$$
\begin{aligned}
& \text { Roots } x_{k}(y) \text { of a formal power series } \\
& \qquad f(x, y)=\sum_{n=0}^{\infty} a_{n}(y) x^{n}
\end{aligned}
$$

with applications to graph enumeration and q-series

Alan Sokal
New York University / University College London

Lectures at Queen Mary - 11, 18, 25 March and 8 April 2011

LECTURE \#2

Applications of
the explicit implicit function formula and the exponential formula

The basic set-up

Consider a formal power series

$$
f(x, y)=\sum_{n=0}^{\infty} \alpha_{n} x^{n} y^{n(n-1) / 2}
$$

normalized to $\alpha_{0}=\alpha_{1}=1$, or more generally

$$
f(x, y)=\sum_{n=0}^{\infty} a_{n}(y) x^{n}
$$

where
(a) $a_{0}(0)=a_{1}(0)=1$;
(b) $a_{n}(0)=0$ for $n \geq 2$; and
(c) $a_{n}(y)=O\left(y^{\nu_{n}}\right)$ with $\lim _{n \rightarrow \infty} \nu_{n}=\infty$.

Examples:

- The "partial theta function"

$$
\Theta_{0}(x, y)=\sum_{n=0}^{\infty} x^{n} y^{n(n-1) / 2}
$$

- The "deformed exponential function" studied in Lecture \#1:

$$
F(x, y)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} y^{n(n-1) / 2}
$$

- More generally, consider

$$
\widetilde{R}(x, y, q)=\sum_{n=0}^{\infty} \frac{x^{n} y^{n(n-1) / 2}}{(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+\ldots+q^{n-1}\right)}
$$

which reduces to Θ_{0} when $q=0$, and to F when $q=1$.

The leading root $x_{0}(y)$

- Start from a formal power series

$$
f(x, y)=\sum_{n=0}^{\infty} a_{n}(y) x^{n}
$$

where
(a) $a_{0}(0)=a_{1}(0)=1$
(b) $a_{n}(0)=0$ for $n \geq 2$
(c) $a_{n}(y)=O\left(y^{\nu_{n}}\right)$ with $\lim _{n \rightarrow \infty} \nu_{n}=\infty$
and coefficients lie in a commutative ring-with-identity-element R.

- By (c), each power of y is multiplied by only finitely many powers of x.
- That is, f is a formal power series in y whose coefficients are polynomials in x, i.e. $f \in R[x][[y]]$.
- Hence, for any formal power series $X(y)$ with coefficients in R [not necessarily with zero constant term], the composition $f(X(y), y)$ makes sense as a formal power series in y.
- Not hard to see (by the implicit function theorem for formal power series or by a direct inductive argument) that there exists a unique formal power series $x_{0}(y) \in R[[y]]$ satisfying $f\left(x_{0}(y), y\right)=0$.
- We call $x_{0}(y)$ the leading root of f.
- Since $x_{0}(y)$ has constant term -1 , we will write $x_{0}(y)=-\xi_{0}(y)$ where $\xi_{0}(y)=1+O(y)$.

How to compute $\xi_{0}(y)$?

1. Elementary method: Insert $\xi_{0}(y)=1+\sum_{n=1}^{\infty} b_{n} y^{n}$ into $f\left(-\xi_{0}(y), y\right)=0$ and solve term-by-term.
2. Method based on the explicit implicit function formula.
3. Method based on the exponential formula and expansion of $\log f(x, y)$.

- Methods \#2 and \#3 are computationally very efficient.
- Can they also be used to give proofs?

