Non-periodic not everywhere dense trajectories in triangular
billiards
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ABSTRACT. Building on tools that have been successfully used in the study of rational
billiards, such as induced maps and interval exchange transformations, we provide a con-
struction of a one-parameter family of isosceles triangles exhibiting non-periodic trajectories
that are not everywhere dense. In particular, this provides a definitive negative answer
to a long-standing open question on the density of non-periodic trajectories in triangular
billiards.

1. Introduction and results

Billiards, that is, the ballistic motion of a point particle in the plane with elastic collisions
at the boundary, are among the simplest mechanical systems producing intricate dynamical
features and thus serve as a paradigm in applied dynamical systems theory [5]. The seemingly
trivial case of billiards with piecewise straight boundaries, known as polygonal billiards, offers
surprisingly hard challenges [8]. When the inner angles of the polygon are rational multiples
of 7 the billiard dynamics is dominated by a collection of conserved quantities and a rigorous
and sophisticated machinery for its treatment becomes available, see, for example, [7, 10]
for overviews. Little to nothing is known in the irrational case. A notable exception is
the proof of ergodicity of the Lebesgue measure in a topologically large class of irrational
polygonal billiards [9]. It is however still not clear whether such a topologically large class
has implications for numerical simulations of the billiard dynamics. Numerical studies of
polygonal billiards are inconclusive. Depending on the shape of the polygon, correlations
in irrational billiards may or may not exhibit decay [1, 4], and even the ergodicity of the
Lebesgue measure has been questioned [12]. Recently the relevance of symmetries has been
emphasised as an explanation for this conundrum [13].

In this article we shall be concerned with the simplest examples of polygonal billiards,
namely those of triangular shape. In particular we shall revisit a hypothesis formulated by
Zemlyakov, see [6], according to which trajectories are either periodic or cover the billiard
table densely. While [6] shows that this dichotomy does not hold in convex® polygonal billiards
with more than three sides, the proof is flawed for triangular billiards, as pointed out recently
in [11]. Thus the existence of non-periodic and not everywhere dense trajectories in triangular
billiards remains an open problem. We will fill this gap by constructing trajectories of this
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type for a large set of symmetric triangular billiards. For this purpose, similarly to [6] we
reduce this problem to the properties of an induced one-dimensional map, a technique more
commonly used in the case of rational billiards. Leaving details of the notation for later
sections, we will prove the following.

THEOREM 1. Consider a billiard map in the isosceles triangle with inner angles (o, a, ™ —
2a) and o € (., 37/10) for some o, with m/4 < a, < 2w/7. Then there exist an angle
¢« € (0,7) and an induced map on the base of the triangle {[k = 1, ¢x, x] : x € [0,1]} which is
a rotation on the unit interval, that is, x — r+w mod 1 withw = cos(3a)/(2 cos(a) cos(4a)).

Using the above result we are able to answer the hypothesis by Zemlyakov negatively.

COROLLARY 2. For all values of a € (au,3w/10) with cos(ba)/cos(3a) € R\ Q, in
particular for all algebraic o € (v, 37/10), the billiard dynamics in the isosceles triangle
contains trajectories which are non-periodic and not everywhere dense in the triangle.

The main idea of the proof can be gleaned from the Zemlyakov-Katok unfolding of the
billiard dynamics [14]. Unfolding the dynamics in a particular direction determined by
a heteroclinic connection it can be seen that the dynamics takes place in two recurrent
cylinders, see Figure 1. As a result it is possible to introduce an induced map (on the base of
the triangle) which turns out to be an irrational rotation. The construction also reveals that
the cylinders do not cover the whole interior of the triangle, thus yielding non-periodic and
not everywhere dense trajectories, and together forming a non-trivial flat strip in the sense
of [3].

FIGUuRrE 1. Diagrammatic view of the Zemlyakov-Katok unfolding of the bil-
liard dynamics in an isosceles triangle with a 10- and a 4-recurrent cylinder,
respectively (shaded). The heteroclinic connection is shown in dashed yellow.
The three sides of the triangle have been coloured (base: red, right leg: green,
left leg: blue).

We note that the proof of this corollary implies that the constructed billiard trajectories
never visit a certain neighborhood around a tip of the isosceles triangle. This neighborhood
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can be replaced by a polygonal one, forming a convex n-gon for any n > 4, thus providing
an alternative proof to Theorem 1 in [6] on the existence of non-periodic and not everywhere
dense billard trajectories in any convex n-gon.

