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INVARIANT MEASURES FOR REAL ANALYTIC EXPANDING
MAPS

OSCAR BANDTLOW AND OLIVER JENKINSON

Abstract

Let X be a compact connected subset of Rd with non-empty interior, and T : X → X a real
analytic full branch expanding map with countably many branches. Elements of a thermodynamic
formalism for such systems are developed, including criteria for compactness of transfer operators
acting on spaces of bounded holomorphic functions. In particular a new sufficient condition for
the existence of a T -invariant probability measure equivalent to Lebesgue measure is obtained.

1. Introduction

Let X be a compact connected subset of Rd with non-empty interior, and suppose
that T : X → X is a real analytic full branch expanding map (see Definition 4.1).
Let (Ti)i∈I be the (countable) collection of inverse branches of T , and suppose the
sets Xi = Ti(int(X)) form a partition of X up to a set of zero Lebesgue measure.

By an acip (absolutely continuous invariant probability) we mean a T -invariant
Borel probability measure on X which is absolutely continuous with respect to
Lebesgue measure Leb. If T has only finitely many branches then it is well known
that there exists a unique acip µ, that the associated density function dµ/dLeb is
real analytic, and that the corresponding dynamical system (T, µ) is exact. The
main purpose of this article is to give a sufficient condition for the same facts to
hold in the case where I = N is countably infinite.

We say that T has uniformly summable derivatives if there exists a complex
neighbourhood D ⊂ Cd of X such that

sup
z∈D

∞∑
i=n

‖T ′i (z)‖ → 0 as n→∞ ,

where T ′i (z) denotes the derivative of Ti at z, and ‖ · ‖ is any norm on Cd×d, for
example the operator norm induced by the Euclidean norm on Cd.

Our main result (see Theorem 11.4) is:
Theorem. Let T : X → X be a real analytic full branch expanding map with
uniformly summable derivatives, such that Leb(X \ ∪i∈IXi) = 0.

Then T has a unique acip µ. The corresponding density function is real analytic
and strictly positive on X. The dynamical system (T, µ) is exact.

The uniformly summable derivatives condition turns out to be independent from
a well known alternative sufficient condition for the existence of an acip, the bounded
distortion condition (see e.g. [1], [9], [11]): in [3] we construct maps with uniformly
summable derivatives but unbounded distortion, as well as maps with bounded
distortion but without uniformly summable derivatives.
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The uniformly summable derivatives condition is often easy to check: for example
it is implied by the condition

∞∑
i=1

sup
z∈D

‖T ′i (z)‖ <∞ . (1.1)

Another advantage of the uniformly summable derivatives condition is that the
proof of the above Theorem can be carried out wholly within a complex analytic
framework, so that the real analyticity of the density function dµ/dLeb follows
immediately from the existence of µ.

In fact the hypotheses of this Theorem can be weakened (see Theorem 11.2): it
suffices to assume that lim supi→∞ supz∈D ‖T ′i (z)‖ < 1 and

sup
z∈D

∞∑
i=1

|Jac(Ti)(z)| <∞ , (1.2)

where Jac(Ti) denotes the Jacobian determinant of Ti.
A more abstract analogue of these results is Theorem 11.1. Here we assume that

D may be chosen to be invariant under complex conjugation, that it is mapped
compactly inside itself (in a suitable sense) by the inverse branches Ti, and that
the Jac(Ti) satisfy a suitable summability condition, either that

sup
z∈D

∞∑
i=n

|Jac(Ti)(z)| → 0 as n→∞,

or the weaker condition (1.2). These abstract versions resemble a stronger theorem
claimed by Mayer [10, Theorem, p. 12]. The proof presented in [10] is incorrect,
however (see the comments in our §3, in particular Remark 3.2), and the claimed
theorem should be considered an open problem†.

Our methods owe much to the approach of Mayer. His idea was to check that the
Perron-Frobenius operator LT , when acting on a suitable Banach space of analytic
functions, is both compact and f0-positive (see Definition 4.8) with respect to a
certain cone. Work of Krasnosel’skǐı [8] then implies that LT has a unique fixed
point % such that % > 0 and

∫
% dLeb = 1. It follows that T has a unique acip

µ, and that dµ/dLeb = %. Our approach, therefore, is to determine conditions
on T which imply that LT is both compact and f0-positive. In fact this same
strategy can be used to prove existence and uniqueness of invariant measures
absolutely continuous with respect to certain more general reference measures (see
§10): in this case LT is replaced by a more general transfer operator L of the
form Lf =

∑
i∈I wi · f ◦ Ti, where the weight functions wi are real analytic and

strictly positive on X. An alternative approach is to view the transfer operator
L, defined in terms of the wi (or, equivalently, in terms of a potential function ϕ,
cf. §8), as the primary object of interest. Suitable hypotheses guarantee that L has
an eigenmeasure m (the reference measure), and a strictly positive real analytic
eigenfunction % with

∫
% dm = 1, and that the probability measure µ defined by

dµ/dm = % is T -invariant. In this generality our main results are Theorems 7.5 and
9.4. In this context, previous criteria for the existence of invariant measures have
been formulated by various authors, notably Mauldin & Urbański [12], Sarig [18],

†Our Proposition 3.1 casts doubt on a key lemma in [10, Lem. 3, p. 11]. Even if this lemma is
false, however, it may be possible to prove [10, Theorem, p. 12] by other means.
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and Walters [23]. In Appendix B we present a simple example where the criteria of
this paper are satisfied but those of [12], [18], [23] are not.

Compactness of the transfer operator L was first proved by Ruelle [17] in the case
where T has finitely many branches. The situation is more delicate in the infinite
branch case (this is where the incorrectness in [10] arises), and it turns out that
there are two useful sufficient conditions for compactness of L (Propositions 2.7 and
2.8). These conditions are most naturally formulated in the context of holomorphic
map-weight systems (see Definition 2.2), where the weight functions wi are assumed
to be holomorphic (and bounded) on the complex domain D, but the set X plays
no role. Proposition 3.1 shows that a certain weakening of our two compactness
criteria is not sufficient to guarantee compactness of L.

The f0-positivity of L follows from the strict positivity of the weight functions
wi on X. Our proof of this fact (Proposition 4.9) is simpler than the proof of
the analogous result in [10], largely by virtue of working with a slightly different
cone. Provided the domain D is invariant under complex conjugation, the spectral
properties of L mentioned above can be deduced from [8] (see Proposition 5.4).

From a technical standpoint some of our methods may be of independent interest:
for example the proofs of existence (Lemma 6.4) and uniqueness (Proposition 7.1)
of the eigenmeasure hinge on general properties of positive operators, and differ
from the classical proofs in thermodynamic formalism (see e.g. [16], [12], [18]).

It should be possible to generalise the main results of this paper to certain cases
where the real analytic expanding map T is Markov, but not necessarily full branch.
We do not pursue this generalisation here, however, preferring to present the main
ideas in the simplest possible combinatorial setting.

Notation 1.1. All the results in this article are valid if the set I indexing the
inverse branches of T is countable. Our principle interest, however, is in the case
where I is infinite, and it will sometimes be notationally convenient to assume that
I = N. For consistency we then adopt the convention that, if T has finitely many
branches, the weight functions wi (see Definition 2.2) and the norms ‖T ′i (z)‖ are
defined to be identically zero for all sufficiently large i ∈ N.

The notation
∫
f dm and m(f) will be used interchangeably to denote the integral

of a function f with respect to a measure m.

2. Transfer operators for holomorphic map-weight systems

Notation 2.1. If (B, ‖ · ‖B) is a Banach space, we write ‖ · ‖ instead of
‖ · ‖B whenever this does not lead to confusion. For X a compact metric space,
and (B, ‖ · ‖) a Banach space, let C(X,B) denote the set of continuous functions
from X to B. This is a Banach space when equipped with the norm ‖f‖C(X,B) =
maxx∈X ‖f(x)‖. If D ⊂ Cd is a domain (a non-empty connected open subset of Cd),
let H∞(D,B) denote the collection of functions f : D → B which are holomorphic
onD with ‖f‖H∞(D,B) := supz∈D ‖f(z)‖ <∞ . The space (H∞(D,B), ‖·‖H∞(D,B))
is a complex Banach space. In the case where (B, ‖ · ‖) = (C, | · |) we use C(X)
to denote C(X,C), and H∞(D) to denote H∞(D,C). We use L(B) to denote the
space of bounded linear operators from a Banach space (B, ‖ · ‖) to itself, which we
always assume to be equipped with the induced operator norm.
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Definition 2.2. Let D ⊂ Cd be a bounded domain, and let I be a non-empty
countable set.
(i) A holomorphic map system (onD) is a collection (Ti)i∈I (also denoted (Ti, D)i∈I)

of holomorphic maps Ti : D → D.
(ii) A holomorphic weight system (on D) is a collection (wi)i∈I (also denoted

(wi, D)i∈I) of functions wi ∈ H∞(D). The wi are called weight functions.
(iii) If (Ti)i∈I is a holomorphic map system and (wi)i∈I is a holomorphic weight

system then (Ti, wi)i∈I (also denoted (Ti, wi, D)i∈I) is called a holomorphic
map-weight system.

For two subsets D,D′ ⊂ Cd, we write D′ ⊂⊂ D to mean that D′ is compactly
contained in D, i.e. that D′ is a compact subset of D. For future reference we
introduce the following possible conditions on a map system (Ti)i∈I :

(D1) Ti(D) ⊂⊂ D for all i ∈ I ,

(D2)
⋃
i∈I

Ti(D) ⊂⊂ D .

The following summability conditions on the weight system (wi)i∈I will also be
used in the sequel:

(S1) sup
z∈D

∑
i∈I

|wi(z)| <∞ ,

(S2) sup
z∈D

∞∑
i=n

|wi(z)| → 0 as n→∞ .

Remark 2.3.
(a) Clearly (D2) ⇒ (D1) and (S2) ⇒ (S1).
(b) If I is finite then both (S1) and (S2) are trivially satisfied.
(c) If I = N then we have the following equivalences (here `1(N) denotes the

space of absolutely summable sequences with its usual topology):

(S1) ⇔ { (wn(z))n∈N | z ∈ D } is a bounded subset of `1(N) ,
(S2) ⇔ { (wn(z))n∈N | z ∈ D } is a relatively compact subset of `1(N) ,

The first equivalence is obvious. The second is by [5, IV.13, Ex. 3, pp. 338–9]).