Tools I: The explicit implicit function formula

- See A.D.S., arXiv:0902.0069 or Stanley, vol. 2, Exercise 5.59
- (Almost trivial) generalization of Lagrange inversion formula
- Comes in analytic-function and formal-power-series versions
- Recall Lagrange inversion: If $f(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$ with $a_{1} \neq 0$ (as either analytic function or formal power series), then

$$
f^{-1}(y)=\sum_{m=1}^{\infty} \frac{y^{m}}{m}\left[\zeta^{m-1}\right]\left(\frac{\zeta}{f(\zeta)}\right)^{m}
$$

where $\left[\zeta^{n}\right] g(\zeta)$ denotes the coefficient of ζ^{n} in the power series $g(\zeta)$. More generally, if $h(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$, we have

$$
h\left(f^{-1}(y)\right)=h(0)+\sum_{m=1}^{\infty} \frac{y^{m}}{m}\left[\zeta^{m-1}\right] h^{\prime}(\zeta)\left(\frac{\zeta}{f(\zeta)}\right)^{m}
$$

- Rewrite this in terms of $g(x)=x / f(x)$: then $f(x)=y$ becomes $x=g(x) y$, and its solution $x=\varphi(y)=f^{-1}(y)$ is given by the power series

$$
\varphi(y)=\sum_{m=1}^{\infty} \frac{y^{m}}{m}\left[\zeta^{m-1}\right] g(\zeta)^{m}
$$

and

$$
h(\varphi(y))=h(0)+\sum_{m=1}^{\infty} \frac{y^{m}}{m}\left[\zeta^{m-1}\right] h^{\prime}(\zeta) g(\zeta)^{m}
$$

- There is also an alternate form

$$
h(\varphi(y))=h(0)+\sum_{m=1}^{\infty} y^{m}\left[\zeta^{m}\right] h(\zeta)\left[g(\zeta)^{m}-\zeta g^{\prime}(\zeta) g(\zeta)^{m-1}\right]
$$

The explicit implicit function formula, continued

- Generalize $x=g(x) y$ to $x=G(x, y)$, where
- $G(0,0)=0$ and $|(\partial G / \partial x)(0,0)|<1$ (analytic-function version)
$-G(0,0)=0$ and $(\partial G / \partial x)(0,0)=0$ (formal-power-series version)
- Then there is a unique $\varphi(y)$ with zero constant term satisfying $\varphi(y)=G(\varphi(y), y)$, and it is given by

$$
\begin{aligned}
\varphi(y) & =\sum_{m=1}^{\infty} \frac{1}{m}\left[\zeta^{m-1}\right] G(\zeta, y)^{m} \\
& =\sum_{m=1}^{\infty}\left[\zeta^{m-1}\right]\left[G(\zeta, y)^{m}-\zeta \frac{\partial G(\zeta, y)}{\partial \zeta} G(\zeta, y)^{m-1}\right]
\end{aligned}
$$

More generally, for any $H(x, y)$ we have

$$
\begin{aligned}
& H(\varphi(y), y)=H(0, y)+\sum_{m=1}^{\infty} \frac{1}{m}\left[\zeta^{m-1}\right] \frac{\partial H(\zeta, y)}{\partial \zeta} G(\zeta, y)^{m} \\
& \quad=H(0, y)+\sum_{m=1}^{\infty}\left[\zeta^{m}\right] H(\zeta, y)\left[G(\zeta, y)^{m}-\zeta \frac{\partial G(\zeta, y)}{\partial \zeta} G(\zeta, y)^{m-1}\right]
\end{aligned}
$$

- First versions are slightly more convenient but require R to contain the rationals as a subring.
- Proof imitates standard proof of the Lagrange inversion formula: the variables y simply "go for the ride".
- Alternate interpretation: Solving fixed-point problem for the family of maps $x \mapsto G(x, y)$ parametrized by y. Variables y again "go for the ride".