This article is organised as follows. After fixing notation in Section 2, the existence of
the heteroclinic connection will be established by Lemma 8 in Section 3.2. We then turn to
the existence and the properties of the two recurrent cylinders in Proposition 13 in Section
3.3 and Proposition 15 in Section 3.4, respectively. The symmetry of the triangle will be
instrumental in setting up these cylinders and Lemma 12 of Section 3.3 summarises the main
impact of the symmetry. The proof of the main results follows standard arguments and will
be presented in Section 3.5.

While our particular construction works for a limited range of angles «, we suspect that
the corollary holds for all isosceles triangles. Analogous constructions can be performed for
other angles, but a more systematic approach would be needed to cover the general case. Even
the condition on the symmetry can be relaxed as, for trivial reasons, an analogous statement
holds in right-angled triangles. Above all our result rests on the existence of well-defined
induced maps which deserves to be investigated in greater detail for irrational triangles.

2. Notation and billiard map

Consider a triangle with positively oriented boundary. The sides are labelled by a cyclic
index k = 1,2,3. We denote by si the length of side k. The side with label k = 1 is called the
base. We chose units of length such that s; = 1. Denote by 72 and 73 the left and right inner
angle on the base, respectively. The angle opposite to the base is denoted by ;. We shall
focus exclusively on the case of isosceles triangles, that is, 72 = v3 = «a. It readily follows
that sy = s3 = 1/(2cos(«)).

The ballistic motion of a point particle with elastic bounces on the sides of the triangle
traces out a planar curve consisting of straight line segments. We call this curve the trajectory.

We denote by xyd, 0< x,[tk] < Sk, the location of the bounce of the particle (at discrete time

t) at side k, and by ¢£k} € (0,7) the angle between the oriented side and the outgoing ray
of the trajectory. We call a move counter-clockwise (ccw) if a bounce on side k is followed
by a bounce on side k + 1. Similarly we call a move clockwise (cw) if a bounce on side k is
followed by a bounce on side k — 1. Subsequent bounces are related by the billiard map

k k k k
(@ o) o (@i o) M
where
kip1] ) m™— ¢£kt} —Yiy—1 i ke = ke + 1 (cew) 5
byl = [k . B (2)
T—¢p  FYe+1 I ke =k —1 (cw)

k) [ Gsw =2t sin() ) /sin(@5) i ke = e+ 1 (cow) )

o Skeey — oy sin(of) /sin(6) 1) i ki = k=1 (ew)

As it will be useful to keep track of the sequence of bouncing sides, we use a sligthly non-
standard notation and call an orbit a finite or infinite sequence of triplets ([k¢, Ekt] , x,[fkt]])te I
which obeys the billiard map (1). Each orbit corresponds to a trajectory in the plane, and
vice versa. We call a point [k, qﬁ[k],w[k]] singular, if it corresponds to one of the corners of
the triangle, that is, if z¥) = 0 or z¥) = s,. We call an orbit regular if all its points are

non-singular. An orbit which starts or ends at a singular point will be referred to as a
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singular orbit, while an orbit which starts and ends at a singular point is called a heteroclinic
connection®.

For a fixed side k of the triangle and a fixed angle ¢, we will refer to the family of parallel
trajectory segments reflecting from k at angle ¢ and returning to k with the same angle ¢
after a fixed sequence of bouncing sides as a recurrent cylinder.

3. Proof of results

Our proof consists of several steps. We will first establish the existence of a suitable
induction angle, such that an orbit emanating from the left endpoint of the base at this angle
forms a heteroclinic connection with a certain length-5 sequence of bouncing sides. We will
then show that every orbit emanating from the base at this angle returns to the base with
the same angle after a fixed number of bounces (either 10 or 4, depending on the initial
point). The two corresponding sets of billiard trajectories will form two recurrent cylinders
in the plane, crucially bounded away by a positive distance from one of the triangle’s vertices.
This construction will yield an induced map, forming an interval exchange transformation
over two subintervals of the triangle base. The rotation number of this interval exchange
transformation will depend continuously on the angle of the isosceles triangle, implying an
irrational rotation and hence dense trajectories in the union of the recurrent cylinders for a
large set of angles of the triangle.