With each holomorphic map-weight system we wish to associate a linear operator
L : H∞(D) → H∞(D), called a transfer operator, defined by the formula

Lf =
∑
i∈I

wi · f ◦ Ti . (2.1)

Operators of this kind were first considered by Ruelle in the case where I is finite
(see [16] for their first introduction, and [17] for their first use in a holomorphic
context). If I is infinite, it is not obvious whether (2.1) produces a well-defined
endomorphism of H∞(D). The following result gives a sufficient condition for this
to be the case, at the same time ensuring the continuity of L.
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Proposition 2.4. If the holomorphic map-weight system (Ti, wi, D)i∈I satis-
fies (S1) then (2.1) defines a bounded linear operator L : H∞(D) → H∞(D).

Proof. Let S := supz∈D

∑
i∈I |wi(z)| <∞. First we show that L maps H∞(D)

to H∞(D). Fix f ∈ H∞(D). Without loss of generality let I = N (cf. Notation
1.1). If gk(z) :=

∑k
i=1 wi(z)f(Tiz) for k ∈ N, then gk ∈ H∞(D). Since

|gk(z)| ≤
k∑

i=1

|wi(z)||f(Tiz)| ≤ S ‖f‖H∞(D) (2.2)

for all z ∈ D, we see that the sequence {gk} is uniformly bounded on D. Moreover,
limk→∞ gk(z) =: g(z) exists for every z ∈ D. By Vitali’s convergence theorem (see
e.g. [14, Prop. 7]) gk thus converges uniformly on compact subsets of D. Hence g
is analytic on D. Moreover, by (2.2) we see that |g(z)| ≤ S‖f‖ for any z ∈ D. Thus
Lf = g ∈ H∞(D) and ‖Lf‖H∞(D) ≤ S ‖f‖H∞(D), and the assertion follows.

Notation 2.5. Let (Ti, wi, D)i∈I be a holomorphic map-weight system. For
i ∈ In, n ∈ N we write Ti := Tin

◦ · · · ◦ Ti1 and wi :=
∏n

k=1 wik
◦ TPk−1i, where

for k ∈ N, Pk : In → Ik denotes the projection Pki = (i1, . . . , ik) onto the first k
coordinates, with the convention that TP0i = id.

Remark 2.6. If (Ti, wi, D)i∈I is a holomorphic map-weight system satisfying
(S1) and L the corresponding transfer operator, then it is easily seen that, for n a
positive integer, (Ti, wi, D)i∈In is a holomorphic map-weight system satisfying (S1)
whose transfer operator is Ln; or, put differently, Lnf =

∑
i∈In wi · f ◦Ti for every

f ∈ H∞(D), with the sum converging in H∞(D).

We now consider the possible compactness of the transfer operator L : H∞(D) →
H∞(D). If I is finite, it is well known that L is compact† whenever (D1), or
equivalently (D2), is satisfied. When I is infinite, conditions (D1) and (D2) are not
equivalent, because (D1) does not preclude the accumulation of the sets Ti(D) on
the boundary of D. Moreover, neither condition (D1) nor (D2) is alone sufficient
to guarantee the compactness of L. We shall see, however, that combining (D1)
or (D2) with an appropriate summability condition on the weights wi will yield a
criterion for compactness.

Proposition 2.7. For a holomorphic map-weight system (Ti, wi, D)i∈I satis-
fying (D2) and (S1), the transfer operator L : H∞(D) → H∞(D) is compact.

Proof. Let D′ be a domain containing ∪i∈ITi(D) and such that D′ ⊂⊂ D.
Arguments analogous to those of Proposition 2.4 show that L(H∞(D′)) ⊂ H∞(D),
and that L̂ : H∞(D′) → H∞(D) defined by L̂ = L|H∞(D′) is bounded (since∥∥∥L̂f∥∥∥

H∞(D)
≤ supz∈D

∑
i∈I |wi(z)| |f(Tiz)| ≤ (supz∈D

∑
i∈I |wi(z)|) ‖f‖H∞(D′)).

The canonical embedding J : H∞(D) ↪→ H∞(D′) is compact, by Montel’s Theorem
[14, Chapter 1, Prop. 6]. Since L = L̂J , it follows that L is compact.

†This was first observed by Ruelle [17], who noted that in fact such an L is nuclear of order zero.
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Proposition 2.8. For a holomorphic map-weight system (Ti, wi, D)i∈I satis-
fying (D1) and (S2), the transfer operator L : H∞(D) → H∞(D) is compact.

Proof. For each i ∈ I, the operator Lif = wi · f ◦Ti is compact, by Proposition
2.7 applied to the index set Ii = {i}. Since the space of compact linear operators
H∞(D) → H∞(D) is closed in L(H∞(D)) (see e.g. [21, V.7.1, V.7.2]), it suffices
to prove that the sum

∑
i∈I Li is convergent with respect to this norm.

We may write I = N (cf. Notation 1.1). Then∥∥∥∥∥
∞∑

i=n

Li

∥∥∥∥∥ = sup
‖f‖H∞(D)=1

sup
z∈D

∣∣∣∣∣
∞∑

i=n

wi(z)f(Tiz)

∣∣∣∣∣ ≤ sup
z∈D

∞∑
i=n

|wi(z)| ,

and (S2) implies that this quantity tends to 0 as n→∞.

3. A non-compact transfer operator

In view of Propositions 2.7 and 2.8, it is natural to wonder whether the transfer
operator L : H∞(D) → H∞(D) might be compact if the holomorphic map-weight
system (Ti, wi, D)i∈I merely satisfies (D1) and (S1). In [10, Lem. 3] a claim to this
effect is made†, but the proof is flawed (see Remark 3.2). The following result shows
that (D1) and (S1) are not sufficient to guarantee the compactness of L.

Proposition 3.1. There is a holomorphic map-weight system (Ti, wi, D)i∈I
satisfying (D1) and (S1), but whose transfer operator is not compact.

Proof. Let D be the unit disc. Below we shall construct wn ∈ H∞(D) and
zn ∈ D, where n ∈ N, such that

wn(zn) = 1 for every n ∈ N, (3.1)∑
n∈N\{m}

|wn(zm)| ≤ 1
2

for every m ∈ N, (3.2)

sup
z∈D

∑
n∈N

|wn(z)| <∞ . (3.3)

Defining Tn(z) = zn for each n ∈ N, it is not difficult to see that (Tn, wn, D)n∈N
satisfies (D1) and (S1). We shall now show that the associated transfer operator
L is not compact. To see this let `∞(N) denote the space of bounded complex
sequences, equipped with its usual norm. The map A : H∞(D) → `∞(N) defined
by A(f) = (f(zn))n∈N is bounded, with norm 1. The map B : `∞(N) → H∞(D)
defined by B((bn)n∈N) =

∑
n∈N bnwn is bounded by (3.3). The transfer operator

L : H∞(D) → H∞(D) can be factorised as L = BA. A calculation shows that

‖AB − I‖`∞(N) ≤ sup
m∈N

∑
n∈N\{m}

|wn(zm)| ≤ 1
2
,

†The claim is made for a particular choice of weight system, though the purported proof only
uses the fact that the weight functions all lie in a suitable space of analytic functions.
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by (3.1) and (3.2), so AB has a continuous inverse on l∞(N), hence the same is true
for (AB)2. So (AB)2 is not compact (for otherwise I = (AB)2(AB)−2 would be
compact), hence neither is BA = L (or else (AB)2 = A(BA)B would be compact).

It remains to construct the weights wn and the points zn. For convenience, we
shall first work in the upper half-plane H+ = { z : =z > 0 } ⊂ C.

For n ∈ N, let an = n+ i · 2−(n+2) ∈ H+ and define

w̃(z) =
an − an

z − an
.

Then |w̃(z)| ≤ |(an − an)/=an| = 2 for any z ∈ H+ and

w̃n(an) = 1 . (3.4)

If n,m ∈ N, m 6= n, we have |w̃n(am)| ≤ |an − an| = 2−(n+1), and thus∑
n∈N\{m}

|w̃n(am)| ≤ 1/2 . (3.5)

For z ∈ H+ let p ∈ Z denote the integer part of <z, that is, <z ∈ [p, p+ 1). Then
|w̃n(z)| ≤ 2 for n = p or n = p+ 1 and |w̃n(z)| ≤ 2−(n+1) otherwise, and hence∑

n∈N
|w̃n(z)| ≤ 9/2 for any z ∈ H+. (3.6)

Defining wn = w̃n◦M−1 and zn = M(an), where M : H+ → D denotes the Möbius
transformation M(z) = (z− i)/(z+ i), the desired properties (3.1), (3.2), and (3.3)
now follow from the corresponding relations (3.4), (3.5), and (3.6).

Remark 3.2.
(a) In the above counter-example the Tn are constant mappings. With some

extra effort it possible to construct counter-examples where the Tn are open.
(b) In [10, Lem. 3, p. 11] it is claimed† that if (D1) and (S1) hold then L

is nuclear of order zero, and hence compact. The argument for this is incorrect,
however, as it hinges on the assertion that L maps the space H(D) of holomorphic
functions on D into the space H∞(D). This is false in general: for example if D is
the unit disc, wn ≡ 2−n, and

Tn(z) =
1− 4−n

1− 4−(n+1)
z ,

then the associated transfer operator L satisfies (D1) and (S1), but the image under
L of the function f(z) = 1/(1− z) does not belong to H∞(D).

A second argument in [10, Lem. 3, pp. 11–12] is used to support the claim that
some iterate of a transfer operator acting on a space of vector-valued holomorphic
functions is compact. This argument is also false due to an incorrect application of
a version of Montel’s theorem.

†The claim is made in the case where wi is the Jacobian determinant of Ti, and (Ti)i∈I are
inverse branches of an expanding map (i.e. the same context as in our §11), though only the
analytic properties of the wi are actually used in the purported proof. There is an additional
hypothesis (see [10, (A1), p. 4]) that the wi are holomorphic on some domain D′ which compactly
contains D, and that (S1) holds on D′, though this hypothesis is not used anywhere in [10].
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4. Real analytic dynamics

Having considered holomorphic map-weight systems, we now look at the interplay
with the real structure.