A possible extension [open problem]

- Conditions on G and φ in the explicit implicit function formula seem natural:
- If $G(x, y)$ is a formal power series, it ordinarily makes sense to substitute $x=\varphi(y)$ only when $\varphi(y)$ is a formal power series with zero constant term.
- Then a solution to the fixed-point equation $\varphi(y)=G(\varphi(y), y)$ with $\varphi(y)$ having zero constant term can exist only if $G(0,0)=0$.
- But there is one important case where these conditions can be weakened: namely, if $G(x, y)$ belongs to $R[x][[y]]$, i.e. if the coefficient of each power of y is a polynomial in x.
- In this case it makes sense to substitute for x an arbitrary formal power series $\varphi(y)$, not necessarily with zero constant term.
- The result $G(\varphi(y), y)$ is a well-defined formal power series in y.
- What can be said about existence and uniqueness of solutions to $\varphi(y)=G(\varphi(y), y)$?
- And is there an explicit "Lagrange-like" formula for $\varphi(y)$?
- I suspect that the answer is yes, but I haven't worked out the details.
- And it looks like this may be useful in our application.

Application to leading root of $f(x, y)$

- Start from a formal power series $f(x, y)=\sum_{n=0}^{\infty} a_{n}(y) x^{n}$ satisfying properties (a)-(c) above.
- Write out $f\left(-\xi_{0}(y), y\right)=0$ and add $\xi_{0}(y)$ to both sides:

$$
\xi_{0}(y)=a_{0}(y)-\left[a_{1}(y)-1\right] \xi_{0}(y)+\sum_{n=2}^{\infty} a_{n}(y)\left(-\xi_{0}(y)\right)^{n}
$$

- Insert $\xi_{0}(y)=1+\varphi(y)$ where $\varphi(y)$ has zero constant term. Then $\varphi(y)=G(\varphi(y), y)$ where

$$
G(z, y)=\sum_{n=0}^{\infty}(-1)^{n} \widehat{a}_{n}(y)(1+z)^{n}
$$

and

$$
\widehat{a}_{n}(y)= \begin{cases}a_{n}(y)-1 & \text { for } n=0,1 \\ a_{n}(y) & \text { for } n \geq 2\end{cases}
$$

And $\varphi(y)$ is the unique formal power series with zero constant term satisfying this fixed-point equation.

- Since this G satisfies $G(0,0)=0$ and $(\partial G / \partial z)(0,0)=0$ [indeed it satisfies the stronger condition $G(z, 0)=0$], we can apply the explicit implicit function formula to obtain an explicit formula for $\xi_{0}(y)$:

$$
\xi_{0}(y)=1+\sum_{m=1}^{\infty} \frac{1}{m}\left[\zeta^{m-1}\right]\left(\sum_{n=0}^{\infty}(-1)^{n} \widehat{a}_{n}(y)(1+\zeta)^{n}\right)^{m}
$$

More generally, for any formal power series $H(z, y)$, we have

$$
\begin{aligned}
& H\left(\xi_{0}(y)-1, y\right) \\
& =H(0, y)+\sum_{m=1}^{\infty} \frac{1}{m}\left[\zeta^{m-1}\right] \frac{\partial H(\zeta, y)}{\partial \zeta}\left(\sum_{n=0}^{\infty}(-1)^{n} \widehat{a}_{n}(y)(1+\zeta)^{n}\right)^{m}
\end{aligned}
$$

Application to leading root of $f(x, y)$, continued

- In particular, by taking $H(z, y)=(1+z)^{\beta}$ we can obtain an explicit formula for an arbitrary power of $\xi_{0}(y)$:

$$
\xi_{0}(y)^{\beta}=1+\sum_{m=1}^{\infty} \frac{\beta}{m} \sum_{n_{1}, \ldots, n_{m} \geq 0}\binom{\beta-1+\sum n_{i}}{m-1} \prod_{i=1}^{m}(-1)^{n_{i}} \widehat{a}_{n_{i}}(y)
$$

