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Abstract. We classify the dynamics of (orientation-preserving) flat spot maps on the
circle, and derive explicit expressions for the function counting the first entrance time into
the flat spot. Metric properties of first entrance time functions for the standard flat spot
family are analysed in detail, via a computation of conditional expectation with respect
to the orbit partition. This facilitates investigation of the median of the entrance time
function, proving the surprising result that its first entrance time is constrained to equal
either 1, 2, 4, 5, or 12, provided the rotation number of the flat spot map does not equal
the exceptional values 0, ±2/7, ±3/10, ±1/3, ±3/8.

1. Introduction

Flat spot maps T : T → T, considered in e.g. [2, 12, 18, 19, 20, 21], are defined to
be continuous degree-one maps of the circle T with the property that some non-empty
open interval F (the ‘flat spot’) is mapped by T onto a single point v ∈ T, and T |

T\F

is an expanding (i.e. infx∈T\F T ′(x) > 1) C2 diffeomorphism onto its image T \ {v} (see

Figure 1). Because flat spot maps are continuous and weakly order-preserving, they have
a rotation number

%(T ) = lim
n→∞

τn(x)

n
(mod 1) ,

which is well-defined and independent of the choice of continuous lift τ : R → R of T and
point x ∈ R (see e.g. [6, 11, 16]).

For a closed T -invariant subset A ⊂ T, we say x ∈ T is absorbed by A if there exists
n = n(x) ∈ N such that T n(x) ∈ A. Such an A will be called totally absorbing if every
x ∈ T is absorbed by A, and absorbing if all but finitely many x ∈ T are absorbed by A.
The dynamics of flat spot maps can be classified as follows:

Theorem 2.1. ([2, 4, 19, 21]) Let T : T → T be a flat spot map. If %(T ) is irrational
then there exists a totally absorbing T -invariant Cantor subset of T\F . If %(T ) is rational
then either (i) a single periodic orbit is totally absorbing, or (ii) there are precisely two
periodic orbits, one of which is absorbing and absorbs all points of T except those points in
the other periodic orbit.

The points absorbed by the absorbing invariant set in Theorem 2.1 are precisely those
which eventually enter the flat spot F under some iterate of T . The time taken to reach
F is the main focus of this paper: in Theorem 3.13 we give an explicit description of the
first entrance time function eT , defined by eT (x) = inf{i ≥ 0 : T i(x) ∈ F} (cf. Figures 2,
3 and 5). Although first entrance time functions (for arbitrary maps T and subsets F of
phase space) have been studied widely in the dynamical systems literature (see e.g. [1, 5,
7, 8, 14, 17] and Remark 3.24), it is rarely feasible to obtain explicit descriptions of these
functions.
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Figure 1. A flat spot map, and the standard flat spot map T3/20.

The standard family of flat spot maps Tγ (see e.g. [4, 18, 19, 20]) is defined for γ ∈ T by

Tγ(x) =

{

2γ (mod 1) for x ∈ Fγ := (γ + 1/2, γ) ,

2x (mod 1) for x ∈ [γ, γ + 1/2] .

Maps from this family will be used throughout the article as a concrete illustration of
results, and are a particular focus of attention from Section 4 onwards, where we study
the way in which the first entrance time functions eγ = eTγ

vary with γ. Of course as γ
moves counterclockwise, so too does the support of eγ , namely the flat spot Fγ. A more
subtle understanding of the variation of the mass of eγ can be obtained through the study
of its median ω(γ), the unique point in [γ, γ + 1/2] which divides equally the mass of eγ

(i.e. satisfies
∫ ω(γ)

γ
eγ =

∫ γ+1/2

ω(γ)
eγ). Computer study of the variation of the point ω(γ)

within Fγ led us to the following surprising discovery1:

Theorem 6.4. Provided %(Tγ) /∈ {0,±2/7,±3/10,±1/3,±3/8}, the entrance time eγ(ω(γ))
can only take one of the five values 1, 2, 4, 5, or 12.

2. Flat spot maps

Theorem 2.1. ([2, 4, 19, 21]) Let T : T → T be a flat spot map. If %(T ) is irrational
then there exists a totally absorbing T -invariant Cantor subset of T\F . If %(T ) is rational
then either (i) a single periodic orbit is totally absorbing, or (ii) there are precisely two
periodic orbits, one of which is absorbing and absorbs all points of T except those points in
the other periodic orbit.

1See Section 6 for a slightly more detailed statement of Theorem 6.4.
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Proof of Theorem 2.1. If %(T ) is irrational then (see e.g. [2, 4, 19, 21]) there is a T -invariant
Cantor set K = KT = ∩∞

n=0T
−n(T \ F ), which in particular contains the two endpoints

(which we denote by α and β) of T \ F . Now v = T (x) for all x ∈ F , and hence for all
x ∈ F by continuity of T , so v = T (α) = T (β) belongs to the Cantor set K; thus every
point in F is absorbed by K. If x ∈ (T \ F ) \ K then there exists n = n(x) ≥ 1 such that
T n(x) ∈ F (since K = ∩∞

n=0T
−n(T \ F )), so T n+1(x) = v ∈ K. So every point in T \ F is

absorbed by K, and therefore K is totally absorbing.
If %(T ) is rational then (see e.g. [2, 4, 19, 21]) there is a periodic orbit P contained in

T \ F . First suppose that one2 of the endpoints of T \ F , denoted γ, belongs to P . Then
T (γ) = v also lies in P . But T (x) = v for all x ∈ F , so P absorbs all points of F . Similarly,
if x ∈ T \ F eventually enters F under some T -iterate, then it is absorbed by P (on the
next iterate after entering F ). Now if x ∈ ∩∞

n=0T
−n(T \ F ) then in fact T n(x) ∈ P for

some n = n(x) ≥ 0 (see e.g. [2, 4, 19, 21]), so x is absorbed by P . Therefore P is totally
absorbing.

Next suppose that neither endpoint of T \ F belongs to P , in which case (see e.g. [2, 4,
19, 21]) P = ∩∞

n=0T
−n(T \ F ). Clearly v does not lie in P (since neither endpoint of T \ F

does), so because P = ∩∞
n=0T

−n(T \ F ) we know there exists n ≥ 0 such that T n(v) ∈ F ,
thus T n+1(v) = v, therefore v is periodic. Let Q denote the corresponding period-(n + 1)
orbit {v, T (v), . . . , T n(v)}. Clearly all points in F are absorbed by Q. If x ∈ (T \ F ) \ P
then, since P = ∩∞

n=0T
−n(T \ F ), we know there is an integer m = m(x) ≥ 1 such that

Tm(x) ∈ F , hence Tm+1(x) = v ∈ Q, so x is absorbed by Q. So Q absorbs all points in
T \ P , as required. �

Remark 2.2.
(a) We say that the map T is totally absorbing if some proper T -invariant subset of T is
totally absorbing. From the proof of Theorem 2.1 we see that if T is a totally absorbing flat
spot map, with flat spot F , then at least one of the endpoints of F (hence of T\F ) belongs
to the totally absorbing invariant set. More precisely, if the totally absorbing invariant set
is a periodic orbit then it contains precisely one endpoint of F ; if the totally absorbing
invariant set is a Cantor set then it contains both endpoints of F .
(b) The absorbing invariant set of a flat spot map supports a unique T -invariant probability
measure µ, which is clearly a physical measure (cf. [9, 22]): for Lebesgue almost every

x ∈ T, the partial orbit measures n−1
∑n−1

i=1 δT ix converge to µ in the weak-∗ topology.