Definition 4.1. Henceforth X will always denote a compact connected subset
of Rd with non-empty interior. Let {Xi}i∈I be a finite or countably infinite family
of non-empty pairwise disjoint subsets of X such that each Xi is open in Rd and
∪i∈IXi = X. Suppose that T : X → X is Borel measurable, and such that for all
i ∈ I, T (Xi) is open in Rd, and T |Xi

: Xi → T (Xi) is a C1 diffeomorphism which
can be extended to a C1 map on Xi.

We shall say that T is full branch if T (Xi) = X for all i ∈ I.
The map T is called (uniformly) expanding if there exists a norm ‖ · ‖ on Rd,

and β > 1, such that, for any x, y which lie in the same partition element Xi,

‖T (x)− T (y)‖ ≥ β ‖x− y‖ . (4.1)

For any partition element Xi, the restriction T |Xi
is called a branch of T . If T

is a full branch expanding map then each branch T |Xi has an inverse Ti such that
T ◦ Ti is the identity map on the interior of X, and Ti ◦ T is the identity map on
Xi. The maps Ti will be referred to as inverse branches. Condition (4.1) implies

sup
x∈int(X)

‖T ′i (x)‖L(Rd) ≤ β−1 for all i ∈ I , (4.2)

where T ′i (x) denotes the derivative of Ti at the point x, and ‖ · ‖L(Rd) denotes the
induced operator norm on L(Rd) = L((Rd, ‖ · ‖)).

If n ≥ 1, and i = (i1, . . . , in) ∈ In, we write Xi := Ti(int(X)).

Lemma 4.2. Let T : X → X be a full branch expanding map. For any non-
empty open subset U of X, there exists n ≥ 1 and i ∈ In such that Ti(int(X)) ⊂ U .

Proof. Fix ε > 0 such that there is an open ball B of radius ε contained in U .
Now diam(Xi) ≤ β−ndiam(X) for all i ∈ In, and all n ≥ 1, so we may fix n ≥ 1
such that diam(Xi) < ε/2 for all i ∈ In. The union ∪i∈IXi is open and dense in
X, and therefore so is ∪i∈InXi. So there exists i ∈ In and x ∈ Xi such that the
distance of x to the centre of B is less than ε/2. But since diam(Xi) < ε/2, all of
Xi must belong to B. Therefore Xi ⊂ B ⊂ U , as required.

Definition 4.3. A full branch expanding map T : X → X will be called real
analytic if there is a bounded domain D ⊂ Cd (in particular D is connected), with
X ⊂ D, such that each inverse branch Ti has a holomorphic extension to D. A real
analytic full branch expanding map will often be denoted by (T,X,D).

For a real analytic full branch expanding map T : X → X, the holomorphic
extensions of the Ti to D, and in particular to X, will also be denoted Ti. With
this convention, we have the following obvious strengthening of Lemma 4.2.

Corollary 4.4. Let T : X → X be a real analytic full branch expanding map.
For any non-empty open U ⊂ X, there exists n ≥ 1, i ∈ In such that Ti(X) ⊂ U .
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Definition 4.5. Let I be a non-empty countable set. A collection (wi)i∈I of
functions wi : X → R is called a real analytic weight system if there is a bounded
domain D ⊂ Cd with X ⊂ D, such that (wi, D)i∈I is a holomorphic weight system.
IfD is any such domain then the system will sometimes be denoted by (wi, X,D)i∈I .

Definition 4.6. Define† H∞
R (D) := { f ∈ H∞(D) : f(x) ∈ R for x ∈ X},

a real Banach space when equipped with the norm ‖f‖H∞
R (D) = supz∈D |f(z)| =

‖f‖H∞(D). Define K := { f ∈ H∞
R (D) : f(x) ≥ 0 for x ∈ X }. Now X has non-

empty interior as a subset of Rd, so is a set of uniqueness in Cd (i.e. a holomorphic
function on D which vanishes on X is identically zero on D), which implies that
K ∩ −K = {0}. Moreover K is closed, and is such that αf + βg ∈ K whenever
f, g ∈ K and α, β ≥ 0. So K is a cone (see [8, p. 17]). For f, g ∈ H∞

R (D) we write
f ≤ g to mean that g − f ∈ K, and this defines a partial order on H∞

R (D).

If (T,X,D) is a real analytic full branch expanding map whose inverse branches
(Ti)i∈I form a holomorphic map system on D, and (wi, X,D)i∈I is a real analytic
weight system satisfying (S1), then the transfer operator L defined by (2.1) is an
endomorphism of H∞(D), by Proposition 2.4. Since each wi is real-valued on X,
L is also an endomorphism of H∞

R (D).
Henceforth we shall require some kind of positivity assumption on (wi)i∈I .

Definition 4.7. A real analytic weight system (wi)i∈I is positive if wi(x) ≥ 0
for all x ∈ X, i ∈ I, and strictly positive if wi(x) > 0 for all x ∈ X, i ∈ I.

These positivity assumptions on the weight system will lead to positivity prop-
erties, defined below, of the transfer operator.

Definition 4.8. Let (T,X,D) be a real analytic full branch expanding map
whose inverse branches (Ti)i∈I form a holomorphic map system on D, and let
(wi, X,D)i∈I be a real analytic weight system satisfying (S1). The transfer operator
L : H∞

R (D) → H∞
R (D) is said to be positive if L(K) ⊂ K. It is called f0-positive if

there is a non-zero f0 ∈ K such that for every f ∈ K \ {0} there exist β > α > 0
and n ∈ N such that αf0 ≤ Lnf ≤ βf0.

Proposition 4.9. Let (T,X,D) be a real analytic full branch expanding map
whose inverse branches (Ti)i∈I form a holomorphic map system on D, and let
(wi, X,D)i∈I be a real analytic weight system satisfying (S1). If L : H∞

R (D) →
H∞

R (D) is the corresponding transfer operator then
(i) (wi)i∈I positive ⇒ L positive,
(ii) (wi)i∈I strictly positive ⇒ L f0-positive.

Proof. (i) Since wi(x) ≥ 0 for all x ∈ X and i ∈ I, if f ∈ K then Lf(x) =∑
i∈I wi(x)f(Tix) ≥ 0 for all x ∈ X. So Lf ∈ K.

†This definition differs from the real Banach space {f ∈ H∞(D) : f(x) ∈ R for x ∈ D ∩ Rd}
used in [10, p. 10], and leads to a shorter proof of f0-positivity of L (see Prop. 4.9 (ii)). The two
spaces coincide in the case where D ∩ Rd is connected.
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(ii) Let f0 ≡ 1 be the function which is constant and equal to 1 on X. To prove
f0-positivity it is sufficient [8, Thm. 2.2] to check that L is both f0-bounded below
(i.e. for all f ∈ K \ {0} there exist γ > 0 and l ∈ N such that Llf ≥ γf0) and
f0-bounded above (i.e. for all f ∈ K \ {0} there exist δ > 0 and m ∈ N such that
Lmf ≤ δf0). L is clearly f0-bounded above. To see that L is f0-bounded below, fix
f ∈ K \{0} and note that since f is not identically zero, there must be a non-empty
set U ⊂ X, open in X, such that f(x) > 0 for x ∈ U . By Corollary 4.4 there exists
i ∈ In such that Ti(X) ⊂ U . But then (Lnf)(x) > 0 for x ∈ X, since each wi is
strictly positive on X. Choosing γ := minx∈X(Lnf)(x) > 0 yields

Lnf ≥ γf0 , (4.3)

thus L is f0-bounded below as well, and hence f0-positive.

5. Positive compact transfer operators

Definition 5.1. A domain D ⊂ Cd is said to be conjugation-invariant if it
equals { z : z ∈ D }, where z = (z1, . . . , zd) denotes the complex conjugate of
z = (z1, . . . , zd).

The usefulness of a conjugation-invariant domain D stems from the fact that the
complexification (see e.g. [8, pp. 73–74]) of H∞

R (D) is precisely H∞(D):

Lemma 5.2. If D ⊂ Cd is a conjugation-invariant domain then the complexifi-
cation H∞

R (D) + iH∞
R (D) of H∞

R (D) equals H∞(D).

Proof. The norm in H∞(D) clearly coincides with the norm in the complexifi-
cation of H∞

R (D). It now suffices to prove that H∞(D) ⊂ H∞
R (D)+ iH∞

R (D), since
the reverse inclusion obviously holds. Note that since D is conjugation-invariant,
z 7→ f(z) is analytic on D whenever f is analytic on D as a consequence of the
Cauchy-Riemann equations. Fix f ∈ H∞(D) and define

f1(z) :=
1
2

(
f(z) + f(z)

)
, f2(z) :=

1
2i

(
f(z)− f(z)

)
.

Clearly f1, f2 ∈ H∞
R (D) and f = f1 + if2, so H∞(D) ⊂ H∞

R (D) + iH∞
R (D).

Remark 5.3. It is claimed in [10, p. 10] that H∞(D) = H∞
R (D)+ iH∞

R (D) for
arbitrary domains, but this is not the case. For example if f(z) = 1/(z − i) then
f = f1+if2 where f1(z) = z/(z2+1), f2(z) = 1/(z2+1). While the only singularity
of f is the pole at z = i, the functions f1, f2 also have a pole at z = −i. So if D is
the disc of radius 3/2 centred at −i, say, then f ∈ H∞(D) but f1, f2 /∈ H∞

R (D).

Proposition 5.4. Let (T,X,D) be a real analytic full branch expanding map,
and let (wi, X,D)i∈I be a real analytic weight system. Suppose thatD is conjugation-
invariant, and that either (S2) and (D1) are satisfied, or (S1) and (D2) are satisfied.
Let L : H∞(D) → H∞(D) denote the corresponding transfer operator.

If (wi)i∈I is strictly positive, then there exists a real analytic function % ∈ H∞
R (D)

such that % > 0 on X, and L% = λ% for some λ > 0. The eigenvalue λ is simple,
with modulus strictly larger than any other eigenvalue of L.
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Proof. L is compact by either Proposition 2.7 or 2.8, and f0-positive by Propo-
sition 4.9 (ii). Clearly K is a reproducing cone (i.e. H∞

R (D) = K −K), so we can
apply Theorems 2.5, 2.10 and 2.13 of [8], which assert that the compact f0-positive
operator L, acting on the complexification ofH∞

R (D), has a positive simple maximal
eigenvalue with corresponding eigenvector % ∈ K. Moreover % is strictly positive
on X, since by (4.3) it is bounded below by γ > 0. The result follows because
Lemma 5.2 implies that the complexification of H∞

R (D) is precisely H∞(D).