- Important special case: $a_{0}(y)=a_{1}(y)=1$ and $a_{n}(y)=\alpha_{n} y^{\lambda_{n}}$ $(n \geq 2)$ where $\lambda_{n} \geq 1$ and $\lim _{n \rightarrow \infty} \lambda_{n}=\infty$. Then

$$
\left[y^{N}\right] \frac{\xi_{0}(y)^{\beta}-1}{\beta}=\sum_{m=1}^{\infty} \frac{1}{m} \sum_{\substack{n_{1}, \ldots, n_{m} \geq 2 \\ \sum_{i=1}^{m} \lambda_{n_{i}}=N}}(-1)^{\sum n_{i}}\binom{\beta-1+\sum_{i} n_{i}}{m-1} \prod_{i=1}^{m} \alpha_{n_{i}}
$$

- Can this formula be used for proofs of nonnegativity???
- Empirically I know that the RHS is ≥ 0 when $\lambda_{n}=n(n-1) / 2$:
- For $\beta \geq-2$ with $\alpha_{n}=1$ (partial theta function)
- For $\beta \geq-1$ with $\alpha_{n}=1 / n$! (deformed exponential function)
- For $\beta \geq-1$ with $\alpha_{n}=(1-q)^{n} /(q ; q)_{n}$ and $q>-1$
- And I can prove this (by a different method!) for the partial theta function with $\beta \geq-1$
- How can we see these facts from this formula???
[open combinatorial problem]

Tools II: Variants of the exponential formula

- Let R be a commutative ring containing the rationals.
- Let $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ be a formal power series (with coefficients in R) satisfying $a_{0}=1$.
- Now consider $C(x)=\log A(x)=\sum_{n=1}^{\infty} c_{n} x^{n}$.
- It is well known (and easy to prove) that

$$
a_{n}=\sum_{k=1}^{n} \frac{k}{n} c_{k} a_{n-k} \quad \text { for } n \geq 1
$$

This allows $\left\{a_{n}\right\}$ to be calculated given $\left\{c_{n}\right\}$, or vice versa.

- Sometimes useful to introduce $\widetilde{c}_{n}=n c_{n}$, which are the coefficients in

$$
\frac{x A^{\prime}(x)}{A(x)}=\sum_{n=1}^{\infty} \widetilde{c}_{n} x^{n}
$$

- See Scott-Sokal, arXiv:0803.1477 for generalizations to $A(x)^{\lambda}$ and applications to the multivariate Tutte polynomial
- Now specialize to $R=R_{0}[[y]]$ and $A(x, y)=\sum_{n=0}^{\infty} a_{n}(y) x^{n}$ where $a_{0}(y)=1$
- Assume further that $a_{1}(0)=1$ and $a_{n}(0)=0$ for $n \geq 2$ [conditions (a) and (b) for our $f(x, y)$]
- Then

$$
\frac{x A^{\prime}(x, y)}{A(x, y)}=\sum_{n=1}^{\infty} \widetilde{c}_{n}(y) x^{n}
$$

where ' denotes $\partial / \partial x$ and $\widetilde{c}_{n}(y)$ has constant term $(-1)^{n-1}$.

Application to leading root of $f(x, y)$

- Start from a formal power series $f(x, y)=1+x+\sum_{n=2}^{\infty} a_{n}(y) x^{n}$ satisfying

$$
a_{n}(y)=O\left(y^{\alpha(n-1)}\right) \quad \text { for } n \geq 2
$$

for some real $\alpha>0$. [This is a bit stronger than (a)-(c).]

- Define $\left\{\widetilde{c}_{n}(y)\right\}_{n=1}^{\infty}$ by

$$
\frac{x f^{\prime}(x, y)}{f(x, y)}=\sum_{n=1}^{\infty} \widetilde{c}_{n}(y) x^{n}
$$

where ${ }^{\prime}$ denotes $\partial / \partial x$.