3. Explicit description of first entrance times

In the case of flat spot maps with rational rotation number, it turns out to be possible
to obtain a rather explicit description of the first entrance time function. A key ingredient
is the finite partition3 of the circle determined by the periodic orbit outside the flat spot:

2Clearly it is never the case that both endpoints of T \ F are periodic, since they are each mapped by
T onto the same point v.

3By a partition of T we mean a (finite or countably infinite) collection of intervals whose interiors are
pairwise disjoint and whose union is dense in T; as is common in the dynamical systems literature, it is
convenient to not insist that the intervals themselves be disjoint.
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Definition 3.1. Given a flat spot map T : T → T with rational rotation number, let
s1 < . . . < sq denote its periodic orbit outside F . Define its orbit partition to be the
partition of T consisting of the q closed intervals [sq, s1], [s1, s2], . . . , [sq−1, sq].

The first q − 1 pre-images of K0 = [sq, s1] under T |T\F are closed sub-intervals in T \ F
whose endpoints are consecutive points in the orbit, thus:

Lemma 3.2. Given a flat spot map T : T → T with rational rotation number, let s1 <
. . . < sq denote its periodic orbit outside F . The orbit partition consists of intervals
K0, K1, . . . , Kq−1, with the property that T maps Kl onto Kl−1 for 1 ≤ l ≤ q − 1.

Example 3.3. If γ ∈ [9/62, 5/31] then the standard flat spot map Tγ has periodic orbit
{5/31, 9/31, 10/31, 18/31, 20/31} outside Fγ , and its orbit partition consists of the intervals
K0 = [20/31, 5/31], K1 = [10/31, 18/31], K2 = [5/31, 9/31], K3 = [18/31, 20/31], K4 =
[9/31, 10/31].

Definition 3.4. For any flat spot map T : T → T, with flat spot F , define the first
entrance time function eT : T → Z≥0 ∪ {∞} by

eT (x) = inf{i ≥ 0 : T i(x) ∈ F} . (1)

The function eT is piecewise constant with respect to some countable partition, as illus-
trated by the following examples:
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Figure 2. Entrance time functions eγ = eTγ
for standard flat spot map Tγ

where γ = 0 and γ = −1/10 (both of rotation number 0).

Example 3.5. The standard flat spot map T = T0 has rotation number 0, and totally
absorbing fixed point 0. The entrance time function eT (cf. Figure 2) is given by eT ≡ n
on (2−n−1, 2−n) for n ≥ 0, and eT ≡ ∞ on {0} ∪ {2−n : n ≥ 1}.

Example 3.6. For γ ∈ (1/2, 1), the standard flat spot map Tγ has rotation number 0, with
fixed point 0 and absorbing fixed point 2γ. The entrance time function eT (cf. Figure 2 for
γ = 9/10) is given by eT ≡ 0 on Fγ = (γ−1/2, γ), and eT ≡ n on (2−n(γ−1/2), 2−n+1(γ−
1/2)] ∪ [1 + 2−n+1(γ − 1), 1 + 2−n(γ − 1)), and eT (0) = ∞.

Example 3.7. The standard flat spot map T = T1/6 has rotation number 1/2, with totally
absorbing period-2 orbit {1/3, 2/3}. Here (cf. Figure 3) eT ≡ 0 on F = (2/3, 1/6), while
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Figure 3. Entrance time functions eγ = eTγ
for standard flat spot map Tγ

where γ = 1/6 (of rotation number 1/2), and γ = 9/127 (of rotation number
2/7).

eT ≡ 2m+1 on (1
3
(2−4−m), 1

3
(2−4−m−1)) for m ≥ 0, and eT ≡ 2m on (1

6
(2−4−m+1), 1

6
(2−

4−m)) for m ≥ 1, and eT ≡ ∞ on {2/3}∪ {(2− 4−m)/6 : m ≥ 0}∪ {(2− 4−m)/3 : m ≥ 0}.

Example 3.8. The standard flat spot map T = T1/4 has rotation number 1/2, with period-
2 orbit {1/3, 2/3} and absorbing period-2 orbit {0, 1/2}. Here eT ≡ 0 on (−1/4, 1/4) =
(3/4, 1/4), and eT ≡ 1 on the interval (3/8, 5/8). We calculate eT ≡ 2 on [1/4, 5/16) ∪
(11/16, 3/4], and eT ≡ 3 on (11/32, 3/8] ∪ [5/8, 21/32), and in general for n ≥ 2 the
level set e−1

T (n) is a union of two disjoint intervals, its form depending on the parity of n:
eT ≡ 2m on

[

1
3
(1 − 4−m), 1

3
(1 − 4−m−1))

)

∪
(

1
3
(2 + 4−m−1)), 1

3
(2 + 4−m)

]

and eT ≡ 2m + 1

on
(

1
6
(2 + 4−m−1), 1

6
(2 + 4−m)

]

∪
[

1
6
(4 − 4−m), 1

6
(4 − 4−m−1)

)

.

Example 3.9. The standard flat spot map T = T5/31 has rotation number 2/5, with totally
absorbing period-5 orbit {5/31, 9/31, 10/31, 18/31, 20/31}. Here eT ≡ 0 on (41/62, 5/31),
eT ≡ 1 on (41/124, 18/31), eT ≡ 2 on (41/248, 9/31), eT ≡ 3 on (289/496, 20/31), eT ≡ 4
on (289/992, 10/31), and in general for n ≥ 5 the level set e−1

T (n) is an interval, its form de-
pending on the residue class of n modulo 5: eT ≡ 5m on

(

1
31

(20 + 2−5m−1), 1
31

(20 + 2−5m+4)
)

,

eT ≡ 5m+1 on the interval
(

1
31

(10 + 2−5m−2), 1
31

(10 + 2−5m+3)
)

, eT ≡ 5m+2 on the inter-

val
(

1
31

(5 + 2−5m−3), 1
31

(5 + 2−5m+2)
)

, eT ≡ 5m + 3 on
(

1
31

(18 + 2−5m−4), 1
31

(18 + 2−5m+1)
)

,

and eT ≡ 5m + 4 on
(

1
31

(9 + 2−5m−5), 1
31

(9 + 2−5m)
)

.

Notation 3.10. For 0 ≤ n ≤ ∞ define En = En(T ) := e−1
T (n), the set of points which first

enter F on precisely their nth iterate (cf. [5, 8]). The collection {En(T )}0≤n≤∞ is clearly
a partition of T.

Remark 3.11. Features common to Examples 3.5–3.9, and which will turn out to be
general phenomena for flat spot maps, are that each level set En can be written as a union
of at most two disjoint intervals, and is a single interval for n sufficiently small. In the
cases where T is totally absorbing (Examples 3.5, 3.7 and 3.9), En is a single interval for
all n.