6. Eigenmeasures for the transfer operator

We start by extending L to a continuous endomorphism of C(X).

Proposition 6.1. Let (T,X,D) be a real analytic full branch expanding map
whose inverse branches (Ti)i∈I form a holomorphic map system on D, and let
(wi, X,D)i∈I be a real analytic weight system satisfying (S1). The transfer operator
L given by (2.1) defines a bounded linear operator C(X) → C(X).

Proof. Let f ∈ C(X). Polynomials are dense in C(X), by the Stone-Weierstrass
theorem, so let {fk} be a sequence of polynomials such that fk → f in C(X). Each
fk ∈ H∞(D), since D is bounded, so Lfk ∈ H∞(D), by Proposition 2.4. Now
S := supx∈X

∑
i∈I |wi(x)| ≤ supz∈D

∑
i∈I |wi(z)| <∞ by (S1), and

sup
x∈X

|Lf(x)− Lfk(x)| ≤ sup
x∈X

∑
i∈I

|wi(x)| |f(Tix)− fk(Tix)| ≤ S ‖f − fk‖C(X)

so Lfk → Lf in C(X), from which it follows that Lf ∈ C(X). The operator
L : C(X) → C(X) is bounded because ‖Lf‖C(X) ≤ supx∈X

∑
i∈I |wi(x)| |f(Tix)| ≤

S ‖f‖C(X).

Remark 6.2. The weaker summability assumption supx∈X

∑
i∈I |wi(x)| < ∞

is not enough to guarantee that the transfer operator L is an endomorphism of
C(X). For example if X = [0, 1] and wi(x) := xi(1 − x) for i ∈ N ∪ {0} then
L1 = χ[0,1) /∈ C(X), yet supx∈X

∑∞
i=0 |wi(x)| = supx∈X

∑∞
i=0 wi(x) = 1 <∞.

Definition 6.3. An eigenmeasure (for L) is a finite Borel measure m on X for
which there exists λ ≥ 0 (the corresponding eigenvalue) such that∫

Lf dm = λ

∫
f dm for all f ∈ C(X) . (6.1)

Every positive transfer operator has an eigenmeasure†:

Lemma 6.4. Let (T,X,D) be a real analytic full branch expanding map whose
inverse branches (Ti)i∈I form a holomorphic map system onD, and let (wi, X,D)i∈I
be a real analytic weight system satisfying (S1). Let L : C(X) → C(X) denote the
corresponding transfer operator.

If (wi)i∈I is positive then there exists an eigenmeasure.

†See [16] for an alternative proof of this fact, which could be applied in the case where (wi)i∈I
is strictly positive.
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Proof. Let KC := { f ∈ C(X) : f(x) ≥ 0 for x ∈ X }, a cone with interior
in the real Banach space CR(X) of real-valued continuous functions on X. Since
(wi)i∈I is positive, L : CR(X) → CR(X) is positive with respect toKC . By the Riesz
representation theorem, the topological dual CR(X)′ of CR(X) can be identified
with the space of signed Borel measures on X, and the dual cone K ′

C with the
set of Borel measures on X. Let L′ : CR(X)′ → CR(X)′ denote the adjoint of
L : CR(X) → CR(X), given by (L′ν)(f) = ν(Lf) for all f ∈ CR(X). Since L :
CR(X) → CR(X) is positive and KC has interior, [20, Corollary in Appendix 2.6]
now implies that L′ has an eigenvalue λ ≥ 0 with corresponding eigenvector m in
the dual cone K ′

C . Thus L′m = λm, so m is an eigenmeasure.

It will often be convenient to iteratively apply the transfer operator L to func-
tions which are integrable with respect to an eigenmeasure. The following result
guarantees that this is possible.

Lemma 6.5. Let (T,X,D) be a real analytic full branch expanding map whose
inverse branches (Ti)i∈I form a holomorphic map system onD, and let (wi, X,D)i∈I
be a real analytic positive weight system satisfying (S1). For any eigenmeasure m,
the transfer operator L given by (2.1) defines a bounded linear operator L1(X,m) →
L1(X,m). Moreover,

∫
Lf dm = λ

∫
f dm for all f ∈ L1(X,m).

Proof. If f : X → C then |Lf | =
∣∣ ∑

i∈I wi ·f ◦Ti

∣∣ ≤ ∑
i∈I wi · |f | ◦Ti = L(|f |),

so combining with the eigenmeasure equation (6.1) gives∫
|Lf | dm ≤

∫
L|f | dm = λ

∫
|f | dm for all f ∈ C(X) . (6.2)

Since C(X) can be canonically identified with a subspace of L1(X,m), the trans-
fer operator L : C(X) → C(X) determines a linear endomorphism C(X) →
L1(X,m). This endomorphism is bounded with respect to the (incomplete) norm
‖ · ‖L1(X,m) on C(X), by (6.2). By the B.L.T. theorem [15, Thm. I.7] it can
therefore be extended (uniquely) to a bounded linear operator from the completion
of (C(X), ‖ · ‖L1(X,m)) to L1(X,m). To finish the proof we now observe that C(X)
is dense in L1(X,m) (see [4, Prop. 7.4.2]). We thus conclude that the completion
of (C(X), ‖ · ‖L1(X,m)) is precisely L1(X,m), which, by the preceding argument,
implies that L : L1(X,m) → L1(X,m) is continuous, and that the eigenmeasure
equation (6.1) in fact holds for all f ∈ L1(X,m).

The following iteration formula will be very useful.

Lemma 6.6. Let (T,X,D) be a real analytic full branch expanding map whose
inverse branches (Ti)i∈I form a holomorphic map system onD, and let (wi, X,D)i∈I
be a real analytic positive weight system satisfying (S1). Letm be any eigenmeasure.
Suppose that B is a Borel subset of int(X) and that n ∈ N. Then

(Lnf) · χB = Ln(f · χBn
)

holds m-almost everywhere for all f ∈ L1(X,m), where Bn := ∪j∈InTj(B).
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Proof. Let B(X) denote the Banach space of all bounded functions, equipped
with the sup-norm. If f ∈ B(X) then

‖Lf‖B(X) ≤ sup
x∈X

∑
i∈I

|wi(x)| |f(Tix)| ≤ ‖f‖B(X) sup
x∈X

∑
i∈I

|wi(x)| <∞ .

Thus the transfer operator L given by (2.1) extends to a well-defined continuous
endomorphism of B(X). This, together with Remark 2.6, implies that for n ∈ N
the operator Ln is given by the series

Lnf =
∑
i∈In

wi · f ◦ Ti , (6.3)

convergent in B(X) for every f ∈ B(X). Now χB = χBn ◦Ti for all i ∈ In, so (6.3)
implies that

(Lnf) · χB = Ln(f · χBn) (6.4)

everywhere for all f ∈ B(X). But since bounded Borel measurable functions are
dense in L1(X,m), and since L and multiplication by bounded Borel measurable
functions are continuous operators on L1(X,m), a simple approximation argument
shows that (6.4) holds m-almost everywhere for all f ∈ L1(X,m).

7. Invariant measures

We saw in §6 that, provided the positive weight system (wi)i∈I satisfies (S1), the
corresponding transfer operator has an eigenmeasure m. Since any positive multiple
of m is also an eigenmeasure, we shall slightly abuse terminology by saying that
the eigenmeasure is unique if all eigenmeasures are positive multiples of each other.
Throughout this section we shall make the following Standing Hypothesis:

Standing Hypothesis for §7. (T,X,D) is a real analytic full branch expanding map,
(wi, X,D)i∈I is a strictly positive real analytic weight system, D is conjugation-
invariant, and either (S2) and (D1), or (S1) and (D2), are satisfied.

Proposition 7.1. Under the Standing Hypothesis, there is a unique eigenmea-
sure m, and its corresponding eigenvalue is precisely the (strictly positive) maximal
eigenvalue of L : H∞(D) → H∞(D). Moreover,
(i) m is non-atomic, and its support is the whole of X;
(ii) m(X \ ∪i∈InXi) = 0 for every n ∈ N.

Proof. Let m be an eigenmeasure, with corresponding eigenvalue λ ≥ 0. If
λ̃ > 0 is the eigenvalue for L with corresponding eigenfunction % > 0 on X
(cf. Proposition 5.4), then λ

∫
% dm =

∫
L% dm = λ̃

∫
% dm. But

∫
% dm 6= 0, so

λ = λ̃.
In order to show that there is only one eigenmeasure, write LC for L : C(X) →

C(X), and LH for L : H∞(D) → H∞(D). Note that JLH = LCJ , where J :
H∞(D) ↪→ C(X) denotes the canonical embedding. Taking adjoints gives

L′HJ ′ = J ′L′C . (7.1)

Suppose now that m1 and m2 are two linearly independent eigenvectors of L′C
corresponding to the eigenvalue λ, that is, L′Cmi = λmi for i = 1, 2. Using (7.1) we
see that J ′m1 and J ′m2 are two eigenvectors of L′H corresponding to the eigenvalue
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λ. Since J has dense range, J ′ is injective. Thus J ′m1 and J ′m2 are also linearly
independent, and consequently the eigenspace of L′H corresponding to λ must have
dimension strictly larger than one. This, however, is a contradiction: the eigenspace
of L′H corresponding to the maximal eigenvalue λ has dimension 1, because the
maximal eigenvalue of LH is simple by Proposition 5.4.

(i) If U is a non-empty open subset of X then, by Corollary 4.4, there exists n ≥ 1
and i ∈ In such that Ti(X) ⊂ U . But (wi)i∈I is strictly positive, so LnχU (x) ≥
wi(x)χU (Ti(x)) > 0 for all x ∈ X, thus m(U) =

∫
1U dm = λ−n

∫
LnχU dm > 0, so

m is fully supported. To show that m is non-atomic we can introduce an operator
M : f 7→

∑
i∈I(g ·f)◦Ti, for a certain strictly positive real analytic function g, with

the property that m is the eigenmeasure for M, with corresponding eigenvalue 1,
and then proceed exactly as in [23, Cor. 12 (2), p. 134]. (More precisely, in the
language of §8, g := w%/(λ% ◦ T ) is a g-function whose g-measure is m, where w is
the w-function corresponding to the weight system (wi)i∈I).