3.1. Induction angle. We begin by proving several lemmas, which will be used to
establish that for a suitable range of values of « there exists an angle ¢. (depending on
«), such that the orbit emanating from the left endpoint of the base at angle ¢, forms a
heteroclinic connection.

LEMMA 3. For o € (w/4,3mw/10) the equation g(a) = sin(7a) — sin(3a) + sin(a) = 0 has
a unique solution o, € (m/4,2m/7).

PrOOF. We have that g(n/4) = sin(77/4) < 0 and ¢(37/10) = sin(37/10) > 0. Since
Ta € (Tr/4,217/10), 3a € (37/4,97/10) and « € (7w/4,37/10) it follows that

g (a) = Tcos(7Ta) — 3 cos(3a) + cos(a) > 0.

Existence and uniqueness of o, € (7/4,37/10) now follow from a variant of the intermediate
value theorem. For the remaining assertion observe that g(27/7) = sin(27/7) — sin(67/7) =

sin(27/7) — sin(7/7) > 0. O
LEMMA 4. Let « € [w/4,37/10]. The equation
g(a, @) = sin(6a + ¢) — sin(2a + ¢) + sin(¢p) =0 (4)

has a unique solution ¢ = ¢.(a) in (0,7).

PRrOOF. We have g(a,0) = 2sin(2a) cos(4a) < 0. Existence and uniqueness of the solu-
tion in (0, ) follow from the observation that g(«, ¢) is a Fourier polynomial in ¢ containing
only the two first order terms. U

LEMMA 5. Let a € (ax,37/10). The solution to (4) obeys

T

0< ¢y < a, a+¢*>§,

2In the literature, it is often referred to as a generalized diagonal, which itself corresponds to a saddle
connection in the unfolding.

3a+ ¢ >, 6a+ ¢ <21 < Ta+ ¢y . (5)
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PrOOF. Using the substitution
a=31/10+z, ¢.=7/5+y
with —7/20 < z < 0 (equivalent to « € (7/4,37/10)), equation (4) reads
g(x,y) = sin(6z + y) + 2sin(x + y) sin(37/10 4+ =) = 0. (6)
We have that
g(x,—z) =sin(bx) <0, gz, —6x) = 2sin(—5z)sin(37/10+z) > 0.
It follows that —z < y < —6z with —7/20 < z < 0, and therefore

a+ ¢, =31/10+7/5+z+y>7/2,
6o+ ¢y = 97/5+ /5 + 6x +y < 2,
3a+ ¢ =97/10+3x+7/5+y=n+x+y+n/10+ 2z >,
Ta+ ¢ =6a+a+ ¢ >31/2+7/2.

Treating y in (6) as a function of x, implicit differentiation yields

0 :% (cos(6x + y) + 2 cos(x + y) sin(37/10 + z))

+ 6 cos(6x + y) + 2 cos(x + y) sin(37/10 + ) + 2sin(z + y) cos(37/10 + x) .

Since —37/10 < 6z +y < 0,0 < 2 +y < 37/10, and 7/4 < 37/10 + 2 < 37/10, all
trigonometric terms are positive and dy/dx < 0. Hence the solution ¢.(a) is a strictly
monotonic decreasing function for o € (7/4,37/10). Since Lemma 3 and 4 imply ¢, (a,) = au
the final assertion follows. 0

For the remainder of the paper we will refer to the value obtained in Lemma 3 as a,, and
for a € (o, 37/10) we will write ¢4 = ¢« (), omitting the dependence on the angle o where
there is no risk of ambiguity.

3.2. Heteroclinic orbit. Next, we proceed to show the existence of a heteroclinic orbit
starting from the left endpoint of the base at angle ¢,. For this, we will ascertain that the
formal recurrence equations (3) and (4) are satisfied by a given sequence of bouncing sides,
angles, and spatial coordinates, which therefore form a valid (that is, realisable) orbit. We
define the sequence of bouncing sides

(mt)OStS5 = (17 27 3; 17 37 1) (7)
and introduce the sequence of angles
o = Px, Y= —a— s, Yo = =7 + 3 + Px, (8)

Y3 = 21 — 4o — ¢y, Py = —7 + Ha + @, Py =21 — 6x — Py .