These facts will be proved as Theorem 3.13, though the intuitive mechanism by which
the two intervals comprising En are formed (in the non-totally absorbing case) can be
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explained as follows, following closely the suggestion of an anonymous referee. Suppose
T maps an interval I so that T (I) ⊃ F , with two sub-intervals (J0 and J1, say) of T (I)
protruding from the flat spot F , one on either side. Since T (F ) = v, after one further
iteration of T the two intervals which were previously separated by a positive distance are
now contiguous (i.e. T (J0) and T (J1) share v as a common endpoint). If T n−1(v) ∈ F then
some neighbourhood of v also enters F after n− 1 iterates, so some sub-interval (Ki, say)
of each Ji enters F after n iterates. The intervals K0 and K1 are the two components of
En.

For flat spot maps with rational rotation number p/q, the following Theorem 3.13 gives
an explicit description of the entrance time function eT on each orbit partition piece Kl,
0 ≤ l ≤ q−1 (cf. Definition 3.1, Lemma 3.2). First it will be convenient to introduce some
notation:

Notation 3.12. Given two non-empty subsets (possibly singletons) I and I ′ of a proper
sub-interval J ⊂ T, we say that I is to the left of I ′, and that I ′ is to the right of I, and
write I ≺ I ′, if x ≤ x′ for all x ∈ I, x′ ∈ I ′, where ≤ denotes the ordering on the interval
J .

Theorem 3.13. Suppose the flat spot map T : T → T has rational rotation number p/q,
with periodic orbit s1 < . . . < sq outside F . Then for each 0 ≤ l ≤ q − 1, the interval

Kl can be written as Kl =
⋃

i∈Z
Ei

l , where the Ei
l are pairwise disjoint intervals whose

relative ordering in Kl is Ei
l ≺ Ei+1

l for all i ∈ Z, and El+iq = E−i
l ∪ Ei

l for i ≥ 0, so in
particular El = E0

l is an interval, and eT ≡ l + |i|q on Ei
l for i ∈ Z. Moreover, eT ≡ ∞

on E∞ ∩ Kl = Kl \ ∪i∈ZEi
l .

Proof. Let us write F = (α, β). It suffices to prove the result when l = 0, since if 1 ≤
l ≤ q − 1 then T l maps Kl onto K0, preserving orientation, and eT (x) = l + eT (T l(x)) for
x ∈ Kl, both easy consequences of Lemma 3.2, so the general result follows immediately
from the case l = 0. Suppose T is not totally absorbing (the easier proof for totally
absorbing T involves minor modifications and will be omitted). First define E−

0 := (sq, α]
and E+

0 := [β, s1); we will subsequently introduce intervals Ei
0 for i ∈ Z, and verify the

properties E−
0 = ∪∞

i=1E
−i
0 and E+

0 = ∪∞
i=1E

i
0.

Now E−
0 ∪ E+

0 is mapped by T onto the interior of Kq−1, so Lemma 3.2 implies that
E−

0 ∪ E+
0 is mapped by T q onto int(K0), which itself contains both E−

0 and E+
0 . Since T q

preserves orientation, T q(E−
0 ) (respectively T q(E+

0 )) is on the left (respectively the right)
of int(K0) = T q(E−

0 ∪ E+
0 ) with respect to the ordering on K0.

Concentrating for the moment on the case of E+
0 , we see that in particular E+

0 ⊂ T q(E+
0 ),

so that T−q(E+
0 ) ∩ [β, α] = T−q(E+

0 ) ∩ E+
0 =: Ê1

0 is a left-closed right-open sub-interval of

E+
0 whose right endpoint is s1. More generally, for each i ≥ 0, define Êi

0 := ∩i
j=0T

−jq(E+
0 );

in particular, Ê0
0 = E+

0 . For each i ≥ 0, Êi
0 is a left-closed right-open sub-interval of E+

0

whose right endpoint is s1; it consists precisely of those points in E+
0 whose first entrance

time into F is strictly greater than iq (i.e. at least (i + 1)q).

Define E0
0 := E0, and for i ≥ 1 define Ei

0 := Êi−1
0 \ Êi

0, the set of points in E+
0 whose first

entrance time into F is precisely iq. The set Ei
0 is a left-closed right-open sub-interval of

E+
0 whose left endpoint is the left endpoint of Êi−1

0 (in particular, the left endpoint of E1
0
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is β, the left endpoint of Ê0
0 = E+

0 ), and whose right endpoint is the left endpoint of Êi
0.

Therefore for all i ≥ 1, the disjoint intervals Ei
0 and Ei+1

0 are adjacent, with Ei
0 ≺ Ei+1

0 ,
and E+

0 = ∪∞
i=1E

i
0. Clearly also E0

0 = E0 ≺ E1
0 .

Figure 4. Graph of the entrance time function restricted to Kl

We can argue analogously on the interval E−
0 , defining left-open right-closed intervals

Ê−i
0 := ∩i

j=0T
−jq(E−

0 ) and E−i
0 := Ê

−(i−1)
0 \ Ê−i

0 , with E−
0 = ∪∞

i=1E
−i
0 , and showing that

eT ≡ iq on E−i
0 . We have then shown that, for all i ≥ 0, eT ≡ iq on E−i

0 ∪ Ei
0, therefore

E−i
0 ∪Ei

0 ⊂ Eiq. But the collection {Ej
0}j∈Z is a partition of K0, so in fact E−i

0 ∪Ei
0 = Eiq.

Moreover, ∪i∈ZEi
0 = (∪i<0E

i
0)∪E0∪(∪i>0E

i
0) = (sq, α]∪(α, β)∪[β, s1) = (sq, s1) = int(K0).

The two endpoints of K0 belong to the orbit {s1, . . . , sq}, hence have infinite first entrance
time into F . �

In fact we have proved:

Corollary 3.14. Under the assumptions of Theorem 3.13, if T is not totally absorbing
then El = E0

l is an open interval, Ei
l is a left-open right-closed interval for i < 0, and

a left-closed right-open interval for i > 0; in this case ∪i∈ZEi
l = int(Kl), and E∞ ∩ Kl

consists of the two endpoints of Kl.

Minor modifications of the proof of Theorem 3.13 leads to the following two results in
the case of totally absorbing T .

Corollary 3.15. Under the assumptions of Theorem 3.13, if T is totally absorbing and the
right endpoint of F (i.e. the left endpoint of T\F ) belongs to the totally absorbing periodic
orbit, then Ei

l = ∅ for i < 0, and Ei
l = El+iq is a non-empty open interval for i ≥ 0; in

this case E∞ ∩ Kl = Kl \ (∪i∈ZEi
l ) consists of the endpoints of Ei

l = El+iq for i > 0 (these
are precisely the points x ∈ Kl which are eventually iterated onto the right endpoint of F )
union the two endpoints of Kl.
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Corollary 3.16. Under the assumptions of Theorem 3.13, if T is totally absorbing and the
left endpoint of F (i.e. the right endpoint of T\F ) belongs to the totally absorbing periodic
orbit, then Ei

l = El−iq is a non-empty open interval for i ≤ 0, and Ei
l = ∅ for i > 0; in

this case E∞ ∩ Kl = Kl \ (∪i∈ZEi
l ) consists of the endpoints of Ei

l = El−iq for i < 0 (these
are precisely the points x ∈ Kl which are eventually iterated onto the left endpoint of F )
union the two endpoints of Kl.