(ii) The proof of this part is inspired by [23, Lem. 9, p. 131]. Fix k ∈ N. Let µ be
the probability measure, equivalent to m, with dµ/dm = %, where % = λ−1L% > 0
is as in Proposition 5.4. First we will show that if B is a Borel subset of int(X) then
µ(B) = µ(∪j∈IkTj(B)). Defining Bk := ∪j∈IkTj(B), Lemmas 6.5 and 6.6 imply
that

µ(B) =
∫
B

% dm = λ−k

∫
B

Lk% dm = λ−k

∫
(Lk%) · χB dm

= λ−k

∫
Lk(% · χBk

) dm =
∫
% · χBk

dm

=
∫
Bk

% dm = µ(∪j∈IkTj(B)) ,

as required. Setting B = int(X) gives µ(int(X)) = µ(∪j∈IkXj). Hence

m(int(X)) = m(∪j∈IkXj) for every k ∈ N . (7.2)

It therefore remains to show that m(∂X) = 0. Let U be an open ball in X whose
closure is disjoint from ∂X. By Lemma 4.2 there exists n ≥ 1 and i ∈ In such that
Ti(int(X)) ⊂ U , and therefore Ti(X) = Ti(int(X)) ⊂ U is disjoint from ∂X.

In particular, Ti(∂X) ⊂ int(X). Moreover, Ti(∂X) is disjoint from ∪j∈InTj(int(X)),
because Ti(∂X) = ∂Xi = ∂(TiX) is disjoint from Ti(int(X)) = int(TiX), and Xi

is disjoint from Xj = Tj(int(X)) for all j ∈ In \ {i}. So

Ti(∂X) ⊂ int(X) \ ∪j∈InTj(int(X)) . (7.3)

Combining (7.2) and (7.3) gives m(Ti(∂X)) = 0. Therefore, using the formula (6.3)
for the n-th iterate of L,

0 = λnm(Ti(∂X)) = λn

∫
χTi(∂X) dm =

∫
LnχTi(∂X) dm

≥
∫
wi · χTi(∂X) ◦ Ti dm ≥

∫
∂X

wi · χTi(∂X) ◦ Ti dm

=
∫
∂X

wi dm ≥Wi m(∂X) ,

where we define Wi := minx∈X wi(x) > 0. So m(∂X) = 0, as required.
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Remark 7.2. An alternative proof of the uniqueness of m is to show that for
all f ∈ C(X), λ−nLnf → m(f)% in C(X) as n→∞ (see [16], [12], [18]).

A consequence of Lemma 6.6 and Proposition 7.1 is the following transformation
property of the eigenmeasure m.

Lemma 7.3. Under the Standing Hypothesis, if m denotes the unique eigen-
measure, and λ the corresponding eigenvalue, then for all Borel subsets A of X,∫

A

Lnf dm = λn

∫
T−nA

f dm for all f ∈ L1(X,m), n ∈ N . (7.4)

Proof. If A is a Borel subset of X and n ∈ N then it is easily seen that

T−nA ∩ (∪i∈InXi) = ∪i∈InTi(A ∩ int(X)) .

Therefore, writing B := A∩int(X) and Bn := ∪i∈InTi(A∩int(X)), Proposition 7.1
shows that m(A) = m(B) and m(T−nA) = m(Bn). Thus, for any f ∈ L1(X,m),∫
A

Lnf dm =
∫
(Lnf) · χB dm =

∫
Ln(f · χBn

) dm = λn

∫
f · χBn

= λn

∫
T−nA

f dm ,

where the second and third equalities follow from Lemma 6.6 and Lemma 6.5.

Remark 7.4. As is clear from the above proof, formula (7.4) is in fact valid
whenever (S1) holds and m is an eigenmeasure such that m(X \ ∪i∈IXi) = 0.

It is now possible to interpret Proposition 5.4 in terms of T -invariant probability
measures absolutely continuous with respect to the eigenmeasure.

Theorem 7.5. Under the Standing Hypothesis, there is a unique T -invariant
probability measure µ absolutely continuous with respect to the eigenmeasure m.
The corresponding Radon-Nikodym derivative dµ/dm is the eigenvector % given by
Proposition 5.4, so in particular is strictly positive on X, real analytic, and extends
holomorphically to an element of H∞

R (D). The dynamical system (T, µ) is exact.

Proof. If % is the eigenfunction of L guaranteed by Proposition 5.4, and m
the unique eigenmeasure with

∫
% dm = 1, setting dµ/dm = % defines a probability

measure µ. Lemma 7.3 now implies the T -invariance of µ, since for any Borel subset
A of X we have µ(T−1A) =

∫
T−1A

% dm = λ−1
∫

A
L% dm =

∫
A
% dm = µ(A).

The proof of the remaining assertions relies on the fact that

lim
n→∞

∥∥λ−nLnf −m(f)%
∥∥

L1(X,m)
= 0 for all f ∈ L1(X,m) . (7.5)

For this, observe that the spectral properties of L : H∞(D) → H∞(D) imply that

lim
n→∞

∥∥λ−nLnf −m(f)%
∥∥

H∞(D)
= 0 for all f ∈ H∞(D) . (7.6)

Now the canonical identification H∞(D) → L1(X,m) is continuous, and the image
of H∞(D) is a dense subset of L1(X,m). This is because the canonical embedding
J1 : H∞(D) ↪→ C(X), and the canonical identification J2 : C(X) → L1(X,m),
are both contractions, hence continuous, and J1 has dense range by the Stone-
Weierstrass theorem, while J2 has dense range by [4, Prop. 7.4.2]. The desired limit
(7.5) now follows from (7.6) using a simple approximation argument.
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In order to prove uniqueness of µ, suppose that there is another T -invariant
probability measure µ̃ with µ̃ << m. If %̃ ∈ L1(X,m) denotes the Radon-Nikodym
derivative of µ̃ with respect to m then

∫
T−1A

%̃ dm =
∫

A
%̃ dm for all Borel subsets

A of X. Thus, by Lemma 7.3,
∫

A
L%̃ dm = λ

∫
T−1A

%̃ dm = λ
∫

A
%̃ dm for all Borel

subsets A of X, and hence L%̃ = λ%̃ m-almost everywhere, which forces %̃ = %
m-almost everywhere, by (7.5). Therefore µ̃ = µ.

It remains to prove exactness, for which we adapt the argument of [1, Thm. 1.3.3].
Suppose to the contrary that (T, µ) is not exact, so that the tail σ-algebra of (T, µ)
contains an element A with µ(A)µ(X \ A) 6= 0. Thus there are Borel sets An ⊂ X
with T−nAn = A, and f ∈ L1(X,m) with m(f) = 0 but

∫
A
f dm > 0. Hence for

all n ∈ N, ‖λ−nLnf‖L1(X,m) ≥ λ−n
∫

An
Lnf dm =

∫
T−nAn

f dm =
∫

A
f dm > 0, by

Lemma 7.3, thereby contradicting (7.5).

8. Thermodynamic formalism

Here the material of the preceding sections is related to some notions in thermo-
dynamic formalism. In particular this will allow a comparison of the results in this
paper to those already in the literature (see Appendix B).

Definition 8.1. w : ∪i∈IXi → R is called a (strictly positive) real analytic
w-function if there is a (strictly positive) real analytic weight system (wi)i∈I such
that w|Xi

= wi ◦ T |Xi
for each i ∈ I. A strictly positive real analytic w-function

w is called a real analytic g-function if
∑

i∈I wi(x) = 1 for all x ∈ int(X), where
(wi)i∈I is as above. A function ϕ : ∪i∈IXi → R is called a real analytic potential
function if ϕ = logw for some strictly positive real analytic w-function w, and a
normalised real analytic potential function if this w is a real analytic g-function.

Remark 8.2.
(a) The terminology g-function was introduced by Keane [7]. The notion of

a potential function is standard in thermodynamic formalism, originating from
the analogous object in statistical mechanics. The terminology w-function is non-
standard: functions w playing this role are sometimes called weight functions, but
here this nomenclature is reserved for the members wi of a weight system.

(b) There is a one to one correspondence between (strictly positive) real analytic
w-functions w and (strictly positive) real analytic weight systems (wi)i∈I . Note in
particular that if w is a real analytic w-function then for every i ∈ I, the restriction
w|Xi has a holomorphic extension to the complex neighbourhood Di := Ti(D) of
Xi, where D is such that (wi, D)i∈I is a holomorphic weight system.

Notation 8.3. Let ϕ be a real analytic potential function whose corresponding
strictly positive real analytic weight system (wi)i∈I satisfies (S1) on some bounded
domain D ⊂ Cd with X ⊂ D. The transfer operator L : H∞(D) → H∞(D)
(cf. Proposition 2.4) will be denoted by Lϕ. By Proposition 6.1 we know that
L = Lϕ extends to a bounded linear operator C(X) → C(X). If either (S2)
and (D1) are satisfied, or (S1) and (D2) are satisfied, then let %ϕ and λϕ denote,
respectively, the strictly positive eigenvector and its corresponding eigenvalue, for
Lϕ, as guaranteed by Proposition 5.4. Let mϕ denote the unique eigenmeasure for
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Lϕ which is guaranteed by Proposition 7.1. Let µϕ denote the measure equivalent
to mϕ with dµϕ/dmϕ = %ϕ, and which is T -invariant by Theorem 7.5.

Remark 8.4.
(a) Notice that although the potential function ϕ is initially defined only on

∪i∈IXi, it is still possible to make sense of Lϕ as a continuous endomorphism of
C(X), subject to the hypothesis (S1). This should be compared to the different
class of potential functions ϕ considered by Walters [23], which are also initially
defined on ∪i∈IXi, and where again Lϕ makes sense as a continuous endomorphism
of C(X). The method of achieving this is different however, reflecting the different
assumptions on ϕ: Walters [23, Lem. 1] first shows that Lϕ determines an endo-
morphism of the space of uniformly continuous functions on int(X), and then that
it extends to a continuous endomorphism of C(X).

(b) If ϕ is a normalised real analytic potential function then Lϕ1 = 1, so that
λϕ = 1 and %ϕ = 1.

(c) If ϕ is any real analytic potential function whose corresponding strictly
positive weight system satisfies either (S2) and (D1), or (S1) and (D2), then ψϕ =
ϕ+ log %ϕ − log %ϕ ◦ T − log λϕ is a normalised real analytic potential function.

Normalised potential functions, and g-functions, are closely related to the notion
of a g-measure, as introduced by Keane [7]:

Definition 8.5. If w is a real analytic g-function, or equivalently if ϕ is a
normalised potential function, then the unique eigenmeasure m for Lϕ = Llog w is
called the corresponding g-measure. Note that m = mϕ = µϕ, so in particular the
g-measure is T -invariant.

