Roots $x_k(y)$ of a formal power series

$$f(x,y) = \sum_{n=0}^{\infty} a_n(y) x^n$$

with applications to graph enumeration and q-series

Alan Sokal

New York University / University College London

Lectures at Queen Mary — 11, 18, 25 March and 8 April 2011

LECTURE #1

Some wonderful conjectures (but almost no theorems) at the boundary between analysis, combinatorics and probability:

The entire function
$$F(x,y) = \sum_{n=0}^{\infty} \frac{x^n}{n!} y^{n(n-1)/2}$$
,

the polynomials
$$P_N(x, w) = \sum_{n=0}^{N} {N \choose n} x^n w^{n(N-n)},$$

and the generating polynomials of connected graphs

The entire function
$$F(x,y) = \sum_{n=0}^{\infty} \frac{x^n}{n!} y^{n(n-1)/2}$$

- Defined for complex x and y satisfying $|y| \leq 1$
- Analytic in $\mathbb{C} \times \mathbb{D}$, continuous in $\mathbb{C} \times \overline{\mathbb{D}}$
- $F(\cdot, y)$ is entire for each $y \in \overline{\mathbb{D}}$
- Valiron (1938): "from a certain viewpoint the simplest entire function after the exponential function"

Applications:

- Statistical mechanics: Partition function of one-site lattice gas
- Combinatorics: Generating function for Tutte polynomials on K_n (also acyclic digraphs, inversions of trees, ...)
- Functional-differential equation: F'(x) = F(yx) where $' = \partial/\partial x$
- Complex analysis: Whittaker and Goncharov constants

Application to Tutte polynomials of complete graphs

- Finite graph G = (V, E)
- Multivariate Tutte polynomial $Z_G(q, \mathbf{v}) = \sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} v_e$ where k(A) = # connected components in (V, A)
- Connected-spanning-subgraph polynomial $C_G(\mathbf{v}) = \lim_{q \to 0} q^{-1} Z_G(q, \mathbf{v})$
- Write $Z_G(q, v)$ and $C_G(v)$ if $v_e = v$ for all edges e [standard Tutte polynomial is $Z_G(q, v)$ in different variables]

Specialization to complete graphs K_n :

$$Z_n(q, v) = \sum_{m,k} a_{n,m,k} v^m q^k$$
$$C_n(v) = \sum_m c_{n,m} v^m$$

Exponential generating functions:

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} Z_n(q, v) = F(x, 1+v)^q$$

$$\sum_{n=1}^{\infty} \frac{x^n}{n!} C_n(v) = \log F(x, 1+v)$$

[see Tutte (1967) and Scott-A.D.S., arXiv:0803.1477]

- Usually considered as formal power series
- But series are convergent if $|1 + v| \le 1$ [see also Flajolet–Salvy–Schaeffer (2004)]

Elementary analytic properties of $F(x,y) = \sum_{n=0}^{\infty} \frac{x^n}{n!} y^{n(n-1)/2}$

- y = 0: F(x, 0) = 1 + x
- 0 < |y| < 1: $F(\cdot, y)$ is a nonpolynomial entire function of order 0:

$$F(x,y) = \prod_{k=0}^{\infty} \left(1 - \frac{x}{x_k(y)}\right)$$

where $\sum |x_k(y)|^{-\alpha} < \infty$ for every $\alpha > 0$

- y = 1: $F(x, 1) = e^x$
- |y| = 1 with $y \neq 1$: $F(\cdot, y)$ is an entire function of order 1 and type 1:

$$F(x,y) = e^x \prod_{k=0}^{\infty} \left(1 - \frac{x}{x_k(y)}\right) e^{x/x_k(y)}.$$

where $\sum |x_k(y)|^{-\alpha} < \infty$ for every $\alpha > 1$

[see also Ålander (1914) for y a root of unity; Valiron (1938) and Eremenko–Ostrovskii (2007) for y not a root of unity]