- Theorem: We have

$$
\widetilde{c}_{n}(y)=(-1)^{n-1} \xi_{0}(y)^{-n}+O\left(y^{\alpha n}\right)
$$

or equivalently

$$
\xi_{0}(y)=\left[(-1)^{n-1} \widetilde{c}_{n}(y)\right]^{-1 / n}+O\left(y^{\alpha n}\right)
$$

- This theorem provides an extraordinarily efficient method for computing the series $\xi_{0}(y)$:
- Compute the $\widetilde{c}_{n}(y)$ inductively using the recursion

$$
\widetilde{c}_{n}=n a_{n}-\sum_{k=1}^{n-1} \widetilde{c}_{k} a_{n-k}
$$

- Take the power $-1 / n$ to extract $\xi_{0}(y)$ through order $y^{\lceil\alpha n\rceil-1}$
- This abstracts the recursive method shown in Lecture $\# 1$ for the special case $F(x, y)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} y^{n(n-1) / 2}$.

Proof of Theorem (via complex analysis)

- Use complex-analysis argument to prove Theorem when $R=\mathbb{C}$ and f is a polynomial.
- Infer general validity by some abstract nonsense.

Lemma. Fix a real number $\alpha>0$, and let $P(x, y)=1+x+$ $\sum_{n=2}^{N} a_{n}(y) x^{n}$ where the $\left\{a_{n}(y)\right\}_{n=2}^{N}$ are polynomials with complex coefficients satisfying $a_{n}(y)=O\left(y^{\alpha(n-1)}\right)$. Then there exist numbers $\rho>0$ and $\gamma>0$ such that $P(\cdot, y)$ has precisely one root in the disc $|x|<\gamma|y|^{-\alpha}$ whenever $|y| \leq \rho$.

Idea of proof: Apply Rouché's theorem to $f(x)=x$ and $g(x)=$ $1+\sum_{n=2}^{N} a_{n}(y) x^{n}$ on the circle $|x|=\gamma|y|^{-\alpha}$.

Proof of Theorem when $R=\mathbb{C}$ and f is a polynomial:

 Write$$
P(x, y)=\prod_{i=1}^{k(y)}\left(1-\frac{x}{X_{i}(y)}\right)
$$

with $k(y) \leq N$. Therefore

$$
\frac{x P^{\prime}(x, y)}{P(x, y)}=\sum_{i=1}^{k(y)} \frac{-x / X_{i}(y)}{1-x / X_{i}(y)}
$$

and hence

$$
\widetilde{c}_{n}(y)=-\sum_{i=1}^{k(y)} X_{i}(y)^{-n} .
$$

Now, for small enough $|y|$, one of the roots is given by the convergent series $-\xi_{0}(y)$ and is smaller than $\gamma|y|^{-\alpha}$ in magnitude, while the
other roots have magnitude $\geq \gamma|y|^{-\alpha}$ by the Lemma. We therefore have

$$
\left|\widetilde{c}_{n}(y)-(-1)^{n-1} \xi_{0}(y)^{-n}\right| \leq(N-1) \gamma^{-n}|y|^{\alpha n}
$$

for small enough $|y|$, as claimed.

Proof of Theorem in general case: Write

$$
a_{n}(y)=\sum_{m=\lceil\alpha(n-1)\rceil}^{\infty} a_{n m} y^{m}
$$

Work in the ring $R=\mathbb{Z}[\boldsymbol{a}]$ where $\boldsymbol{a}=\left\{a_{n m}\right\}_{n \geq 2, m \geq\lceil\alpha(n-1)]}$ are treated as indeterminates. Then the claim of the Theorem amounts to a series of identities between polynomials in \boldsymbol{a} with integer coefficients. We have verified these identities when evaluated on collections \boldsymbol{a} of complex numbers of which only finitely many are nonzero; and this is enough to prove them as identities in $\mathbb{Z}[\boldsymbol{a}]$.

There is also a direct formal-power-series proof (due to Ira Gessel) at least in the case $\alpha=1$. I don't know whether it extends to arbitrary real $\alpha>0$.