Note that every eigenmeasure is a g-measure: if it is an eigenmeasure for Lϕ then
it is a g-measure for ψϕ (i.e. for the function w = eϕ%ϕ/(λϕ%ϕ ◦T )). Thus the study
of g-measures is equivalent to the study of eigenmeasures of transfer operators.

Note as well that if w is a real analytic g-function, so that
∑

i∈I wi = 1 on
int(X) for the corresponding strictly positive real analytic weight system (wi)i∈I ,
it need not be the case that on some complex neighbourhood D the sum

∑
i∈I wi

is pointwise convergent, so in particular neither (S1) nor (S2) need hold. Therefore
such a hypothesis is required in the following result, which is an immediate corollary
of Proposition 7.1 formulated in the language of g-measures.

Theorem 8.6. Let (T,X,D) be a real analytic full branch expanding map,
and w a real analytic g-function with corresponding strictly positive real analytic
weight system (wi)i∈I . If D is conjugation-invariant, and either (S2) and (D1), or
(S1) and (D2), are satisfied, then there is a unique g-measure for w.

Now suppose that m is an eigenmeasure. For each i ∈ I, the formula mi(A) =
m(T (A∩Xi)) defines a finite measure on X whose total mass is the same as for m.
Then defining mT =

∑
i∈Imi gives a σ-finite measure mT (which is finite if and

only if I is finite). We writemT−1 for the measure given by (mT−1)(A) = m(T−1A)
and, for each i ∈ I, we use mTi for the measure defined by (mTi)(A) = m(TiA).

Part (i) of the following proposition is adapted from [23, Lem. 3, Cor. 4].
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Proposition 8.7. Under the Standing Hypothesis of §7, let w be the corre-
sponding w-function, ϕ the corresponding potential function, m = mϕ the corre-
sponding eigenmeasure, and λ = λϕ the corresponding maximal eigenvalue. Then

(i) mT ∼ m with dmT
dm = λ

w = λe−ϕ;
(ii) mTi ∼ m for every i ∈ I, with dmTi

dm = wi

λ ;

(iii) mT−1 =
∑

i∈ImTi, and dmT−1

dm = λ−1
∑

i∈I wi.

Proof. (i) First observe that (Xi)i∈I is a partition (up to sets of mT -measure
zero) of X into sets of finite mT -measure. Let A be a Borel subset of Xi for some
i ∈ I. Then χA/w ∈ L1(X,m), since wi is bounded away from zero on X and hence∫

X
χA/w dm =

∫
Xi
χA/(wi ◦ T ) dm <∞. Thus, by Lemma 6.5,∫

Lϕ

(χA

w

)
dm = λ

∫
χA

w
dm . (8.1)

By (8.1), the definition of mT , and the fact that m gives zero mass to ∂X,

(mT )(A) =
∫
χT (A∩Xi) dm =

∫
χA ◦ Ti dm

=
∫ ∑

j∈I
w ◦ Tj ·

(χA

w

)
◦ Tj dm =

∫
Lϕ

(χA

w

)
dm

=
∫
λ
χA

w
dm =

∫
A

λ

w
dm .

So λ/w is the Radon-Nikodym derivative dmT/dm, and in particular mT << m.
Moreover, since dmT/dm is bounded away from zero on each Xi then m << mT as
well. Note that dmT/dm ∈ L1(Xi,m) for any i ∈ I; however, dmT/dm ∈ L1(X,m)
if and only if I is finite.

(ii) Fix i ∈ I. Let A be a Borel subset of X and let χi denote the characteristic
function of Xi. Then Lχi = wi on int(X), and hence m-almost everywhere by
Proposition 7.1, so by Lemma 7.3,

λ−1

∫
A

wi dm = λ−1

∫
A

Lχi dm =
∫
T−1A

χi dm = m(T−1A ∩Xi) . (8.2)

Observing that T−1A ∩ Xi = Ti(A ∩ int(X)) = TiA \ Ti(A ∩ ∂X), and that
m(Ti(A ∩ ∂X)) = 0, because Ti(A∩∂X) ⊂ ∂Xi andm(∂Xi) = 0 by Proposition 7.1,
we conclude that

m(T−1A ∩Xi) = m(TiA) . (8.3)

Combining (8.2) and (8.3) now yields

λ−1

∫
A

wi dm = m(TiA) .

Thus λ−1wi is the Radon-Nikodym derivative of mTi with respect to m, and in
particular mTi << m. But λ−1wi is strictly positive on X, so m << mTi as well.

(iii) It suffices to show that mT−1 =
∑

i∈ImTi; the formula for dmT−1/dm then
follows from (ii). Let A be a Borel subset of X. Then by Proposition 7.1 and (8.3),
m(T−1A) = m(T−1A ∩ (∪i∈IXi)) =

∑
i∈Im(T−1A ∩Xi) =

∑
i∈Im(TiA).
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9. The eventually complex contracting condition

In view of Theorem 7.5, for a given real analytic full branch expanding map
it is useful to find conditions guaranteeing the existence of a domain D which is
conjugation-invariant and satisfies either (D1) or (D2). Definition 9.1 below provides
such a sufficient condition. To formulate it we first require a norm ‖ · ‖Cd on Cd: we
define ‖ · ‖Cd to be the norm arising from the complexification (see e.g. [8, pp. 73–
74]) of (Rd, ‖ · ‖), where ‖ · ‖ is the norm on Rd used in Definition 4.1. We then
equip L(Cd) with the operator norm induced by ‖ · ‖Cd .

Definition 9.1. If (T,X,D) is a real analytic full branch expanding map with

lim sup
i→∞

‖T ′i‖H∞(D,L(Cd)) < 1 , (9.1)

we say that its inverse branches are eventually complex contracting.

Remark 9.2. If the real analytic full branch expanding map T has only finitely
many inverse branches, then clearly they are eventually complex contracting (cf. the
convention detailed in Notation 1.1).

In the following result we define dist(ζ, z) := ‖ζ − z‖Cd for ζ, z ∈ Cd, and
dist(ζ, Z) := infz∈Z dist(ζ, z) for Z ⊂ Cd.

Proposition 9.3. Let T : X → X be a real analytic full branch expanding map
whose inverse branches are eventually complex contracting. If ε > 0 is sufficiently
small then the ε-neighbourhood Dε = {z ∈ Cd : dist(z,X) < ε} satisfies (D2) and
is conjugation-invariant.

Proof. Since T is expanding there exists γ′ ∈ (0, 1) (see (4.2)) such that

sup
x∈int(X)

‖T ′i (x)‖L(Rd) ≤ γ′ for all i ∈ I . (9.2)

Since the inverse branches are eventually complex contracting, there exists a
bounded domain D and γ ∈ [γ′, 1) such that ‖T ′i‖H∞(D,L(Cd)) ≤ γ for all i ∈ I \J ,
where J is some finite subset of I. Since J is finite, and each T ′i is continuous on D,
(9.2) implies that there exists ε > 0 such that Dε ⊂ D and ‖T ′i‖H∞(Dε,L(Cd)) ≤ γ
for all i ∈ J . Therefore in fact ‖T ′i‖H∞(Dε,L(Cd)) ≤ γ for all i ∈ I.

From the several variables mean value theorem it follows that for each i ∈ I, the
inverse branch Ti is γ-Lipschitz on any convex subset of Dε (see e.g. [2, Thm. 2.3]).
We claim this implies that for each i ∈ I,

dist(Ti(z), X) ≤ γ dist(z,X) for all z ∈ Dε . (9.3)

To verify (9.3), let z ∈ Dε and choose x ∈ X with dist(z,X) = dist(z, x). In
particular x, z both lie in the open ε-ball centred at x, a convex subset of Dε,
so dist(Ti(z), Ti(x)) ≤ γ dist(z, x). Therefore dist(Ti(z), X) ≤ dist(Ti(z), Ti(x)) ≤
γ dist(z, x) = γ dist(z,X), as required. So Ti(Dε) ⊂ Dγε for all i ∈ I, and therefore
∪i∈ITi(Dε) ⊂⊂ Dε, which is the condition (D2). The fact that Dε is conjugation-
invariant follows immediately from the fact that X ⊂ Rd.
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Theorem 9.4. Let T : X → X be a real analytic full branch expanding
map whose inverse branches are eventually complex contracting, and suppose that
(wi)i∈I is a strictly positive real analytic weight system satisfying (S1).

Then there is a unique T -invariant probability measure µ which is absolutely
continuous with respect to the eigenmeasurem. The corresponding Radon-Nikodym
derivative dµ/dm is strictly positive on X, real analytic, and extends holomorphi-
cally to an element of H∞

R (D). The dynamical system (T, µ) is exact.

Proof. The eventually complex contracting hypothesis ensures the existence of a
conjugation-invariant domainD for which condition (D2) is satisfied, by Proposition
9.3. The result then follows from Theorem 7.5.

Similarly, combining Theorem 8.6 with Proposition 9.3 gives:

Theorem 9.5. Let (T,X,D) be a real analytic full branch expanding map
whose inverse branches are eventually complex contracting, and w a real analytic
g-function whose corresponding strictly positive real analytic weight system (wi)i∈I
satisfies (S1). Then there is a unique g-measure for w.

10. Invariant measures equivalent to a reference measure

The character of this section differs from the preceding ones. Here we will start
with some finite Borel measure m on X, and ask whether there exists a T -invariant
probability measure µ which is equivalent to m. The single most interesting case,
when m is equal to Lebesgue measure, will be considered in §11.

Definition 10.1. Let m be a finite measure on X. A map T : X → X is said
to be non-singular with respect to m if mT−1 << m.

If T : X → X is a full branch map, and m is such that m(X \ ∪i∈IXi) = 0, then
mT−1 =

∑
i∈ImTi. This can be shown using the same arguments as in the proof

of part (iii) of Proposition 8.7. Therefore T is non-singular with respect to m if and
only if

∑
i∈ImTi << m, if and only if mTi << m for every i ∈ I.