• |y| > 1: The series $F(\cdot, y)$ has radius of convergence 0

Consequences for $C_n(v)$

• Make change of variables y = 1 + v:

$$\overline{C}_n(y) = C_n(y-1)$$

• Then for |y| < 1 we have

$$\sum_{n=1}^{\infty} \frac{x^n}{n!} \overline{C}_n(y) = \log F(x, y) = \sum_{k} \log \left(1 - \frac{x}{x_k(y)} \right)$$

and hence

$$\overline{C}_n(y) = -(n-1)! \sum_k x_k(y)^{-n}$$
 for all $n \ge 1$

(also holds for $n \ge 2$ when |y| = 1)

- This is a *convergent* expansion for $\overline{C}_n(y)$
- In particular, gives large-n asymptotic behavior

$$\overline{C}_n(y) = -(n-1)! x_0(y)^{-n} [1 + O(e^{-\epsilon n})]$$

whenever $F(\cdot,y)$ has a unique root $x_0(y)$ of minimum modulus

Question: What can we say about the roots $x_k(y)$?

Small-y expansion of roots $x_k(y)$

• For small |y|, we have F(x,y) = 1 + x + O(y), so we expect a convergent expansion

$$x_0(y) = -1 - \sum_{n=1}^{\infty} a_n y^n$$

(easy proof using Rouché: valid for $|y| \lesssim 0.441755$)

• More generally, for each integer $k \geq 0$, write $x = \xi y^{-k}$ and study

$$F_k(\xi, y) = y^{k(k+1)/2} F(\xi y^{-k}, y) = \sum_{n=0}^{\infty} \frac{\xi^n}{n!} y^{(n-k)(n-k-1)/2}$$

Sum is dominated by terms n = k and n = k + 1; gives root

$$x_k(y) = -(k+1)y^{-k} \left[1 + \sum_{n=1}^{\infty} a_n^{(k)} y^n \right]$$

Rouché argument valid for $|y| \lesssim 0.207875$ uniformly in k: all roots are simple and given by convergent expansion $x_k(y)$

• Can also use theta function in Rouché (Eremenko)

Might these series converge for all |y| < 1?

Two ways that $x_k(y)$ could fail to be analytic for |y| < 1:

- 1. Collision of roots $(\rightarrow \text{branch point})$
- 2. Root escaping to infinity

Theorem (Eremenko): No root can escape to infinity for y in the open unit disc \mathbb{D} .

In fact, for any compact subset $K \subset \mathbb{D}$ and any $\epsilon > 0$, there exists an integer k_0 such that for all $y \in K \setminus \{0\}$ we have:

- (a) The function $F(\cdot, y)$ has exactly k_0 zeros (counting multiplicity) in the disc $|x| < k_0 |y|^{-(k_0 \frac{1}{2})}$, and
- (b) In the region $|x| \geq k_0|y|^{-(k_0-\frac{1}{2})}$, the function $F(\cdot,y)$ has a simple zero within a factor $1+\epsilon$ of $-(k+1)y^{-k}$ for each $k \geq k_0$, and no other zeros.
 - Proof is based on comparison with a theta function (whose roots are known by virtue of Jacobi's product formula)
 - Conjecture that roots cannot escape to infinity even in the closed unit disc except at y = 1

Big Conjecture #1. All roots of $F(\cdot, y)$ are simple for |y| < 1. [and also for |y| = 1, I suspect]

Consequence of Big Conjecture #1. Each root $x_k(y)$ is analytic in |y| < 1.

But I conjecture more . . .

Big Conjecture #2. The roots of $F(\cdot, y)$ are non-crossing in modulus for |y| < 1:

$$|x_0(y)| < |x_1(y)| < |x_2(y)| < \dots$$

[and also for |y| = 1, I suspect]

Consequence of Big Conjecture #2. The roots are actually separated in modulus by a factor at least |y|, i.e.

$$|x_k(y)| < |y| |x_{k+1}(y)|$$
 for all $k \ge 0$

PROOF. Apply the Schwarz lemma to $x_k(y)/x_{k+1}(y)$.

Consequence for the zeros of $\overline{C}_n(y)$

Recall

$$\overline{C}_n(y) = -(n-1)! \sum_k x_k(y)^{-n}$$

and use a variant of the Beraha–Kahane–Weiss theorem [A.D.S., arXiv:cond-mat/0012369, Theorem 3.2] \Longrightarrow the limit points of zeros of \overline{C}_n are the values y for which the zero of minimum modulus of $F(\cdot, y)$ is nonunique.