Examples 3.5–3.9 can now be seen in the context of the above results:

Example 3.17. For the standard flat spot map T = T0 (cf. Example 3.5), the totally
absorbing fixed point 0 is the right endpoint of the flat spot, so Corollary 3.15 gives
Ei

0 = ∅ for i < 0, and Ei
0 = Ei = (2−i−1, 2−i) for i ≥ 0.

Example 3.18. For γ ∈ (1/2, 1) (cf. Example 3.6), the standard flat spot map Tγ is not
totally absorbing, so Corollary 3.14 gives E0

0 = E0 = (γ − 1/2, γ), and

Ei
0 =

{

(2i(γ − 1/2), 2i+1(γ − 1/2)] for i < 0

[1 + 2−i+1(γ − 1), 1 + 2−i(γ − 1)) for i > 0 .

Example 3.19. The standard flat spot map T = T1/6 (cf. Example 3.7) is totally absorb-
ing, and the left endpoint of the flat spot is the period-2 point 2/3. Its orbit partition
consists of parts K0 = [2/3, 1/3] and K1 = [1/3, 2/3]. Corollary 3.16 gives E0

0 = E0 =
(2/3, 1/6) ⊂ K0, and Ei

0 = ∅ for i > 0, and Ei
0 = (1

6
(2 − 4i+1), 1

6
(2 − 4i)) for i < 0, while

E0
1 = E1 = (1/3, 7/12), and Ei

0 = ∅ for i > 0, and Ei
1 = (1

3
(2 − 4i), 1

3
(2 − 4i−1)) for i < 0.

Example 3.20. The standard flat spot map T = T1/4 (cf. Example 3.8) has period-2
orbit {1/3, 2/3}, and absorbing period-2 orbit {0, 1/2}. Its orbit partition consists of parts
K0 = [2/3, 1/3] and K1 = [1/3, 2/3]. The interior of K0 is the union of the intervals
E0

0 = E0 = (3/4, 1/4) and

Ei
0 =

{

(

1
3
(2 + 4i−1)), 1

3
(2 + 4i)

]

for i < 0
[

1
3
(1 − 4−i), 1

3
(1 − 4−i−1))

)

for i > 0 ,

while the interior of K1 is the union of the intervals E0
1 = E1 = (3/8, 5/8) and

Ei
1 =

{

(

1
6
(2 + 4i−1), 1

6
(2 + 4i)

]

for i < 0
[

1
6
(4 − 4−i), 1

6
(4 − 4−i−1)

)

for i > 0 .

Example 3.21. Let T be the standard flat spot map T3/20, so that %(T3/20) = 2/5, and the
periodic orbit outside F3/20 is {5/31, 9/31, 10/31, 18/31, 20/31}. For example if l = 2 then
Kl = K2 = [5/31, 9/31], and E2 = E0

2 = (13/40, 23/40) is a sub-interval of K2. For i ≥ 1,
each level set E2+5i is the union of 2 intervals E−i

2 and Ei
2. For example: E7 = E−1

2 ∪ E1
2 ,

where E−1
2 = (829/2560, 13/40] and E1

2 = [23/40, 1479/2560); E12 = E−2
2 ∪ E2

2 where
E−2

2 = (5305/16384, 829/2560] and E2
2 = [1479/2560, 9467/16384); E17 = E−3

2 ∪ E3
2 where

E−3
2 = (848797/2621440, 5305/16384] and E3

2 = [9467/16384, 1514727/2621440). Note
that E−3

2 ≺ E−2
2 ≺ E−1

2 ≺ E2 = E0
2 ≺ E1

2 ≺ E2
2 ≺ E3

2 .

Example 3.22. Let T be the (totally absorbing) standard flat spot map T5/31. As in
Example 3.21, the periodic orbit outside F5/31 is {5/31, 9/31, 10/31, 18/31, 20/31}, and
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Figure 5. Standard flat spot maps of rotation number 2/5: evolution of
entrance time functions eγ = eTγ

as γ increases from γ = γmin(2/5) = 9/62
(top), to γ = 3/20 (middle), to γ = γmax(2/5) = 5/31 (bottom).
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%(T5/31) = 2/5. Then, E1 = E0
1 = (41/124, 18/31), E2 = E0

2 = (41/248, 9/31), E3 =
E0

3 = (289/496, 20/31), E4 = E0
4 = (289/992, 10/31), and in general, for i ≥ 1, E5i =

Ei
0 =

(

1
31

(20 + 2−5i−1), 1
31

(20 + 2−5i+4)
)

, E5i+1 = Ei
1 =

(

1
31

(10 + 2−5i−2), 1
31

(10 + 2−5i+3)
)

,

E5i+2 = Ei
2 =

(

1
31

(5 + 2−5i−3), 1
31

(5 + 2−5i+2)
)

, E5i+3 =
(

1
31

(18 + 2−5i−4), 1
31

(18 + 2−5i+1)
)

,

and E5i+4 = Ei
4 =

(

1
31

(9 + 2−5i−5), 1
31

(9 + 2−5i)
)

. Note that for all i ≥ 1,

E5(i+1)+2 ≺ E5i+2 ≺ E2 ≺ E5(i+1)+4 ≺ E5i+4 ≺ E4 ≺ E5(i+1)+1 ≺ E5i+1

≺ E1 ≺ E5(i+1)+3 ≺ E5i+3 ≺ E3 ≺ E5(i+1) ≺ E5i.

Remark 3.23. If T has irrational rotation number, the fact that v = T (F ) has infinite
first entrance time can be used to show that for every 0 ≤ n < ∞, the set En(T ) is a
non-empty open interval (i.e. it is connected).

Remark 3.24. As mentioned in Section 1, first entrance time functions have attracted
the attention of various authors, though with less emphasis on their fine detail. Notably,
the field of open dynamical systems is concerned with a privileged subset F (referred to as
a hole [1, 5, 7, 8, 17] or a trap [14]) of a phase space of some dynamical system, and the
escape (or extinction, cf. [14]) of orbits into F . Following the pioneering work of Pianigiani
& Yorke [17], the primary objects of attention are (absolutely continuous) conditionally
invariant measures µ and the escape rate − limn→∞

1
n

log µ (∪m>nEm), where Em is defined
as in Notation 3.10 (for further details see [1, 5, 7, 8, 14, 17] and references therein). For
example if T is any member of the standard family of flat spot maps considered in Section
4 onwards, and the hole F is its flat spot, then the corresponding escape rate equals 1/2,
and normalised Lebesgue measure µ on T \ F is conditionally invariant with eigenvalue
1/2, i.e. µ ◦ T−1 = 1

2
µ.

4. The standard family of flat spot maps

Recall the standard family (Tγ)γ∈T of flat spot maps

Tγ(x) =

{

2γ (mod 1) for x ∈ Fγ := (γ + 1/2, γ) ,

2x (mod 1) for x ∈ [γ, γ + 1/2] .

All elements of T are realised as the rotation number of at least one standard flat
spot map. In fact, writing %(γ) := %(Tγ), the map γ 7→ %(Tγ) is weakly increasing, of
degree 1, and its graph is a devil’s staircase (see Figure 6, and [2, 3, 4, 11, 18, 19, 20]
for more details): the preimage of any rational rotation number p/q is a positive-length
closed interval4 %−1(p/q) =: [γmin(p/q), γmax(p/q)], while the preimage of any irrational is
a singleton. Indeed combining Theorem 2.1 with a result proved in (each of) [2, 4, 20, 21]
yields:

Proposition 4.1. The set {γ ∈ T : Tγ is totally absorbing} is a Cantor subset of T

with zero Hausdorff dimension. In particular, {γ ∈ T : %(γ) /∈ Q} has zero Hausdorff
dimension, and hence zero Lebesgue measure.