Lemma 10.2. Let T : X → X be a full branch map which is non-singular with
respect to a finite measure m. If m(X \ ∪i∈IXi) = 0 then, for every f ∈ L1(X,m),
the series

∑
i∈I

dmTi

dm · f ◦ Ti converges in L1(X,m) and∫ ∑
i∈I

dmTi

dm
· f ◦ Ti dm =

∫
f dm . (10.1)

Proof. Let f ∈ L1(X,m). Since m(X \ ∪i∈IXi) = 0,∑
i∈I

∫
dmTi

dm
· f ◦ Ti dm =

∑
i∈I

∫
int(X)

dmTi

dm
· f ◦ Ti dm

=
∑
i∈I

∫
Ti(int(X))

f dm =
∫
∪i∈IXi

f dm =
∫
f dm .



INVARIANT MEASURES FOR REAL ANALYTIC EXPANDING MAPS 21

But ∑
i∈I

∫ ∣∣∣∣dmTi

dm
· f ◦ Ti

∣∣∣∣ dm =
∑
i∈I

∫
dmTi

dm
· |f | ◦ Ti dm =

∫
|f | dm <∞ ,

by the same argument as above. Thus
∑

i∈I
dmTi

dm ·f ◦Ti dm converges in L1(X,m),
and ∫ ∑

i∈I

dmTi

dm
· f ◦ Ti dm =

∑
i∈I

∫
dmTi

dm
· f ◦ Ti dm =

∫
f dm .

Theorem 10.3. Let (T,X,D) be a real analytic full branch expanding map,
where the domain D is conjugation-invariant. Suppose m is a finite measure on
X with m(X \ ∪i∈IXi) = 0, and such that T is non-singular with respect to m.
Suppose that wi := dmTi

dm ∈ H∞(D) for all i ∈ I, and that each wi is strictly
positive on X. Suppose that either (S2) and (D1) are satisfied, or (S1) and (D2)
are satisfied, for the weight system (wi)i∈I .

Then there is a unique T -invariant probability measure µ which is absolutely
continuous with respect to m. The corresponding density function dµ/dm is real
analytic and strictly positive on X. The dynamical system (T, µ) is exact.

Proof. The real analytic weight system (wi)i∈I is strictly positive, and m is
the eigenmeasure for the associated transfer operator by Lemma 10.2, so the result
follows from Theorem 7.5.

11. Invariant measures equivalent to Lebesgue measure

Throughout this section, (non-normalised) Lebesgue measure onX will be denoted
by Leb. For a given real analytic full branch expanding map T : X → X, our aim is
to derive a sufficient condition for the existence of a T -invariant probability measure
µ on X which is absolutely continuous with respect to Leb. Such a µ will simply be
referred to as an acip, and the Radon-Nikodym derivative dµ/dLeb will be called
its density function. Let Jac(T ) denote the Jacobian determinant of T , defined by
Jac(T )(x) = |det(T ′(x))| for all x ∈ ∪i∈IXi, where T ′(x) denotes the derivative
of T at the point x. Analogously, the Jacobian determinant Jac(Ti) of any inverse
branch Ti is defined by Jac(Ti)(x) = |det(T ′i (x))| for all x ∈ X. The change of
variables formula for integration with respect to Leb (see e.g. [4, Thm. 6.1.6]) implies
that dLeb Ti/dLeb = Jac(Ti) for all i ∈ I, and hence in particular T is non-singular
with respect to Lebesgue measure.

If D ⊂ Cd is a domain such that (Ti, D)i∈I is a holomorphic map system, then
because det(T ′i ) does not change sign on X, each Jac(Ti) also has a holomorphic
extension to D. If moreover supz∈D

∑
i∈I |Jac(Ti)(z)| < ∞, then each Jac(Ti) ∈

H∞(D), and (S1) is satisfied for the weight system (wi)i∈I given by wi = Jac(Ti).
Of all our results, the following is the one which most closely resembles the

claimed theorem in [10].

Theorem 11.1. Let (T,X,D) be a real analytic full branch expanding map
such that Leb(X \ ∪i∈IXi) = 0. Suppose that D is conjugation-invariant, and that
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either (S2) and (D1) are satisfied, or (S1) and (D2) are satisfied, for the weight
system defined by wi = Jac(Ti).

Then T has a unique acip µ. The corresponding density function is real analytic
and strictly positive on X. The dynamical system (T, µ) is exact.

Proof. As noted above
∑

i∈I Leb Ti << Leb. Each function wi = dLeb Ti/dLeb =
Jac(Ti) = 1/|detT ′ ◦ Ti| is strictly positive on X, since the branch T |Xi

is a C1

diffeomorphism whose derivative has a continuous extension to Xi (see Definition
4.1). The result then follows from Theorem 10.3.

In view of the strict positivity of the Jac(Ti) on X, the following result is an
immediate corollary of Theorem 10.3 and Proposition 9.3.

Theorem 11.2. Let (T,X,D) be a real analytic full branch expanding map
whose inverse branches are eventually complex contracting, with Leb(X\∪i∈IXi) =
0 and supz∈D

∑
i∈I |Jac(Ti)(z)| <∞.

Then T has a unique acip µ. The corresponding density function is real analytic
and strictly positive on X. The dynamical system (T, µ) is exact.

Definition 11.3. The real analytic full branch expanding map T : X → X
has uniformly summable derivatives if there exists a domain D such that

sup
z∈D

∞∑
i=n

‖T ′i (z)‖L(Cd) → 0 as n→∞ . (11.1)

The usefulness of this definition is that, as we shall see in the proof of Theorem
11.4, (11.1) implies both that the inverse branches of T are eventually complex
contracting and that the summability condition (S1) holds when wi = Jac(Ti).

Note that (11.1) is implied by the absolute summability of the derivatives:∑
i∈I

‖T ′i‖H∞(D,L(Cd)) <∞ . (11.2)

Clearly (11.2), and hence (11.1), holds whenever I is finite.

Theorem 11.4. Let T : X → X be a real analytic full branch expanding map
with uniformly summable derivatives, such that Leb(X \ ∪i∈IXi) = 0.

Then T has a unique acip µ. The corresponding density function is real analytic
and strictly positive on X. The dynamical system (T, µ) is exact.

Proof. By Theorem 11.2 it is sufficient to verify that the inverse branches of
T are eventually complex contracting, and that (S1) holds for the weight system
(wi)i∈I defined by wi = Jac(Ti). By (11.1), supz∈D ‖T ′n(z)‖L(Cd) → 0 as n → ∞,
so limn→∞ ‖T ′n‖H∞(D,L(Cd)) = 0 < 1; thus the inverse branches of T are eventually
complex contracting. Now |det(A)| ≤ ‖A‖d

L(Cd) for any A ∈ L(Cd), so |wi(z)| =
|Jac(Ti)(z)| ≤ ‖T ′i (z)‖

d
L(Cd) for all z ∈ D. Since ‖T ′i‖H∞(D,L(Cd)) < 1 for all

sufficiently large i, it follows that |wi(z)| ≤ ‖T ′i (z)‖
d
L(Cd) ≤ ‖T ′i (z)‖L(Cd) for all

sufficiently large i, and all z ∈ D. Combining this with condition (11.1) gives
supz∈D

∑∞
i=n |wi(z)| → 0 as n→∞, which is condition (S2), which in particular

implies (S1).
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Remark 11.5. The proof of exactness of (T, µ) in Theorem 11.4 answers affir-
matively a conjecture of Mayer [10, Remark 1, p. 13].

12. Appendix A: The symbolic coding approach to invariant measures

In this paper we have addressed the problem of finding a T -invariant probability
measure µ which is absolutely continuous with respect to a suitable finite reference
measure m, with particular emphasis on the case where m is Lebesgue measure. We
proved that the transfer operator associated to the weight system wi = dmTi/dm
has, under appopriate hypotheses, a real analytic strictly positive eigenvector %,
and % can be interpreted as the Radon-Nikodym derivative dµ/dm.

The purpose of this appendix is to briefly describe an alternative, less direct,
approach to solving this problem. The alternative method, which is well known,
relies on setting up a symbolic dynamics which models the dynamical system T :
X → X; the initial problem is transferred to the symbolic setting, solved in this
setting, and then the solution is transferred back to the original setting. More
precisely, a full shift σ : Σ → Σ is introduced, together with a map π : Σ → X
which in some sense conjugates σ and T (see below for more details). If m satisfies
m(X \ ∪i∈IXi) = 0 then n := mπ is a finite measure on Σ. The weight system
(wi)i∈I on X induces a weight system (Wi)i∈I on Σ, where Wi := wi ◦ π. There
are various conditions on the Wi, typically formulated in terms of their continuity
moduli, which imply the existence of a unique σ-invariant probability measure ν
absolutely continuous with respect to n (see e.g. [12], [13], [18], [19], [22], [23], and
§13). Usually it can be shown that ν is ergodic and fully supported, and in this case
it follows that the probability measure µ := ν ◦π−1 is T -invariant (see Lemma 12.1
below). It can be shown that the function dµ/dm = (dν/dn) ◦ π−1 is well-defined
m-almost everywhere, and can be interpreted as an element of L1(X,m), so that µ
is absolutely continuous with respect to m, and the original problem is solved.

The main drawback of this symbolic coding method is that it does not provide
any information on the analyticity, or even the continuity, of the density function
dµ/dm. On the other hand it applies to maps T which enjoy less regularity than
real analyticity, and even in the real analytic category the conditions under which
the approach works are genuinely different from the conditions we use in this paper
(see §13 and [3]).

We now describe in greater detail the symbolic coding (which allows the setting of
the problem to be transferred), and a key lemma guaranteeing that certain invariant
measures on symbolic space yield T -invariant measures on X (thereby allowing
symbolic solutions to be transferred back to the original setting).

Define Σ to be the set IN of sequences whose entries are elements of I. If we
equip I with the discrete topology, and Σ = IN with the product topology, then
the left shift σ : Σ → Σ given by σ(i1, i2, i3, . . .) = (i2, i3, . . .) is continuous. Since
T is expanding, for every i = (i1, i2, . . .) ∈ Σ, the limit π(i) = limn→∞ Ti1 ◦ Ti2 ◦
· · · ◦ Tin

(z) exists, and is independent of z ∈ X. This defines a continuous map
π : Σ → X, which is never injective (since there exist i 6= j with Xi ∩Xj 6= ∅), and
in general is not surjective (it is surjective if and only if X = ∪i∈IXi; this holds
if I is finite, for example). For i ∈ I, the i-th inverse branch σi : Σ → Σ of σ is
defined by σi(i1, i2, . . .) = (i, i1, i2, . . .). Then, for every i ∈ I,

Ti ◦ π = π ◦ σi on Σ, (12.1)



24 OSCAR BANDTLOW AND OLIVER JENKINSON

because each Ti is continuous on X, and

π ◦ σ = (T |Xi
) ◦ π on π−1(Xi) , (12.2)

because T |Xi
is continuous, and T ◦ Ti is the identity on int(X). From (12.1) and

(12.2) it follows that for every i ∈ I,

σiπ
−1(B) = π−1Ti(B) for all B ⊂ int(X) . (12.3)

Lemma 12.1. If ν is a fully supported Borel probability measure on Σ which is
ergodic and σ-invariant, then µ = ν◦π−1 is a T -invariant Borel probability measure
on X (and is itself ergodic and fully supported).