So if $F(\cdot, y)$ has a *unique* zero of minimum modulus for all $y \in \mathbb{D}$ (a weakened form of Big Conjecture #2), then the zeros of \overline{C}_n do not accumulate anywhere in the open unit disc.

I actually conjecture more (based on computations up to $n \approx 80$):

Big Conjecture #3. For each n, $\overline{C}_n(y)$ has no zeros with |y| < 1. [and, I suspect, no zeros with |y| = 1 except the point y = 1]

What is the evidence for these conjectures?

Evidence #1: Behavior at real y.

Theorem (Laguerre): For $0 \le y < 1$, all the roots of $F(\cdot, y)$ are simple and negative real.

Corollary: Each root $x_k(y)$ is analytic in a complex neighborhood of the interval [0,1).

[Real-variables methods give further information about the roots $x_k(y)$ for $0 \le y < 1$: see Langley (2000).]

Now combine this with

Evidence #2: From numerical computation of the series $x_k(y)$...

Three methods for computing the series $x_k(y)$

1. Insert
$$x_k(y) = -(k+1)y^{-k} \left[1 + \sum_{n=1}^{\infty} a_n^{(k)} y^n\right]$$
 and solve term-by-term

2. Use "explicit implicit function theorem" (generalization of Lagrange inversion formula) given in arXiv:0902.0069:

solve
$$z = G(z, w)$$
 with $G(0, 0) = 0$ and $\left| \frac{\partial G}{\partial z}(0, 0) \right| < 1$ by

$$\varphi(w) = \sum_{m=1}^{\infty} \frac{1}{m} [\zeta^{m-1}] G(\zeta, w)^m$$

and more generally

$$H(\varphi(w), w) = H(0, w) + \sum_{m=1}^{\infty} \frac{1}{m} [\zeta^{m-1}] \frac{\partial H(\zeta, w)}{\partial \zeta} G(\zeta, w)^{m}$$

Methods 1 and 2 work symbolically in k.

3. Use

$$\overline{C}_n(y) = -(n-1)! \sum_k x_k(y)^{-n}$$

together with recursion

$$\overline{C}_n(y) = y^{n(n-1)/2} - \sum_{j=1}^{n-1} {n-1 \choose j-1} \overline{C}_j(y) y^{(n-j)(n-j-1)/2}$$

[cf. Leroux (1988) and Scott–A.D.S., arXiv:0803.1477] — can go to very high n, at least for small k

And let MATHEMATICA run for a weekend ...

$$-x_0(y) = 1 + \frac{1}{2}y + \frac{1}{2}y^2 + \frac{11}{24}y^3 + \frac{11}{24}y^4 + \frac{7}{16}y^5 + \frac{7}{16}y^6 + \frac{493}{1152}y^7 + \frac{163}{384}y^8 + \frac{323}{768}y^9 + \frac{1603}{3840}y^{10} + \frac{57283}{138240}y^{11} + \frac{170921}{414720}y^{12} + \frac{340171}{829440}y^{13} + \frac{22565}{55296}y^{14} + \dots + \text{terms through order } y^{899}$$

and all the coefficients (so far) are nonnegative!

Big Conjecture #4. For each k, the series $-x_k(y)$ has all nonnegative coefficients.

Combine this with the known analyticity for $0 \le y < 1$, and Vivanti–Pringsheim gives:

Consequence of Big Conjecture #4. Each root $x_k(y)$ is analytic in the open unit disc.

NEED TO DO: Extended computations for k = 1, 2, ... and for symbolic k.

But more is true . . .

Look at the *reciprocal* of $x_0(y)$:

$$-\frac{1}{x_0(y)} = 1 - \frac{1}{2}y - \frac{1}{4}y^2 - \frac{1}{12}y^3 - \frac{1}{16}y^4 - \frac{1}{48}y^5 - \frac{7}{288}y^6$$

$$-\frac{1}{96}y^7 - \frac{7}{768}y^8 - \frac{49}{6912}y^9 - \frac{113}{23040}y^{10} - \frac{17}{4608}y^{11}$$

$$-\frac{293}{92160}y^{12} - \frac{737}{276480}y^{13} - \frac{3107}{1658880}y^{14}$$

$$- \dots - \text{ terms through order } y^{899}$$

and all the coefficients (so far) beyond the constant term are nonpositive!