It is straightforward to check that the angles (8) together with (7) satisfy the recurrence (2).
Furthermore, Lemma 5 yields the following result.

LEMMA 6. Let a € (a,3m/10). The angles defined by (7) and (8) obey 0 < ¢y < m,
0<t<h.
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Define, for § € R, the spatial coordinates
§o(0) =4,

606) = (o~ Oy

£(0) = s ZEEZS ~(e=9) ZiEEzO;

600 =31 - it + 1Oy

€i6) =50 )y SO, ) 200

60) = e — ) + (=D ?

It is again straightforward to check that the expressions in (9) together with (7) and (8) obey
the formal recurrence in (3).

LEMMA 7. Let « € (o, 37/10). The coordinates defined in (7), (8), and (9) obey &,(0) =
0, &5(0) =1, and 0 < &(0) < s, 1 <t < 4.

PRrROOF. The initial coordinate {,(0) = 0 is obvious. From Lemma 4 we have
0 = 2cos(a) (sin(6a + @) — sin(2a + @) + sin(¢py))
= 2 cos(a) sin(6a + ¢.) — sin(3a + ¢,) — sin(a + ¢s) + 2 cos(a) sin(ps) -
With (8) and 1 = 51 = 2cos(a)sy/3 this reads
sin(¢s) = sgsin(ye) — s2sin(¢1) + s18in(to) , (10)
which implies &5(0) = 1.
Using (10) and Lemma 6 we have
€4(0) = s3 — sin(t5)/ sin(vs) < s3.
Furthermore, by Lemma 5 we have
sin(ty) — 2 cos(a) sin(v5) = sin(7a + ¢4) > 0,

which implies £4(0) > 0.
Again using (10) and Lemma 6 we have

€3(0) = sin(¢s)/sin(yz) > 0
and by Lemma 5 and 2« > 7/2 we obtain
sin(t3) — sin(¢5) = 2sin(a) cos(5a + ¢4) > 0,

which implies £3(0) < 1 = s7.
Lemma 5 implies

0 < sin(a — ¢«) = sin(a + ¢«) — 2 cos(a) sin(¢px)
so that, using the abbreviations (8) we have

sin(tg) < sgsin(t)y) . (11)
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Hence &2(0) > 0. Furthermore, (10) and Lemma 6 yield

sin(11) sin(vo)
sin(1)2) - SlSiﬂ(%) ’

0< s3—s9

which is equivalent to £2(0) < s3.
Finally, £;(0) > 0 is obvious, and &;(0) < s follows from (11). O

Lemma 6 and 7 now yield the following conclusion.

LEMMA 8. Let o € (aw,3mw/10). With the definitions (7), (8), and (9) the sequence
([m, ¥, &(0)])o<t<s defines a heteroclinic connection.

3.3. Recurrent cylinder of length ten. In this section we will establish the existence
of a point zp on the base of the triangle, such that all points in (0,zp) X {¢.} share the
same length-10 sequence of bouncing sides. Using a symmetry of the triangle, this sequence
will be shown to consist of the length-5 sequence (7), followed by a ‘mirrored’ variant of the
same sequence, in a sense made precise below. Moreover we will observe that the image of
(0,zp) x {¢.} under the 10th iteration of the billiard map is (1 — zp, 1) x {¢.}. The orbit
of the point (xp, ¢«) itself will be singular, giving rise to a discontinuity of the induced map
on the base. We begin by defining

_sin(2a + ¢.)
sin(p.)
LEMMA 9. Let a € (., 37/10). The quantity defined by (12) obeys xzp € (0,1) and

= sin(ts) o cos(3a)
sin(1g) 2 cos(a) cos(4ar)

rp — (12)

ProoOF. Lemma 5 implies 2a + ¢, < 7 so that xp < 1. Furthermore
sin(2a + ¢x) — sin(¢,) = 2sin(a) cos(a + ¢«) < 0
so that xp > 0. Using Lemma 4 we have

—sin(6a + ¢.) _ sin(ys)
sin(¢y) sin(¢o)

rp =

Furthermore, (4) yields
(cos(6cr) — cos(2a) + 1) sin(¢) + (sin(6c) — sin(2a)) cos(ps) =0

so that
cos(6a) — cos(2a) + 1
sin(6ar) — sin(2a)
(3a)