4In the context of parametrised families of circle homeomorphisms, the phenomenon of the rotation
number ‘sticking’ at rational values as parameters are varied is known as ‘frequency locking’ or ‘mode
locking’ (see e.g. [3, 11, 15]). The family (Tγ) enjoys a stronger form of locking, however: the same set

{s1, . . . , sq} is a Tγ-periodic orbit for every γ ∈ [γmin(p/q), γmax(p/q)], since the restriction to [s1, sq] of all
these Tγ is identical.
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Figure 6. The devil’s staircase γ 7→ %(γ) = %(Tγ).

If Tγ has rotation number p/q, with periodic orbit s1 < . . . < sq outside Fγ, then the
largest piece K0 = [sq, s1] of the orbit partition is easily seen to be of length 2q−1(2q −
1)−1 (see also [4, Prop. 3]), and the following refinement of Lemma 3.2 is easily proved
(cf. Example 3.3):

Lemma 4.2. If Tγ has rotation number p/q, then the orbit partition consists of intervals
K0, K1, . . . , Kq−1, where each Kl has length 2q−1−l(2q − 1)−1, with the property that Tγ

maps Kl affinely onto Kl−1 for 1 ≤ l ≤ q − 1.

For 0 ≤ n < ∞, as the n-th pre-image of the length-1/2 interval E0(γ) = Fγ = (γ +
1/2, γ) under T |[γ,γ+1/2], the set En(γ) has Lebesgue measure5 |En(γ)| = 1/2n+1. Thus
∑∞

n=0 |En(γ)| = 1, and |E∞(γ)| = 0. Since eγ := eTγ
=

∑∞
n=0 nχEn(γ) Lebesgue almost

everywhere, we observe that each first entrance time function eγ is Lebesgue integrable,
with6

∫

eγ = 1. In particular, eγ is the Radon-Nikodym derivative of a probability measure
on T which is absolutely continuous with respect to Lebesgue measure; we write |A|γ =
∫

A
eγ to denote the mass of a Borel set A with respect to this measure, and refer to this

quantity as the eγ-mass of A.
For the map Tγ we write El(γ) and Ei

l (γ) to denote El and Ei
l , and set E−

l (γ) :=
∪∞

i=1E
−i
l (γ) and E+

l (γ) := ∪∞
i=1E

i
l (γ). We then have the following result, a quantitative

complement to Theorem 3.13 which will be exploited in our subsequent study of the en-
trance time median.

5The Lebesgue measure of a set I will be denoted by |I|; of course if I is an interval then |I| is its length.
6We use

∫

g to denote the Lebesgue integral of a function g on the whole circle T, and
∫

A
g or

∫ b

a
g for

its Lebesgue integral over the set A or interval [a, b].
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Theorem 4.3. If Tγ has rotation number p/q, with periodic orbit s1 < . . . < sq outside
Fγ, then for each 0 ≤ l ≤ q − 1,
(a) El(γ) = E0

l (γ) has length 2−l−1, and constitutes proportion7 1 − 2−q of Kl. The set
E−

l (γ) has Lebesgue measure 2−l(γ+1/2−sq), and constitutes proportion 2(γ+1/2−sq)(1−
2−q) of Kl. The set E+

l (γ) has Lebesgue measure 2−l(s1 − γ), and constitutes proportion
2(s1 − γ)(1 − 2−q) of Kl.

(b) For i ≥ 1, the interval E−i
l (γ) (respectively Ei

l (γ)) constitutes proportion 2−qi(2q − 1)
of E−

l (γ) (respectively E+
l (γ)).

Proof. As in Theorem 3.13, it suffices to prove the result when l = 0, since if 1 ≤ l ≤ q − 1
then T l maps Kl affinely onto K0, preserving orientation, and eγ(x) = l + eγ(T

l(x)) for
x ∈ Kl. As before we focus on the case where Tγ is not totally absorbing (the totally
absorbing case requiring only minor amendments). The interval E0(γ) = Fγ = (γ +1/2, γ)
has length 1/2, and K0 has length 2q−1(2q−1)−1, thus E0(γ) constitutes proportion 1−2−q

of K0.
Let λq := 1

2
(2q − 1)−1. Now the interval E−

0 (γ) has length γ + 1/2− sq, and constitutes
proportion (γ + 1/2 − sq)/λq of the length-λq set K0 \ E0(γ), which itself constitutes
proportion 2−q of K0. It follows that E−

0 (γ) constitutes proportion 2−q(γ +1/2− sq)/λq =
2(γ+1/2−sq)(1−2−q) of K0. Similarly E+

0 (γ) has length s1−γ, and constitutes proportion
2(s1 − γ)(1 − 2−q) of K0.

As noted in the proof of Theorem 3.13, Ê1
0(γ) = T−q(E+

0 (γ))∩[γ, γ+1/2] = T−q(E+
0 (γ))∩

E+
0 (γ) is a left-closed right-open sub-interval of E+

0 (γ) whose right endpoint is s1; its

length is 2−q times that of E+
0 (γ). More generally for each i ≥ 0, Êi

0(γ) is a left-closed
right-open sub-interval of E+

0 (γ) whose right endpoint is s1; its length is 2−iq times that

of E+
0 (γ). So for each i ≥ 1, Êi

0(γ) constitutes proportion 2−q of Êi−1
0 (γ), and Ei

0(γ)

constitutes proportion 1 − 2−q of Êi−1
0 (γ). It follows that Ei

0(γ) constitutes proportion

2−(i−1)q(1 − 2−q) = 2−qi(2q − 1) of Ê0
0(γ) = E+

0 (γ). �

A consequence is the following formula for the average, taken over any orbit partition
piece Kl, of the time of first entrance in Fγ; perhaps surprisingly, this average only depends
on (the denominator of) the rotation number of Tγ .

Corollary 4.4. If Tγ has rational rotation number p/q, then

|Kl|γ =
2q−1−l

2q − 1

(

l +
q

2q − 1

)

for each 0 ≤ l ≤ q − 1 . (2)

In other words, the conditional expectation8 E(eγ |{Kl}) is the function which is constant on
each partition piece Kl, with E(eγ |{Kl})|Kl

= |Kl|γ/|Kl| = l + q
2q−1

for each 0 ≤ l ≤ q − 1.

Proof. By Theorem 4.3, for each i ≥ 0, proportion 2−iq(1 − 2−q) of the points in Kl first
enter Fγ = (γ + 1/2, γ) after exactly l + iq iterates, so the mean first entrance time is

|Kl|γ
|Kl|

=
∞

∑

i=0

(l + iq)2−iq(1 − 2−q) = l +
q

2q − 1
.

7For ξ ∈ [0, 1], and Borel subsets A, B ⊂ T, we say A constitutes proportion ξ of B if |A| = ξ|B|.
8To be precise, we mean the conditional expectation relative to the algebra generated by the orbit

partition {Kl}
q−1

l=0
, where the underlying measure is Lebesgue measure.