Big Conjecture #5. For each k, the series $-(k+1)y^{-k}/x_k(y)$ has all *nonpositive* coefficients after the constant term 1.

[This implies the preceding conjecture, but is stronger.]

- Relative simplicity of the coefficients of $-1/x_0(y)$ compared to those of $-x_0(y) \longrightarrow$ simpler combinatorial interpretation?
- Note that $x_k(y) \to -\infty$ as $y \uparrow 1$ (this is fairly easy to prove). So $1/x_k(y) \to 0$. Therefore:

Consequence of Big Conjecture #5. For each k, the coefficients (after the constant term) in the series $-(k+1)y^{-k}/x_k(y)$ are the *probabilities* for a positive-integer-valued random variable.

What might such a random variable be??? Could this approach be used to *prove* Big Conjecture #5?

AGAIN NEED TO DO: Extended computations for k = 1, 2, ... and for symbolic k.

But I conjecture that even more is true . . .

Define
$$D_n(y) = \frac{\overline{C}_n(y)}{(-1)^{n-1}(n-1)!}$$
 and recall that $-x_0(y) = \lim_{n \to \infty} D_n(y)^{-1/n}$

Big Conjecture #6. For each n,

- (a) the series $D_n(y)^{-1/n}$ has all nonnegative coefficients, and even more strongly,
- (b) the series $D_n(y)^{1/n}$ has all nonpositive coefficients after the constant term 1.

Since $D_n(y) > 0$ for $0 \le y < 1$, Vivanti-Pringsheim shows that Big Conjecture #6a implies Big Conjecture #3:

For each n, $\overline{C}_n(y)$ has no zeros with |y| < 1.

Moreover, Big Conjecture #6b \implies for each n, the coefficients (after the constant term) in the series $D_n(y)^{1/n}$ are the *probabilities* for a positive-integer-valued random variable.

Such a random variable would generalize the one for $-1/x_0(y)$ in roughly the same way that the binomial generalizes the Poisson.

Roots $x_k(y)$ computed symbolically in k

$$x_k(y) = -(k+1)y^{-k} \left[1 + \sum_{n=1}^{\infty} \frac{P_n(k)}{Q_n(k)} y^n \right]$$

where I have computed up to n = 21:

$$P_1(k) = 1$$

$$P_2(k) = 2 + 6k + 3k^2$$

$$P_3(k) = 11 + 29k + 63k^2 + 65k^3 + 28k^4 + 4k^5$$

$$P_4(k) = 22 + 146k + 273k^2 + 359k^3 + 355k^4 + 211k^5 + 63k^6 + 7k^7$$

$$\vdots$$

$$Q_n(k) = (k+1)^n (k+2)^n \prod_{j=3}^{\infty} (k+j)^{\lfloor n/\binom{j}{2} \rfloor}$$

- $P_n(k)$ has nonnegative coefficients for $n \leq 9$ but not for n = 10, 15, 16, 18, 19, 20, 21
- $P_n(k) \ge 0$ for all real $k \ge 0$ for $n \le 14$ but not for n = 15, 18, 19, 21
- But ... $P_n(k) \ge 0$ for all integer $k \ge 0$ at least for $n \le 21$

which gives evidence that Big Conjecture #4 holds for all k:

For each k, the series $-x_k(y)$ has all nonnegative coefficients.