~ sin(6a) —sin(2a)  2cos(a) cos(4a)

sin(2a + ¢x)

sin(62) = —sin(2a)

_ sin(4a) —sin(2a) oS

+ cos(2a)

O

LEMMA 10. Let o € (ax,3m/10). The coordinates defined in (7), (8), and (9) obey
0 <é&(zp) < sm,, t=0,1, &(2p) = &lzp) = s3, and &3(zp) = &(xp) = 0.
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PROOF. Since {y(zp) = zp, Lemma 9 yields the assertion for ¢t = 0.
Using (10) and Lemma 9 we have

&(ep) =1 —SUDm =0.

The assertions {3(zp) = 0 and &(zp) = &(xp) = s3, follow from the equalities &3(J) =

§5(0) sin(1ps)/ sin(¥3), £2(0) = s3—&5(8) sin(ys)/ sin(¢2), and £4(0) = s3—€5(0) sin(¢)5)/ sin(ta).
By Lemma 9 we have sin(¢9) > sin(¢5), which implies
fl(ng) — Sin(¢0) _ Sin(¢5)

sin(¢1)  sin(¢1) >0

Finally, using (11) we obtain
sin(yo)  sin(ys) _ sin(to)

gl(xD): : - = < = < S9.

sin(¢1)  sin(¢1)  sin(eq)

O

Since the angles and spatial coordinates defined in (7), (8), and (9) obey the formal
recurrence scheme determined by the billiard map (1), Lemmas 6 and 10 yield the following
result.

LEMMA 11. Let a € (o, 37/10). Then, for anyé € (0,xp), the sequence ([m¢, ¥, & (9)])o<i<s
with components defined by (7), (8), and (9) constitutes a regular orbit of the billiard map
(1).

The symmetry of the triangle has implications for the structure of orbits. Reflecting an
orbit at the symmetry axis of the triangle yields again an orbit. In formal terms, this type
of reflection is expressed as [k, o/, 2] — [k, 7 — ¢[¥], s, — 2I¥] where the adjoint index & is
given by 1 =1, 2 = 3, 3 = 2. Similarly, reversing the motion gives again an orbit. In formal
terms, the corresponding transformation reads [k, ¢¥, z¥] — [k, 7 — ¢! z[¥]]. Combining
both operations maps an orbit to another orbit.

LEMMA 12. If ([kt, ¢4 [ke] :UE ]])OStST denotes a finite reqular orbit in a symmetric trian-
gular billiard then ([, [M,zi ]])0<t<T gives a finite reqular orbit of the same length where

by =kr_y, @ gb[kT “and zt[m = Skp_, — :U[jlfT . Here & denotes the adjoint index defined
byT—1,9-3 3-2

PrROOF. We first note the identity k=1 = k = 1. The symmetry of the triangle is
equivalent to v, = v; and s = s;. We consider a fixed time ¢, 0 <t < T

Case A: Assume that the move T'—t—1 — T —t in the original orbit is counter-clockwise,
that is, kp—y = kr_¢_1+1. Then bty = kp_y = kp_y_1—1 = l14+1—1 (that is, the move t — t+1
in the image orbit is counter-clockwise as well).

Equation (2) tells us that for the original angles we have

[er_t—1]

k
gt = gl

Observing that

Ver =1 = Vep_ -1 Vep_4_14+1 = Vb1 +1 = V=1,

we have

4 L
R R e
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which is the angle dynamics of the billiard map for the image orbit.
Similarly, (3) implies for the spatial coordinates of the original orbit that
. (kr—t—1]
kr— [N ()
w[tht] = <3kT—t—1 - x[Titi11]> =

sin(pl7;)

so that o]
0] les)Sin(e1 ")

e T

sin(p; )

Recalling that sy, , = s, = s¢, we obtain the position dynamics of the billiard map for
the image orbit.