ENTRANCE TIME FUNCTIONS FOR FLAT SPOT MAPS 13

Each Kl has length 2q−1−l(2q − 1)−1, so (2) follows. �

Example 4.5. For any γ ∈ %−1(2/5) = [9/62, 5/31], if l = 2 then Kl = K2 = [5/31, 9/31],

so |K2|γ/|K2| = 2 + 5/(25 − 1) = 67/31, and |K2|γ = 22

25−1

(

2 + 5
25−1

)

= 268
961

.

Corollary 4.6. If Tγ has rational rotation number p/q, and periodic orbit s1 < . . . < sq

outside Fγ, then for any 0 ≤ l ≤ q − 1, i ≥ 1,

|Ei
l (γ)|γ = (l + iq)2−(l+iq)(2q − 1)(s1 − γ) (3)

and

|E−i
l (γ)|γ = (l + iq)2−(l+iq)(2q − 1)(γ + 1/2 − sq) , (4)

so for all j ≥ 0,
∞

∑

i=j+1

|Ei
l (γ)|γ =

s1 − γ

2l+jq

(

l + jq +
q

1 − 2−q

)

(5)

and
∞

∑

i=j+1

|E−i
l (γ)|γ =

γ + 1/2 − sq

2l+jq

(

l + jq +
q

1 − 2−q

)

, (6)

and in particular

|E+
l (γ)|γ =

s1 − γ

2l

(

l +
q

1 − 2−q

)

(7)

and

|E−
l (γ)|γ =

γ + 1/2 − sq

2l

(

l +
q

1 − 2−q

)

. (8)

Proof. Now eγ ≡ l + iq on Ei
l (γ), so

|Ei
l (γ)|γ = (l + iq)|Ei

l (γ)| = (l + iq)2−qi(2q − 1)2−l(s1 − γ)

= (l + iq)2−(l+iq)(2q − 1)(s1 − γ) ,

and (4) is proved analogously. The sums (5) and (6) are short calculations, while (7) and
(8) follow by setting j = 0. �

5. The entrance time median for the standard family

Let Tγ be a standard flat spot map with rational rotation number p/q. From Theorem
3.13 we have an explicit description of the first entrance time function eγ = eTγ

on each
orbit partition piece Kl, 0 ≤ l ≤ q − 1. Since the Kl constitute a partition of T, this
yields a complete description of eγ on the whole of T, provided we understand the relative
locations of the orbit partition pieces Kl. For this we require the following:

Definition 5.1. If Tγ has rotation number p/q, with periodic orbit s1 < . . . < sq outside

Fγ , then define Ji := [si, si+1] for 1 ≤ i ≤ q − 1. So {Ji}
q−1
i=1 and {Kl}

q−1
l=1 are different

indexings of the same collection of intervals, namely the orbit partition with the largest
piece removed, and if the permutation πp,q : {1, 2, . . . , q − 1} → {1, 2, . . . , q − 1} is defined
by πp,q(l) := −lp (mod q), then Kl = Jπp,q(l) for 1 ≤ l ≤ q − 1.
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Figure 7. Orbit partition when Tγ has rotation number 2/5

Example 5.2. If γ ∈ %−1(2/5) = [9/62, 5/31] then J1 = [5/31, 9/31], J2 = [9/31, 10/31],
J3 = [10/31, 18/31], J4 = [18/31, 20/31], so K1 = J3, K2 = J1, K3 = J4, K4 = J2

(cf. Figure 7).

Notation 5.3. For γ ∈ %−1(p/q), 1 ≤ l ≤ q − 1, i ∈ Z, let εi
l(γ) denote the left endpoint

of Ei
l (γ), so that, by Theorem 3.13, εi+1

l (γ) is the right endpoint of Ei
l (γ).

Definition 5.4. Since eγ is strictly positive on T \ Fγ = [γ, γ + 1/2], with
∫ γ+1/2

γ
eγ =

∑

n≥1 n|En(γ)| =
∑

n≥1 n/2n+1 = 1, there is a unique ω(γ) ∈ [γ, γ + 1/2] such that
∫ ω(γ)

γ

eγ = 1/2 =

∫ γ+1/2

ω(γ)

eγ . (9)

The value ω(γ) will be referred to as the entrance time median of Tγ.

Example 5.5. The entrance time median of the standard flat spot map T0 is ω(0) = 1/8,

since (cf. Example 3.5)
∫ 1/2

1/8
e0 = |[1/8, 1/4]|0 + |[1/4, 1/2]|0 = 2 × 1

8
+ 1 × 1

4
= 1/2.

Example 5.6. When γ = 3/4, the function eγ = e3/4 is symmetric about the point 0
(cf. Example 3.6), so ω(3/4) = 0.

Example 5.7. For γ ∈ (3/4, 1), a computation using the entrance time function described
in Example 3.6 yields that, for n ≥ 3, if γn := 1

2
+ 1

4−22−n−21−nn
, then

ω(γ) =
1

n

(

2(1 − 2−n)γ + 2−n − 3/2
)

for γ ∈ [γn, γn−1] , (10)

while for γ ∈ (1/2, 3/4) the identity eγ(x) = e 3

2
−γ(1 − x) yields ω(γ) = 1 − ω(3

2
− γ)

(i.e. skew symmetry of the graph relative to the point (γ, ω) = (3/4, 0)), so ω|(1/2,3/4) is
also determined by (10).

Example 5.8. When γ = 1/4, the function eγ = e1/4 is symmetric about the point 1/2
(cf. Example 3.8), so ω(1/4) = 1/2.

The above calculations are ad hoc, all relying on some simplifying feature in order to
obtain ω(γ). In general the computation of ω(γ) is significantly more difficult, however,
and our aim now is to develop an efficient method of locating it. The first step is the
following technical lemma.

Lemma 5.9. For rotation number p/q, and any 1 ≤ l ≤ q − 1, i ∈ Z, the function
γ 7→ |[γ, εi

l(γ)]|γ is affine decreasing on %−1(p/q), with slope l−iq
2l−iq − q

1−2−q

(

1 − 2−(l−iq)
)

if

i ≤ 0, and slope l+iq
2l+iq−q − q

1−2−q

(

1 − 2−(l+iq)
)

if i > 0.
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Proof. If i ≤ 0, then [γ, εi
l(γ)] = E+

0 (γ) ∪ [s1, sπp,q(l)] ∪
⋃i−1

k=−∞ Ek
l (γ), so

|[γ,εi
l(γ)]|γ = |E+

0 (γ)|γ +

πp,q(l)−1
∑

i=1

|Kπ−1
p,q(i)

|γ +
i−1
∑

k=−∞

|Ek
l (γ)|γ

= (s1 − γ)
q

1 − 2−q
+

πp,q(l)−1
∑

i=1

|Kπ−1
p,q(i)

|γ +
γ + 1/2 − sq

2l−iq

(

l − iq +
q

1 − 2−q

)

,

using (6), (7), and the result follows because
∑πp,q(l)−1

i=1 |Kπ−1
p,q(i)

|γ is independent of γ, by

Corollary 4.4. The calculation is analogous when i ≥ 0: in this case we write

|[γ, εi
l(γ)]|γ = |E+

0 (γ)|γ + |[s1, sπp,q(l)+1]|γ −
∞

∑

k=i

|Ek
l (γ)|γ ,

then use (5), (7), and that γ 7→ |[s1, sπp,q(l)]|γ is constant, by Corollary 4.4. �

Example 5.10. The function γ 7→ |[γ, ε1
4(γ)]|γ is affine decreasing on the interval %−1(2/5) =

[9/62, 5/31], with slope 9/29−5 − 5(1 − 2−9)/(1 − 2−5) = −569/124 ≈ −4.59 .