Reciprocals of roots $x_k(y)$ computed symbolically in k

$$\frac{-(k+1)y^{-k}}{x_k(y)} = \left[1 - \sum_{n=1}^{\infty} \frac{\widehat{P}_n(k)}{Q_n(k)} y^n\right]$$

where I have computed up to n = 21:

$$\widehat{P}_1(k) = 1
\widehat{P}_2(k) = 1 + 6k + 3k^2
\widehat{P}_3(k) = 2 - 10k + 33k^2 + 59k^3 + 28k^4 + 4k^5
\widehat{P}_4(k) = 3 + 71k + 24k^2 + 82k^3 + 236k^4 + 194k^5 + 63k^6 + 7k^7
\vdots$$

and $Q_n(k)$ are the same as before

- $\widehat{P}_n(k)$ does not have nonnegative coefficients (except for n=1,2,4)
- $\widehat{P}_n(k) \ge 0$ for all real $k \ge 0$ for n = 1, 2, 3, 4, 5, 7, 8 but not in general
- But ... $\widehat{P}_n(k) \ge 0$ for all integer $k \ge 0$ at least for $n \le 21$ which gives evidence that Big Conjecture #5 holds for all k:

For each k, the series $-(k+1)y^{-k}/x_k(y)$ has all nonpositive coefficients after the constant term 1.

Ratios of roots $x_k(y)/x_{k+1}(y)$

The series

$$\frac{x_0(y)}{x_1(y)} = \frac{1}{2}y + \frac{1}{6}y^2 + \frac{5}{72}y^3 + \frac{11}{216}y^4 + \frac{29}{1296}y^5 + \dots$$

has nonnegative coefficients at least up to order y^{136} . (But its reciprocal does not have any fixed signs.)

Big Conjecture #7. The series $x_0(y)/x_1(y)$ has all nonnegative coefficients.

Consequence of Big Conjecture #7. Since $\lim_{y\uparrow 1} x_0(y)/x_1(y) = 1$, Big Conjecture #7 implies that $|x_0(y)| < |x_1(y)|$ for all $y \in \mathbb{D}$ (a special case of Big Conjecture #2 on the separation in modulus of roots).

• But unfortunately ... the series

$$\frac{x_1(y)}{x_2(y)} = \frac{2}{3}y + \frac{1}{18}y^2 + \frac{17}{216}y^3 + \frac{23}{810}y^4 + \frac{343}{17280}y^5 + \dots$$

has a negative coefficient at order y^{13} . This doesn't contradict the conjecture that $|x_1(y)/x_2(y)| < 1$ in the unit disc, but it does rule out the simplest method of proof.

- Symbolic computation of $x_k(y)/x_{k+1}(y)$ shows that, up to order y^{22} , the *only* cases of a negative coefficient for *integer* $k \ge 0$ are the coefficient of y^{13} for k = 1, 2, 3; y^{17} for k = 2; and y^{19} , y^{21} for k = 2, 3, 4.
- The series $y^{-k}x_0(y)/x_k(y)$ has nonnegative coefficients for all integer $k \geq 0$ through at least order y^{21} .

Asymptotics of roots as $y \to 1$

Write $y = e^{-\gamma}$ with Re $\gamma > 0$.

Want to study $\gamma \to 0$ (non-tangentially in the right half-plane).

I believe I will be able to prove that

$$-x_k(e^{-\gamma}) \approx \frac{1}{e}\gamma^{-1} + c_k\gamma^{-1/3} + \dots$$

for suitable constants $c_0 < c_1 < c_2 < \dots$ But I have not yet worked out all the details.

Overview of method:

- 1. Develop an asymptotic expansion for $F(x, e^{-\gamma})$ when $\gamma \to 0$ and x is taken to be of order γ^{-1} , because this is the regime where the zeros will be found.
- 2. Use this expansion for $F(x, e^{-\gamma})$ to deduce an expansion for $x_k(e^{-\gamma})$.

Sketch of step #1: Insert Gaussian integral representation for $e^{-\frac{\gamma}{2}n^2}$ to obtain

$$F(x, e^{-\gamma}) = (2\pi\gamma)^{-1/2} \int_{-\infty}^{\infty} \exp[g(t)] dt$$

with

$$g(t) = -\frac{t^2}{2\gamma} + xe^{\gamma/2}e^{it}$$

Saddle-point equation g'(t) = 0 is $-ite^{-it} = \gamma e^{\gamma/2}x$, so it makes sense to make the change of variables

$$x = \gamma^{-1} e^{-\gamma/2} w e^w ,$$

which puts the saddle point at $t_0 = iw$. (Note that this brings in the Lambert W function, i.e. the inverse function to $w \mapsto we^w$.) We then have

$$F(\gamma^{-1}e^{-\gamma/2}we^{w},e^{-\gamma}) \ = \ (2\pi\gamma)^{-1/2}\int\limits_{-\infty}^{\infty}dt \ \exp\left[-\frac{t^{2}}{2\gamma} + \frac{we^{w}}{\gamma}e^{it}\right]$$