Computational use of Theorem

- Can compute $\xi_{0}(y)$ through order y^{N-1} by computing $\widetilde{c}_{N}(y)$
- Do this by computing $\widetilde{c}_{n}(y)$ for $1 \leq n \leq N$ using recursion
- Observe that all $\widetilde{c}_{n}(y)$ can be truncated to order y^{N-1} [no need to keep the full polynomial of degree $n(n-1) / 2$]
- For F, have done $N=900$
[$N=400$ takes a minute, $N=900$ takes less than 6 hours; but $N=900$ needs 24 GB memory!]
- For Θ_{0}, have done $N=7000$
[$N=500$ takes a minute, $N=1500$ takes less than an hour; $N=7000$ took 11 days and 21 GB memory]
- For \widetilde{R}, have done $N=350$
[$N=50$ takes a minute, $N=100$ takes less than an hour; $N=350$ took a month and 10 GB memory]

Some positivity properties of formal power series

- Consider formal power series with real coefficients

$$
f(y)=1+\sum_{m=1}^{\infty} a_{m} y^{m}
$$

- For $\alpha \in \mathbb{R}$, define the class \mathcal{S}_{α} to consist of those f for which

$$
\frac{f(y)^{\alpha}-1}{\alpha}=\sum_{m=1}^{\infty} b_{m}(\alpha) y^{m}
$$

has all nonnegative coefficients (with a suitable limit when $\alpha=0$).

- In other words:
- For $\alpha>0($ resp. $\alpha=0)$, the class \mathcal{S}_{α} consists of those f for which f^{α} (resp. $\log f$) has all nonnegative coefficients.
- For $\alpha<0$, the class \mathcal{S}_{α} consists of those f for which f^{α} has all nonpositive coefficients after the constant term 1.
- Containment relations among the classes \mathcal{S}_{α} are given by the following fairly easy result:

Proposition (Scott-A.D.S., unpublished):
Let $\alpha, \beta \in \mathbb{R}$. Then $\mathcal{S}_{\alpha} \subseteq \mathcal{S}_{\beta}$ if and only if either
(a) $\alpha \leq 0$ and $\beta \geq \alpha$, or
(b) $\alpha>0$ and $\beta \in\{\alpha, 2 \alpha, 3 \alpha, \ldots\}$.

Moreover, the containment is strict whenever $\alpha \neq \beta$.

Application to deformed exponential function F
As shown last week, it seems that $\xi_{0}(y) \in \mathcal{S}_{1}$:

$$
\begin{aligned}
\xi_{0}(y)=1 & +\frac{1}{2} y+\frac{1}{2} y^{2}+\frac{11}{24} y^{3}+\frac{11}{24} y^{4}+\frac{7}{11} y^{5}+\frac{7}{16} y^{6} \\
& +\frac{493}{152} y^{7}+\frac{163}{384} y^{8}+\frac{323}{768} y^{9}+\frac{163}{3804} y^{10}+\frac{57283}{138240} y^{11} \\
& +\frac{179922}{41420} y^{12}+\frac{340171}{829410} y^{13}+\frac{25565}{55296} y^{14} \\
& +\ldots+\text { terms through order } y^{899}
\end{aligned}
$$

and indeed that $\xi_{0}(y) \in \mathcal{S}_{-1}$:

$$
\begin{aligned}
\xi_{0}(y)^{-1}=1 & -\frac{1}{2} y-\frac{1}{4} y^{2}-\frac{1}{12} y^{3}-\frac{1}{16} y^{4}-\frac{1}{48} y^{5}-\frac{7}{288} y^{6} \\
& -\frac{1}{96} y^{7}-\frac{7}{768} y^{8}-\frac{49}{612} y^{9}-\frac{13}{23040} y^{10}-\frac{17}{4608} y^{11} \\
& \quad-\frac{293}{92160} y^{12}-\frac{737}{276480} y^{13}-\frac{3107}{1658880} y^{14}
\end{aligned}
$$

$$
\text { - ... - terms through order } y^{899}
$$

But I have no proof of either of these conjectures!!!

