[falleec — 0.

This proves 2°. Condition 1° is also satisfied because we have chosen ¢y > c¢. Thus,
the supports of the f,s are also contained in (—co, co) and by the Paley-Wiener-
Schwartz theorem the f,s are of exponential type cy.

The converse of the second part of the theorem is now trivial. If { f,,} satisfies
1° and 2° then by applying the Paley-Wiener-Schwartz theorem again we obtain

convergence of {f,} in C®(Q)*.

Remarks

1. Using the above method one can show an analogous criterion of convergence
for bounded nets in £, but not for an arbitrary net.

2. Note that it is not always possible to obtain convergence of the type given in
the above theorem. Actually, to prove the second part of the theorem we needed

the following property:
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Let F' be a Frechet space and let {z] } be a sequence in its dual F’ which
converges to zero in the strong dual topology. Then there exists an open subset

U of F such that

(z!,z)| — 0, uniformly for z € U . (18)

As mentioned in [20], some concrete F-spaces have this property although it
is not true in general. It was stated there as an open problem to describe those
F-spaces for which (18) is true. This situation motivated us to include the full
proof.

3. An alternative, but less constructive proof of the theorem can be found in [22].

It is based on a theorem by Raikov [23] and the nuclearity of the imbedding

Ec = Eqr c<c.
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3. The rigged Hilbert space for the baker transformations

The p-adic, 8 = 2,3,---, baker’s transformation B on the unit square ¥ =
[0,1)%[0,1) is a two-step operation: 1) squeeze the 1x1 square to a § x 1/
rectangle and 2) cut the rectangle into 8 (1 x 1/8)-rectangles and pile them up

to form another 1 x 1 square:

(z,y) — B(z,y) = (Bm—r,y’#) (for % <zr< 7‘-;1

,7=0,----1). (19)

The invariant measure of the [-adic baker transformation is the Lebesgue
measure on the unit square. The probability densities p(z,y) evolve according to

the Frobenius-Perron operator U [15]:

Up(z,y) = p(B~(z,y))

:p(a:;’rwgy_r)a (fOf%Sy(T—gl,’]":O,---IB—l), (20)

The Frobenius-Perron and Koopman operators are unitary on the Hilbert space
L2=12 ®L321 of square integrable densities over the unit square and has countably
degenerate Lebesgue spectrum on the unit circle plus the simple eigenvalue 1
associated with the equilibrium (as is the case for all Kolmogorov automorphisms).

The B-adic baker automorphism B is the natural extension [18] of the S-adic
Renyi map on the unit interval [0,1), described in the previous section.

The Koopman operator V' has a spectral decomposition involving Jordan
blocks, which was obtained [13] using a generalized iterative operator method

based on subdynamics:

e’} v v—1
V= lfan)(fool + 33 5 Verd ool + 3 Vi) (furl } (20)
v=1 r=0 r=0
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The vectors |f,,) and (f,| form a Jordan basis

(% (f'/ﬂ“ +(fu,r+1‘ (TZO,...,V—I)
(fu,r V = < 1 (22)
{ ﬁ (fz/,r (7‘ = ]/)
" ( % for) + fopo1) (r=1,...,v)
Vv ‘fu,r) = 9 1 ~ (23)
{ ﬁ |f1/,r) (’I" = 0)
(fl/,’r‘ fu’,r’) = (5”,,1(57-,,.1 , (24)
Z Z |fu,r)(fu,r =1. (25)
v=0r=0

While the Koopman operator V is unitary in the Hilbert space L? and thus
has spectrum on the unit circle |z| = 1 in the complex plane, the spectral decom-
position (21) includes the numbers 1/8¥ < 1 which are not in the Hilbert space
spectrum. The spectral decomposition (21) also shows that the Frobenius—Perron
operator has Jordan-block parts despite the fact that it is diagonalizable in the
Hilbert space. As the left and right principal vectors contain generalized functions,
the spectral decomposition (21) has no meaning in the Hilbert space LZ.

It was shown in [13] that the principal vectors f, ; and f,,,j are linear function-
als over the spaces L2 ® Py, and P, ® ij, respectively. Therefore, our purpose is
to define an appropriate topology on these spaces. We shall give the construction
for P, ® L only; a similar argument applies to L2 ® P,

We will start from the most natural, i.e. the strict inductive limit topology,
which coincides with other, apparently stronger, tensor product topologies.