Case B: The proof in case the move T'—t — 1 — T — t in the original orbit is clockwise,
that is, k7_; = kr_;_1 — 1, is similar. O

The symmetry allows us to extend the regular orbit derived in Lemma 11 to a recurrent
orbit with ¢l = lFr]

PROPOSITION 13. Let o € (aw,3mw/10). For any 6 € (0,zp) there exists a recurrent reg-

ular orbit of length 10 given by ([k:, lEkt], $£kt]])0§t§10 with initial condition [ko, ([JkO},xgkO]] =

[1, ¢«, 8] and endpoint [k1o, gi)[l%m],x[l%w]] =[1,¢4,0 + 1 —xp|. The explicit expression for the
orbit is given by ky = my, gbgkd = 4, and xgkd = &(0) for 0 <t <5 and ky = myo—¢,

o = 1oy, and 2] = sy, — E104(@p — 8) for 6 <t < 10.

PROOF. Let § € (0,zp). Lemma 11 provides us with the regular orbit of length 5,
([mu, ¥, &(9)])o<t<s, with initial condition [1, ¢4, d] and endpoint [1,5,&5(d)]. Replacing o
by xp — ¢, Lemma 11 yields the regular length-5 orbit given by ([m, ¥r, &(xp — 6)])o<i<s.
Applying Lemma 12 we obtain the regular orbit ([ms_¢, ¥5_t, Sms_, —Es5—t(xp —0)])o<t<s With
initial condition [1, 5, s1 —&5(zp —0)] and endpoint [1, ¢, 1 —zp+J]. Recalling that (9) and
(10) imply &5(0) = 1—4sin(vpg)/ sin(15) and using Lemma 9, we obtain s1—&5(zp—9) = &5(0).
The assertions of the proposition follow by transitivity of orbits of the billiard map. O

3.4. Recurrent cylinder of length four. In an analogous way we can define a recur-

rent cylinder of length 4 for initial conditions :z([)l] in (xp,1). For that purpose we define

(gt)OStSQ = (17 2, 1)7 (13)
Op = ¢u, O1=7—a— ¢y, 0o =2a+ ¢y, (14)
1m0(0) = 0,
in(6
mid) = (51 - )5 ).
sin(90)

7]2(5) = 81 — (81 — (5) Sin(eg) . (15)

Formally, the angles and spatial coordinates defined in (13), (14), and (15) obey the recursion
scheme of the billiard map (1). In a similar vein to Lemma 11 we have the following result.

LEMMA 14. Let o € (ax,37/10). Then, for any d € (xp, 1), the sequence ([¢t, Ot, n:(5)])o<t<2
with components defined by (13), (14), and (15) constitutes a regqular orbit of the billiard map

(1).
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PROOF. By Lemma 5 we have that 0 < 6; < 7 for 0 < ¢ < 2. Fixing ¢ € (zp, 1), Lemma
9 yields 0 < np(d) < 1. We next observe that n2(1) = 1, while (12) yields n2(zp) = 0, and
hence 0 < 72(9) < 1.
Finally, we have n;(1) = 0; furthermore, since
2 cos(a) sin(2a + ¢x) — sin(a + ¢,) = sin(3a + ¢,) < 0

by Lemma 5, we have

_sin(2a + @) 1
mip) = sin(a + ) <3 cos(a)’
and so 0 < m1(zp) < s2, which yields 0 < 71(d) < sg for § € (zp,1). O

Again employing the symmetry of the triangle yields the following result.

PROPOSITION 15. Let v € (v, 37/10). For any d € (zp, 1) there exists a recurrent reqular

orbit of length 4 given by ([ky, th],xl[gkt]])ogtg with initial condition [ko, qbgkd,x([)ko]] =1, ¢x, 9]
and endpoint [ky, Lk4],$£1k4]] = [1,¢+,0 — xp|. The explicit expression for the orbit is given

by ke = 44, E’“t] = 0, and xtkt] = () for 0 <t < 2 and ky = U4y, ¢>£kt] = 04—, and
:Ul[tkd =57, , —Mm—t(l+zp—206) for3 <t <4

PROOF. Let § € (xp,1). Lemma 14 provides us with the regular orbit of length 2,
([6t, 6¢,m:(0)])o<t<2, with initial condition [1, ¢., §] and endpoint [1, 2, 72(0)]. Replacing 6 by
1+xp— 6, Lemma 14 yields the regular length-2 orbit given by ([¢, ¢, n:(1+2p — 9)])o<t<2-
Applying Lemma 12 we obtain the regular orbit ([s_, 05—, sg,_, — M—t(L +xp — 6)])o<i<2
with initial condition [1, 62,51 — n2(1 + zp — 0)] and endpoint [1, ¢.,d — xp|. Recalling that
(12), (14) and (15) imply zp = 1 —sin(62)/sin(6p) and n2(d) =1 — (1 — §) sin(fy)/ sin(f2) we
obtain s1 — n2(1 +xp — &) = m2(d). The assertions of the proposition follow by transitivity
of orbits of the billiard map. O

3.5. Proof of the theorem and its corollary. Propositions 13 and 15 constitute the
proof of Theorem 1 with the expression for the rotation number w = 1 — zp following readily
from Lemma 9. The proof of the corollary will be based on the following lemma which
summarises the findings in Lemma 7 and 14.