Example 5.11. Let γ = γmin(2/5) = 9/62. Then |[γ, ε1
4(γ)]|γ = [E+

0 (γ)|γ + |K2|γ + |E4|γ =

[E0(γ)|γ + |K2|γ + |E4|γ = 25.5
2(25−1)2

+ |[s1, s2]|γ + |E4|γ = 80
961

+ 25−1−2

25−1
(2 + 5

25−1
) + 4/25 =

80/961 + 4.67/312 + 4/25 = 3745/7688.
Now let γ = γmax(2/5) = 5/31. Then |[γ, ε1

4(γ)]|γ = 4.67/312 + 129/312 = 397/312 =
397/961. By Example 5.10, we deduce that if γ = 3/20 then |[γ, ε1

4(γ)]|γ = 143
124

− 569
124

3
20

=
1153/2480.

6. Locating the entrance time median

The aim of this final section is to describe a surprising phenomenon concerning the
location of the entrance time median ω(γ) relative to the partition {En(γ)}0≤n≤∞. Our
first step is the following consequence of Lemma 5.9:

Lemma 6.1. For rational rotation number p/q, and 1 ≤ l ≤ q − 1, i ∈ Z, suppose that

γ1, γ2 ∈ %−1(p/q) satisfy ω(γ1) ∈ Ei
l (γ1) and ω(γ2) ∈ Ei

l (γ2). Then ω(γ) ∈ Ei
l (γ) for all

γ ∈ (γ1, γ2).

Proof. Define fγ(t) := |[γ, t]|γ − 1/2, for γ ∈ [γ1, γ2], t ∈ [γ, γ + 1/2]; the unique zero of fγ

is the entrance time median ω(γ). From Lemma 5.9,

γ 7→ fγ(ε
i
l(γ)) is decreasing on [γ1, γ2], (11)

and
γ 7→ fγ(ε

i+1
l (γ)) is decreasing on [γ1, γ2]. (12)

For j = 1, 2, the function fγj
is increasing, since eγj

≥ 0, and the zero ω(γj) of fγj
lies

in Ei
l (γj), an interval whose left endpoint is εi

l(γj) and whose right endpoint is εi+1
l (γj).

Therefore
fγj

(εi
l(γj)) ≤ 0 and fγj

(εi+1
l (γj)) ≥ 0 for j = 1, 2 . (13)

If γ ∈ (γ1, γ2) then (11) and (13) imply that

fγ(ε
i
l(γ)) < fγ1

(εi
l(γ1)) ≤ 0 , (14)
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while (12) and (13) imply that

fγ(ε
i+1
l (γ)) > fγ2

(εi+1
l (γ2)) ≥ 0 . (15)

But fγ is an increasing function, so (14) and (15) imply that its unique zero ω(γ) lies in
Ei

l (γ), as required. �

If A and A′ are any two subsets of an interval J , we say that A is weakly to the left
(respectively the right) of A′ if there exists a′ ∈ A′ such that a ≤ a′ for all a ∈ A (respectively
a′ ≤ a for all a ∈ A). The following obvious lemma will be used systematically, and without
comment, to prove Theorem 6.4 below.

Lemma 6.2. Let γ ∈ T. For n ∈ N, if the eγ-mass of the interval consisting of those
points of [γ, γ + 1/2] weakly to the left (respectively the right) of En(γ) is strictly larger
than 1/2, then the entrance time median ω(γ) is weakly to the left (respectively the right)
of En(γ).

A simple consequence is the following information on the approximate location of ω(γ).

Lemma 6.3. If γ ∈ %−1(0, 1/2) then ω(γ) is weakly to the right of E2(γ) and weakly to
the left of E1(γ).

Proof. Since γ ∈ %−1(0, 1/2), both E1(γ) = (γ/2 + 1/4, γ/2 + 1/2) and E2(γ) = (γ/4 +
1/8, γ/4 + 1/4) are intervals, and E1(γ) is to the right of E2(γ). Now |E1(γ)|γ = 1/4,
and |E2(γ)|γ = 2|E2(γ)| = 1/4, and the interval [γ/4 + 1/4, γ/2 + 1/4] between E2 and
E1 has strictly positive eγ-mass, since eγ ≥ 1 on all of [γ, γ + 1/2]. Consequently, both
the interval consisting of those points of [γ, γ + 1/2] weakly to the left of E1(γ), and the
interval consisting of those points of [γ, γ +1/2] weakly to the right of E2(γ), have eγ-mass
strictly greater than 1/2. The result then follows from Lemma 6.2. �

For9 γ ∈ %−1(0, 1/2], the following surprising result, first discovered experimentally,
asserts that ω(γ) first enters the flat spot Fγ = (γ + 1/2, γ) after either 1, 2, 4, 5 or 12
iterates, provided %(γ) is not equal to either 0, 2/7, 3/10, 1/3, or 3/8.

Theorem 6.4. Provided %(γ) /∈ {0,±2/7,±3/10,±1/3,±3/8}, the entrance time eγ(ω(γ))
can only take one of the five values 1, 2, 4, 5, or 12. More precisely, for γ ∈ %−1(0, 1/2],

ω(γ) ∈



























E2(γ) if %(γ) ∈ (0, 2/7)

E12(γ) if %(γ) ∈ (2/7, 3/10)

E5(γ) if %(γ) ∈ (3/10, 1/3)

E4(γ) if %(γ) ∈ (1/3, 3/8)

E1(γ) if %(γ) ∈ (3/8, 1/2] .

Proof. The case γ ∈ %−1(0, 2/7) is conveniently handled by first considering two sub-cases:
γ ∈ (γmax(0), γmin(1/4)] and γ ∈ [γmax(1/4), γmin(2/7)). In the first sub-case10,

E4(γ) ≺ E3(γ) ≺ E2(γ) , (16)

9By symmetry, the same is true for γ ∈ %−1(−1/2, 0], provided %(γ) 6= 0,−2/7,−3/10,−1/3,−3/8.
10The ordering (16), in common with the other relative orderings (17), (18), (19), (20), can be proved

by explicit calculation, the details of which will be omitted. An alternative justification follows from the
fact that if p/q < p′/q′ are neighbouring rationals on some level of the Farey tree (see e.g. [13, Ch. III]),
then for all % ∈ (p/q, p′/q′), the relative ordering of the points an := −n% (mod 1), 1 ≤ n ≤ q + q′ − 1, is



ENTRANCE TIME FUNCTIONS FOR FLAT SPOT MAPS 17

and |E4(γ) ∪ E3(γ) ∪ E2(γ)|γ = 4/25 + 3/24 + 2/23 = 9/16 > 1/2, so ω(γ) is weakly to
the left of E2(γ). But by Lemma 6.3, ω(γ) is weakly to the right of E2(γ), so in fact
ω(γ) ∈ E2(γ). In the second sub-case,

E7(γ) ≺ E3(γ) ≺ E6(γ) ≺ E2(γ) , (17)

and |E7(γ) ∪ E3(γ) ∪ E6(γ) ∪ E2(γ)|γ = 7/28 + 3/24 + 6/27 + 2/23 = 131/256 > 1/2, so
ω(γ) is weakly to the left of E2(γ), hence again ω(γ) ∈ E2(γ) by Lemma 6.3. The fact
that ω(γ) ∈ E2(γ) in the remaining sub-case γ ∈ [γmin(1/4), γmax(1/4)] follows, by Lemma
6.1, from the fact that it is true when γ is either of the endpoints γmin(1/4) or γmax(1/4).