Let us consider the space P ® L? (for simplicity we omit the subscripts = and

y), where P is the space of all polynomials w of finite degree:
w = Z apzh (26)
k=0
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L; is the space of all square integrable functions on the space ¥ = [0, 1].
Let P™ be the space of all polynomials of degree < n. For a w of the form
(26)

= 2
ol = max |ax| (27)

defines a norm on P". Then P is defined as the union [J,, P™ with the strict
inductive limit topology [17, sec.13].
Similarly P ® L? was defined in [13] as the strict inductive limit of the spaces

P" ® L? endowed with the topology 7, generated by the norms

n
1> % ® gilln = max [|g]lz2 - (28)
k=1

0<k<n

We may, therefore, write symbolically

P® L* =1im(P" ® L?) . (29)

n

It is very easy to see that

UrPmer=Jr eL?. (30)

n

Thus, we have algebraically:

(ImP") ® L? = lim(P" ® L?), (31)

n n

and, as we will see below, also topologically.

If fact, it will be shown that the 7-topology defined by the seminorms (28)
is also, roughly speaking, the only natural locally convex tensor product topology
on the space P" ® L?).

This will be proved in three steps:

1) 7 is a cross-seminorm topology, i.e. the tensor product seminorm (28) is
a cross-norm [21] when restricted to the Banach spaces P™ and L2. Indeed, for

wePr, fel?
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lw® flln = I|Zak$k ® flln = IIZSU"’ ® (a.f)lln

= max flaxfllze = max |ak| 1122

= [[wlln][ ]| >

2) The T-topology is weaker than the projective topology (shortly m-topology)
on the tensor product P®L?) (see [17, sec. 43] for the definition). Indeed, consider

an element
N
F=> wi®f (29)
=1

of the space P ® L?) and let n be the maximal degree of w;, i = 1,..., N. Then

we can write

N B
=Y ala*, i=1,..,N (30)
k=0

()

(some a;,’ can be zero).

Therefore

—IIsz®fz||n—||Z Za@ )& filln

=1 k=0
_ (4) k| (2) ¢,
I ) @l —Or;,ggnnzak fillz
k=0 i=1 =1
(2)
< ; .
< max Zla N1 £ill 22

Denote by R the right hand side in the above inequalities and let kg be the

index which realizes the maximum of R. Then
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N N
R=3"lai)| I fillze < Y max || £l

=1 =1 — -

N

1=1

1=

[willn || fill 22 -

Therefore, we obtain the inequality

N
1Flln < lwillallfillz= (31)
=1

which does not depend on the particular representation of f. Thus

11l < 11 F 1l (32)

where || - ||x,» denotes the m-seminorm corresponding to the seminorm || - ||,, on P

and || - [|>.

3) the 7-topology is stronger than the e-topology (see [17 ,sec.43] for the
definition) on P ® L2. To see this let us first note that the space P with its
topology can be identified with the space C°(X) of continuous functions on X
with compact support [17, p.132], provided we take as the locally compact space
the set NU{0} with the discrete topology. In such a case, functions with compact
support are just sequences with at most finitely many non-zero elements and the
family of seminorms is here precisely the same as that for P described above.
Similarly, P ® L? with the 7-topology can be identified with C?(X; L?) which is a
subspace of the space C°(X; L?) of all continuous functions on X with values in
L? (see [17, p.412] for the definition of the topology).

On the other hand, C%(X; L?) is topologically isomorphic with C%(X)&®, L2
(* - denotes completion). Since the topology induced by C°(X; L?) on C%(X; L?)

is weaker than the 7-topology we obtain that:
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the e-topology on P ® L? is weaker than T-topology.

Therefore after completion we obtain

PR.L? Cc PR.L? C PR.L? .

However, since P is a nuclear space we have [17, th. 50.1]

PRL? = PR, L? (33)

(= denotes topological isomorphism). Because P ® L? is already complete in the
T-topology [13] we obtain that:

the T-topology on P ® L? coincides with the € and the w topology.

4. Concluding remarks

1. We have characterized the natural rigged Hilbert spaces of analytic functions
associated with the prototype of dynamical systems, namely the Renyi and the
baker transformations. In the case of the Renyi, map we constructed a tight rigged
Hilbert space Eon within the spaces of analytic functions, which gives meaning to
the simple resonance spectrum. We have shown that £, inherits the crucial prop-
erties of strict inductive limits of Banach spaces without being a strict inductive
limit itself. For the baker maps we characterized the topology of the tensor product
which gives meaning to the multiple resonance spectrum.

2. We expect that these rigged Hilbert space topologies are typical for chaotic
maps, if the evolution of analytic densities is considered. In the case of non-
analytic densities we may have test function spaces satisfying properties 1-4 with

different extension properties.
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