LEMMA 16. Let a € (au,37n/10). There exists € > 0 such that any infinite regular

orbit ([ke, ,[fkt], acl[fkt])tzo of the billiard map with initial condition ([ko, <b([)k°], ac([)ko]] = [1, ¢, xél]]

(K]
t

satisfies the conditions a:l[fkt] < 89 — & whenever ky = 2, and x; "' > & whenever k; = 3.

ProOOF. The spatial coordinate :cl[fkt] does not take the values 0,1, or xp if k; = 1 as those

are singularities or are mapped to singularities, see Lemma 10. Furthermore, by Proposition
13 and 15 the orbit is recurrent. Hence it is sufficient to consider the 4- and 10-recurrent
pieces of the orbit.

Consider [k, gco],xgco]] = [1, ¢, 0] with zp < § < 1, that is, a piece of the orbit in a
4-recurrent cylinder. Since by (12) and (15)
Sin(eg)
sin(Gl)

m(0) <m(zp) =

Sin(ez)
sin(&l)

ss—m(l+xp—19)>s3—m(xp) =s3 —
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we conclude from Proposition 15 that for 0 < ¢ < 4 we have xz[fkt] < sin(62)/ sin(#;) whenever

ky = 2 and x,[fkt] > s3 —sin(fs)/sin(f;) whenever k; = 3.

Similarly, consider [ko, ¢([)ko]7 a;([)k()}] = [1, ¢«, 0] with 0 < & < xp, that is, a part of the orbit

in a 10-recurrent cylinder. Then by (9) and (10)

~ sin(¢y)
§0) = a0 = e
B sin(1)5)
§2(6) = £2(0) = s3 — sin(¢s)
B sin(1)5)
54(5) > €4(0) =83 — Sin(¢4)
s2—&lzp —9) < 52— &(0) = 212233
S — & (xp — 0) < 89— &(0) = m
s3 —&1(xp —0) > 53 —&1(0) = s3 — zﬁ% '
Hence we conclude from Proposition 13 that for 0 < ¢ < 10 we have $,[:kt] = & whenever
ki = 2 and x?[fk’t} > s3 — ¢ whenever k; = 3, where ¢ = min{sy — sin(¢yg)/sin(¢1), s2 —

sin(¢s)/ sin(tp2), s2 — sin(vs/ sin(tpa) }-
Altogether, the claim of the lemma is valid with the choice
sin(6z) o sin(to) o sin(vs) o sin(z%)}
sin(6)’ sin(¢1)’ sin(¢2)’ sin(thy)
Lemma 7 and 14 ensure that € > 0. O

5:min{82—

Noting that 2 cos(a) cos(4a) = cos(5a) — cos(3a) we see that choosing a € (a, 37/10)
such that cos(5a)/ cos(3a) € R\Q ensures that the map in Theorem 1 is an irrational rotation.
In passing we note that « non-zero and algebraic forces cos(5a)/ cos(3a) € R\ Q, otherwise
exp(ic) would be algebraic, which, since o was assumed to be non-zero and algebraic would
contradict the Lindemann-Weierstrass Theorem (see, for example, [2]).

Thus, if a € (v, 37/10) with cos(ba)/ cos(3a) € R\ Q, it follows that Lebesgue almost all
initial values xél] will give rise to a regular non-periodic orbit with initial condition [1, ¢, a:g]].
By Lemma 16 the corresponding trajectory does not have bounces on the sides within a
distance € > 0 of the tip of the triangle (when distance is measured along the bouncing side).
Hence, the trajectory does not enter a small symmetric triangular region at the tip of the
triangle and is thus not everywhere dense. A graphical illustration of this type of trajectory
is shown in Figure 2.
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