Now shift the contour to go through the saddle point (parallel to the real axis) and make the change of variables t = s + iw: we have

$$F(\gamma^{-1}e^{-\gamma/2}we^{w}, e^{-\gamma}) = (2\pi\gamma)^{-1/2} \exp\left[\frac{w^{2}}{2\gamma} + \frac{w}{\gamma}\right] \int_{-\infty}^{\infty} ds \exp[h(s)]$$

where

$$h(s) = -\frac{(1+w)}{2\gamma}s^2 + \frac{w}{\gamma}\Big(e^{is} - 1 - is + \frac{s^2}{2}\Big)$$

and the integration goes along the real s axis.

These formulae should allow computation of asymptotics

- (a) $\gamma \to 0$ (in a suitable way) for (suitable values of) fixed w; and
- (b) $w \to \infty$ (in a suitable direction) for (suitable values of) fixed γ . Focus for now on (a).

Recall that

$$h(s) = -\frac{(1+w)}{2\gamma}s^2 + \frac{w}{\gamma}\left(e^{is} - 1 - is + \frac{s^2}{2}\right)$$

Consider for simplicity γ and x real. There seem to be three regimes:

• "High temperature": w > -1 (i.e. $we^w > -1/e$).

Easiest case: s = 0 saddle point is Gaussian, and can compute the asymptotics to all orders in terms of 3-associated Stirling subset numbers $\binom{n}{m}_{\geq 3}$. [Still need to justify this formal calculation by showing that only the s = 0 saddle point contributes.]

• "Low temperature": $w = -\eta \cot \eta + \eta i$ with $-\pi < \eta < \pi$ (i.e. $we^w < -1/e$).

Saddle points at s = 0 and $s = 2\eta$ contribute; I think this is all.

• "Critical regime": $w = -(1 + \xi \gamma^{1/3})$ with ξ fixed, which corresponds to

$$x = -\frac{1}{e\gamma} \left[1 - \frac{\xi^2}{2} \gamma^{2/3} + O(\gamma) \right]$$

- At the "critical point" $\xi = 0$: Dominant behavior at s = 0 saddle point is no longer Gaussian (it vanishes) but rather the cubic term $is^3/(6\gamma)$. Can compute the asymptotics to all orders in terms of 4-associated Stirling subset numbers $\binom{n}{m}_{>4}$ (at least formally).
- In the critical regime (ξ arbitrary): Expect to have Airy asymptotics as in Flajolet–Salvy–Schaeffer (2004). This is where the roots will lie.

I would appreciate help with the details!!!

The polynomials
$$P_N(x, w) = \sum_{n=0}^{N} {N \choose n} x^n w^{n(N-n)}$$

- Partition function of Ising model on complete graph K_N , with $x = e^{2h}$ and $w = e^{-2J}$
- Related to binomial $(1+x)^N$ in same way as our F(x,y) is related to exponential e^x [but we have written $w^{n(N-n)}$ instead of $y^{n(n-1)/2}$]
- $\lim_{N \to \infty} P_N\left(\frac{xw^{1-N}}{N}, w\right) = F(x, w^{-2})$ when |w| > 1
- So results about zeros of P_N generalize those about F (just as results about the binomial generalize those about the exponential function)
- Lee-Yang theorem: In ferromagnetic case $(0 \le w \le 1)$, all zeros are on the unit circle |x| = 1
- Laguerre: In antiferromagnetic case $(w \ge 1)$, all zeros are real and negative
- What about "complex antiferromagnetic" case |w| > 1??

Big Conjecture #8. For |w| > 1, all zeros of $P_N(\cdot, w)$ are separated in modulus (by at least a factor $|w|^2$).