Proof. The sets U := π−1(∪i∈IXi) and V := π−1(int(X)) are easily seen to be
non-empty, with U ⊂ V , and we claim that

σ−1(V ) ⊂ U . (12.4)

To prove (12.4), fix i ∈ V and i ∈ I. Then by (12.1), π(σi(i)) = Ti(π(i)) ∈
Ti(int(X)) = Xi. Thus σi(i) ∈ π−1(Xi) for every i ∈ V and every i ∈ I. Hence
∪i∈I σi(V ) ⊂ π−1(∪i∈IXi) = U , which proves (12.4), because σ−1(V ) = ∪i∈I σi(V ).

Next we show that
ν(U) = 1 . (12.5)

To see this, note that since σ−1(U) ⊂ σ−1(V ) ⊂ U , and ν is σ-invariant, σ−1(U) =
U (mod ν). But ν is ergodic, so ν(U) = 0 or 1. As π is continuous, U is a non-empty
open subset of Σ, and hence ν(U) > 0, and (12.5) is proved. It follows that

µ(∪x∈IXi) = 1 . (12.6)

The T -invariance of µ now follows: if A is a Borel subset of X then

µ(T−1A) = µ((T−1A) ∩ (∪i∈IXi)) = µ(∪i∈ITi(A ∩ int(X)))

=
∑
i∈I

µ(Ti(A ∩ int(X))) =
∑
i∈I

ν(π−1(Ti(A ∩ int(X))))

=
∑
i∈I

ν(σi(π−1(A ∩ int(X)))) = ν(∪i∈Iσiπ
−1(A ∩ int(X)))

= ν(σ−1π−1(A ∩ int(X))) = ν(π−1(A ∩ int(X)))
= µ(A ∩ int(X)) = µ(A) ,

using (12.6) twice, (12.3), and the σ-invariance of ν.
Since π : Σ → X is continuous and has dense range, and ν is fully supported on

Σ, it follows that µ = ν ◦ π−1 is fully supported on X.
The ergodicity of µ follows from (12.3), (12.6), and the ergodicity of ν.

13. Appendix B: Comparison to other criteria for existence of invariant measures

The purpose of this appendix is to describe some previously known criteria for
the existence of invariant measures for expanding maps, and compare them to
the results of this paper. These previous results neither require, nor exploit, the
analyticity of the map T .

Before describing in detail the previously known criteria, let us summarise the
ways in which they differ from those of this paper. Let T : X → X be a real



INVARIANT MEASURES FOR REAL ANALYTIC EXPANDING MAPS 25

analytic full branch expanding map with inverse branches (Ti)i∈I , and (wi)i∈I a
strictly positive real analytic weight system. For countably infinite I, both our
criteria and the previously known criteria impose additional hypotheses on T and
(wi)i∈I in order to guarantee the existence and uniqueness of µ. It turns out that the
additional hypotheses arising from the differing approaches are independent: there
exist examples which satisfy our hypotheses but not those of previous authors
(see Example 13.1 below), but equally there are examples which fail to satisfy
our hypotheses yet are covered by previously known results (one such example is
detailed in [3]).

To describe the previous approaches, it will be convenient to work with the real
analytic potential function ϕ (see Definition 8.1) associated to the strictly positive
weight system (wi)i∈I . Walters [23] has a criterion for existence and uniqueness of
µ which in particular includes the condition† that for some fixed ε0 > 0,

sup
x,y∈int(X)
‖x−y‖Rd <ε0

sup
n≥1

sup
i∈In

Snϕ(Tix)− Snϕ(Tiy) <∞ , (13.1)

where Snϕ(z) :=
∑n−1

i=0 ϕ(T iz).
In fact a weaker‡ analogue of this condition arises by applying Walters’ results to

the symbolic dynamical system (a full shift on I) obtained by the coding method
described in Appendix A, namely that for some fixed N ≥ 0,

sup
x,y∈int(X)

sup
n≥1

sup
i∈IN+n

Snϕ(Tix)− Snϕ(Tiy) <∞ . (13.2)

Condition (13.2) is a kind of bounded distortion condition; for example if ϕ =
− log Jac(T ) it asserts that for some C > 1,

1
C
≤

Jac(Tn)(Tjx)

Jac(Tn)(Tjy)
≤ C for all j ∈ IN , x, y ∈ int(X), n ∈ N .

Work of Mauldin & Urbański [12], [13], and Sarig [18], [19], treats symbolic
settings (namely, a rather general class of infinite alphabet subshifts of finite type)
whose combinatorics is more complicated than the full shift, and where Walters’
techniques do not necessarily apply (cf. [18, p. 1566]). However these authors do
not strive for an optimally weak assumption on the potential function ϕ. Rather,
they are usually content (see [12], [13], [18]) to assume that varN (ϕ) < CrN for
some C > 0, r ∈ [0, 1), where for N ≥ 1,

varN (ϕ) := sup
x,y∈int(X)

sup
i∈IN

[
ϕ(Tix)− ϕ(Tiy)

]
,

though it is noted in [19] that this condition can be replaced by
∑∞

j=2 varj(ϕ) <∞.
In fact if

∑∞
j=N varj(ϕ) < ∞ for any N ≥ 1 then ϕ satisfies Walters’ condition

(13.2), because for all x, y ∈ int(X), n ≥ 1, i ∈ In+N ,

Snϕ(Tix)− Snϕ(Tiy) ≤
n∑

i=1

vari+N (ϕ) ≤
∞∑

j=N+1

varj(ϕ) <∞ .

†This is part of condition (iii) on [23, p. 125].
‡The condition is weaker because the natural topology on ∪i∈IXi is finer than the one induced

by the coding map π and the topology of Σ (see §12 for the definitions of π and Σ). However the
conclusions are also weaker: in particular one cannot conclude that the density function dµ/dm is
continuous (cf. the discussion in §12).



26 OSCAR BANDTLOW AND OLIVER JENKINSON

Of the previously known criteria discussed above, we see that the weakest one
guaranteeing existence and uniqueness of µ = µϕ is the symbolic interpretation of
Walters’ hypothesis, which involves in particular the condition (13.2). With this
in mind, we now detail an example which satisfies the hypotheses of our Theorem
9.4, yet which fails to satisfy (13.2); in fact the potential function ϕ will satisfy
varN (ϕ) = +∞ for all N ≥ 1.

Example 13.1. Let X = [0, 1], and Xi = (2−i, 21−i) for i ∈ N. Define T : X →
X to be the piecewise affine map with slope 2i and T (21−i) = 1 on (2−i, 21−i], for
i ∈ N, and T (0) = 0. Clearly T is eventually complex contracting.

Let {αi}∞i=1 be any sequence of positive reals such that
∑∞

i=1 αi < ∞, and for
i ∈ N define wi to be the polynomial

wi(x) = αi

[
(x/2)4

i

+ (2−1 − 2−1−i)4
i
]
.

Note that each wi is strictly positive, and strictly increasing, on [0, 1]. If D is the
complex disc of radius 2 centred at 0 ∈ C, then

‖wi‖H∞(D) = wi(2) = αi

[
1 + (2−1 − 2−1−i)4

i
]
,

and therefore
∑∞

i=1 ‖wi‖H∞(D) < ∞, so (S1) holds. Therefore the conditions of
Theorem 9.4 are satisfied, and we deduce the existence of a unique T -invariant
probability measure µ which is equivalent to the eigenmeasure m.

Let w : ∪∞i=1Xi → R be the real analytic w-function associated to (wi)i∈I , and
ϕ = logw the corresponding real analytic potential function. We claim that

sup
x,y∈int(X)

sup
i∈IN+1

[
ϕ(Tix)− ϕ(Tiy)

]
= ∞ for all N ≥ 0 . (13.3)

Clearly (13.3) implies that Walters’ condition (13.2) does not hold, and therefore
nor does (13.1). It also implies that varN (ϕ) = +∞ for all N ≥ 1.

To prove (13.3) it suffices to show that

sup
j∈N

[
ϕ(Tij

1)− ϕ(Tij
x0)

]
= ∞ , (13.4)

where ij := (j, 1, . . . , 1) ∈ IN+1, and x0 = 1
2 ,† since both points 1

2 and 1 are
accumulation points of int(X) and φ ◦ Tij

is continuous on (0, 1].
Now T (Tij

1) = 1, so ϕ(Tij
1) = logwj(1), and T (Tij

x0) = 1 − 2−N−1, so
ϕ(Tij

x0) = logwj(1 − 2−N−1). But wj is an increasing function, so if j ≥ N + 1
then wj(1− 2−N−1) ≤ wj(1− 2−j). Therefore

ϕ(Tij
1)− ϕ(Tij

x0) ≥ log
wj(1)

wj(1− 2−j)
for all j ≥ N . (13.5)

But
wj(1)

wj(1− 2−j)
=

1
2

[
1 + (1− 2−j)−4j

]
→∞ as j →∞ , (13.6)

so (13.5) and (13.6) together give (13.4), as required.

†In fact a similar argument would work for any choice of x0 ∈ X \ {0, 1}.
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Remark 13.2. In practice a condition such as (13.2), involving both ϕ and
(iteration of) T , may be difficult to verify. The conditions of Theorem 9.4, where
the assumption on ϕ (i.e. the summability condition (S1) on the associated weight
system) is decoupled from the assumption on T (the eventually complex contracting
condition), may be easier to check.
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5. N. Dunford & J. T. Schwartz, Linear Operators, Part 1: General Theory, Interscience, New

York, 1958
6. D. Hensley, Revisiting the Hurwitz complex continued fraction algorithm, in preparation.
7. M. Keane, Strongly mixing g-measures, Invent. Math., 16 (1972), 309–324.
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