If γ ∈ %−1(2/7, 3/10) then necessarily11 q(γ) ≥ 17, so En = En(γ) is an interval for
1 ≤ n ≤ 16 by Theorem 3.13, and

E10 ≺ E3 ≺ E13 ≺ E6 ≺ E9 ≺ E2 ≺ E12 ≺ E5 ≺ E8 ≺ E1 ≺ E11 ≺ E4 ≺ E7 . (18)

Now |E10 ∪ E3 ∪ E13 ∪ E6 ∪ E9 ∪ E2 ∪ E12|γ = 10/211 + 3/24 + 13/214 + 6/27 + 9/210 +
2/23 + 12/213 = 8197

16384
> 1

2
, so ω(γ) is weakly to the left of E12. On the other hand,

|E12 ∪ E5 ∪ E8 ∪ E1 ∪ E11 ∪ E4 ∪ E7|γ = 12/213 + 5/26 + 8/29 + 1/22 + 11/212 = 2049
4096

> 1
2
,

so ω(γ) is weakly to the right of E12, and hence ω(γ) ∈ E12 = E12(γ).
If %(γ) ∈ (3/10, 1/3) then q(γ) ≥ 13, so En = En(γ) is an interval for 1 ≤ n ≤ 12, and

E3 ≺ E6 ≺ E9 ≺ E2 ≺ E5 ≺ E8 ≺ E1 ≺ E4 ≺ E7 ≺ E10 . (19)

Now |E3∪E6∪E9∪E2∪E5|γ = 3/24+6/27+9/210+2/23+5/26 = 585
1024

> 1
2
, so ω(γ) is weakly

to the left of E5, and |E5 ∪E8 ∪E1 ∪E4 ∪E7 ∪E10|γ = 5/26 + 8/29 + 1/22 +4/25 +7/28 =
513
1024

> 1
2
, so ω(γ) is weakly to the right of E5, and hence ω(γ) ∈ E5(γ).

If %(γ) ∈ (1/3, 3/8) then q(γ) ≥ 11, so En = En(γ) is an interval for 1 ≤ n ≤ 10, and

E8 ≺ E5 ≺ E2 ≺ E10 ≺ E7 ≺ E4 ≺ E1 ≺ E9 ≺ E6 ≺ E3 . (20)

Now |E8∪E5∪E2∪E10∪E7∪E4|γ = 8/29 +5/26 +2/23 +10/211 +7/28 +4/25 = 513
1024

> 1
2
,

so ω(γ) is weakly to the left of E4, and |E4 ∪E1 ∪E9 ∪E6 ∪E3|γ = 4/25 + 1/22 + 9/210 +
6/27 + 3/24 = 623

1024
> 1

2
, so ω(γ) is weakly to the right of E4, and hence ω(γ) ∈ E4(γ).

Lastly, the case %(γ) ∈ (3/8, 1/2] is handled by splitting into four sub-cases, according
to whether γ lies in (γmax(3/8), γmin(2/5)], %−1(2/5), [γmax(2/5), γmin(1/2)], or %−1(1/2).
In the first sub-case γ ∈ (γmax(3/8), γmin(2/5)], E1 ≺ E6 ≺ E11 ≺ E3 ≺ E8, and |E1 ∪
E6 ∪ E11 ∪ E3 ∪ E8|γ = 1/22 + 6/27 + 11/212 + 3/24 + 8/29 = 1

2
+ 11

212 > 1
2
, so Lemma

6.2 implies that ω(γ) is weakly to the right of E1. But ω(γ) is weakly to the left of E1

by Lemma 6.3, so in fact ω(γ) ∈ E1(γ). In the third sub-case, γ ∈ [γmax(2/5), γmin(1/2)],
E1(γ) ≺ E3(γ) ≺ E5(γ), and |E1(γ) ∪ E3(γ) ∪ E5(γ)|γ = 1/22 + 3/24 + 5/26 = 33

64
> 1

2
, so

ω(γ) is weakly to the right of E1. But ω(γ) is weakly to the left of E1 by Lemma 6.3, so in
fact ω(γ) ∈ E1(γ). The second sub-case, %(γ) = 2/5, now follows from the first and third
sub-cases, by virtue of Lemma 6.1. Similarly, Lemma 6.1 can be used to handle the fourth
sub-case, γ ∈ %−1(1/2): the third sub-case implies that ω(γmin(1/2)) ∈ E1(γmin(1/2)), and
an analogous calculation shows that ω(γmax(1/2)) ∈ E1(γmax(1/2)), so Lemma 6.1 implies
that ω(γ) ∈ E1(γ) for all γ ∈ [γmin(1/2), γmax(1/2)] = %−1(1/2). �

identical, and this ordering coincides with that of the En(γ), 1 ≤ n ≤ q + q′− 1, in the sense that am < an

if and only if Em(γ) ≺ En(γ).
11We use q(γ) to denote the denominator of the rational %(γ) = p(γ)/q(γ) when expressed in lowest

terms; if %(γ) /∈ Q we define q(γ) = ∞.
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Remark 6.5. The proof of Theorem 6.4 in fact shows that ω(γ) ∈ E2(γ) for all γ ∈
(γmax(0), γmin(2/7)] (note that ω(γmax(0)) = 1/8 /∈ (1/8, 1/4) = E2(γmax(0))). Similarly,
ω(γ) ∈ E12(γ) for γ ∈ [γmax(2/7), γmin(3/10)], ω(γ) ∈ E5(γ) for γ ∈ [γmax(3/10), γmin(1/3)],
ω(γ) ∈ E4(γ) for γ ∈ [γmax(1/3), γmin(3/8)], and ω(γ) ∈ E1(γ) for γ ∈ [γmax(3/8), γmin(−3/8)].

Corollary 6.6. If Tγ has rational rotation number %(γ) = p/q (where q ∈ N and the
integer 0 < p < q is coprime to q), then

ω(γ) ∈



























Jq−2p if %(γ) ∈ (0, 2/7)

J4q−12p if %(γ) ∈ (2/7, 3/10)

J2q−5p if %(γ) ∈ (3/10, 1/3)

J2q−4p if %(γ) ∈ (1/3, 3/8)

Jq−p if %(γ) ∈ (3/8, 1/2] .

Proof. If %(γ) ∈ (0, 2/7) then, by Theorem 6.4, ω(γ) ∈ E2(γ) ⊂ K2 = Jπp,q(2). But
πp,q(2) = −2p (mod q) = q − 2p for p/q ∈ (0, 2/7). The other four cases are proved
similarly. �
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