Taking $N \to \infty$, this implies Big Conjecture #2 about the separation in modulus of the zeros of $F(\cdot, y)$.

Differential-equation approach to
$$P_N(x, w) = \sum_{n=0}^{N} \binom{N}{n} x^n w^{n(N-n)}$$

On the space of polynomials $Q_N(x) = \sum_{n=0}^N a_n x^n$ of degree N with $a_0 \neq 0$, define the semigroup

$$(\mathcal{A}_t Q_N)(x) \equiv \sum_{n=0}^N a_n x^n e^{tn(N-n)}$$

Roots of $\mathcal{A}_t Q_N$ evolve according to an *autonomous* differential equation, which is best expressed in terms of *logarithms* of roots $\zeta_i = \log x_i$:

$$\frac{d\zeta_i}{dt} = \sum_{j \neq i} F(\zeta_i - \zeta_j)$$

where

$$F(z) = \coth(z/2)$$

These are first-order ("Aristotelian") equations of motion for a system of n "particles" (in \mathbb{R} or \mathbb{C}) with a translation-invariant "force" F.

Moreover, the specific force $F = \coth$ is a Calogero-Moser-Sutherland system, much studied in the theory of integrable systems.

For polynomials Q_N with real roots and real t > 0, this approach gives interesting results on separation of zeros. (In particular, it gives a new proof of Laguerre's theorem.)

Is this approach useful for $complex\ t$ with Re t > 0??? Can it be used to prove Big Conjecture #8?

A more general approach to the leading root $x_0(y)$ [details to be given in the subsequent lectures!]

• Consider a formal power series

$$f(x,y) = \sum_{n=0}^{\infty} \alpha_n x^n y^{n(n-1)/2}$$

normalized to $\alpha_0 = \alpha_1 = 1$, or more generally

$$f(x,y) = \sum_{n=0}^{\infty} a_n(y) x^n$$

where

(a)
$$a_0(0) = a_1(0) = 1$$
;

(b)
$$a_n(0) = 0$$
 for $n \ge 2$; and

(c)
$$a_n(y) = O(y^{\nu_n})$$
 with $\lim_{n \to \infty} \nu_n = \infty$.

It makes sense to study the "leading root" $x_0(y)$ in this generality.

• Example: The "partial theta function"

$$\Theta_0(x,y) = \sum_{n=0}^{\infty} x^n y^{n(n-1)/2}$$

beloved of q-series practitioners (going back at least to Ramanujan).

• More generally, consider

$$\widetilde{R}(x,y,q) = \sum_{n=0}^{\infty} \frac{x^n y^{n(n-1)/2}}{(1+q)(1+q+q^2)\cdots(1+q+\ldots+q^{n-1})}$$

which reduces to Θ_0 when q=0, and to F when q=1.

A more general approach, continued ...

- A power series for the leading root $x_0(y)$ can be computed from the power-series expansion of $\log f(x,y)$, generalizing Method 3 above for F(x,y). This is extremely efficient!
- Example: For Θ_0 we have

$$-x_0(y) = 1 + y + 2y^2 + 4y^3 + 9y^4 + 21y^5 + 52y^6 + 133y^7 + 351y^8 + \dots$$

with strictly positive coefficients at least through order y^{6999} .

• More generally, for $\widetilde{R}(x,y,q)$ it can be proven that

$$-x_0(y,q) = 1 + \sum_{n=1}^{\infty} \frac{P_n(q)}{Q_n(q)} y^n$$

where

$$Q_n(q) = \prod_{k=2}^{\infty} (1+q+\ldots+q^{k-1})^{\lfloor n/\binom{k}{2} \rfloor}$$

and $P_n(q)$ is a self-inversive polynomial with integer coefficients.

I have verified for $n \leq 349$ that $P_n(q)$ has two interesting positivity properties:

- (a) $P_n(q)$ has all nonnegative coefficients. Indeed, all the coefficients are strictly positive except $[q^1] P_5(q) = 0$.
- (b) $P_n(q) > 0$ for q > -1.

Can any of this be proven???

YES!!! ... but please stay tuned for our next installment ...