- Note that $\xi_{0}(y)$ is analytic on $0 \leq y<1$ and diverges as $y \uparrow 1$ like $1 /[e(1-y)]$.
- It follows that $\xi_{0}(y) \notin \mathcal{S}_{\alpha}$ for $\alpha<-1$.

Application to partial theta function Θ_{0}
It seems that $\xi_{0}(y) \in \mathcal{S}_{1}$:

$$
\begin{aligned}
\xi_{0}(y)=1 & +y+2 y^{2}+4 y^{3}+9 y^{4}+21 y^{5}+52 y^{6}+133 y^{7}+351 y^{8} \\
& +948 y^{9}+2610 y^{10}+\ldots+\text { terms through order } y^{6999}
\end{aligned}
$$

and indeed that $\xi_{0}(y) \in \mathcal{S}_{-1}$:

$$
\begin{aligned}
\xi_{0}(y)^{-1}= & 1-y-y^{2}-y^{3}-2 y^{4}-4 y^{5}-10 y^{6}-25 y^{7}-66 y^{8} \\
& -178 y^{9}-490 y^{10}-\ldots-\text { terms through order } y^{6999}
\end{aligned}
$$

and indeed that $\xi_{0}(y) \in \mathcal{S}_{-2}$:

$$
\begin{aligned}
& \xi_{0}(y)^{-2}=1-2 y-y^{2} \quad-y^{4}-2 y^{5}-7 y^{6}-18 y^{7}-50 y^{8} \\
&-138 y^{9}-386 y^{10}-\ldots-\text { terms through order } y^{6999}
\end{aligned}
$$

Here I do have a proof of the first two properties (but not the third). Coming next week!

- Note that

$$
\frac{\xi_{0}(y)^{\alpha}-1}{\alpha}=y+\frac{\alpha+3}{2} y^{2}+\frac{(\alpha+2)(\alpha+7)}{6} y^{3}+O\left(y^{4}\right)
$$

- So $\xi_{0}(y) \notin \mathcal{S}_{\alpha}$ for $\alpha<-2$.

Application to $\widetilde{R}(x, y, q)=\sum_{n=0}^{\infty} \frac{x^{n} y^{n(n-1) / 2}}{(1+q) \cdots\left(1+q+\ldots+q^{n-1}\right)}$

- Can use explicit implicit function formula to prove that

$$
\xi_{0}(y ; q)=1+\sum_{n=1}^{\infty} \frac{P_{n}(q)}{Q_{n}(q)} y^{n}
$$

where

$$
Q_{n}(q)=\prod_{k=2}^{\infty}\left(1+q+\ldots+q^{k-1}\right)^{\left\lfloor n /\binom{k}{2}\right\rfloor}
$$

and $P_{n}(q)$ is a self-inversive polynomial in q with integer coefficients.

- Empirically $P_{n}(q)$ has two interesting positivity properties:
(a) $P_{n}(q)$ has all nonnegative coefficients. Indeed, all the coefficients are strictly positive except $\left[q^{1}\right] P_{5}(q)=0$.
(b) $P_{n}(q)>0$ for $q>-1$.
- Empirically $\xi_{0}(y ; q) \in \mathcal{S}_{-1}$ for all $q>-1$:

Can any of this be proven???

- It seems that $\widetilde{R}(x, y, q)$ is the right unification of Θ_{0} and F.
- But thus far my proofs are only for $q=0$ (i.e. Θ_{0}). Coming next week!
- Can anything be generalized to $q \neq 0$???
- Open problem: For $q=0$, prove $\xi_{0}(y) \in \mathcal{S}_{1}$ or \mathcal{S}_{-1} (or even \mathcal{S}_{-2}) directly from the explicit implicit function formula.
- If this works, it might be generalizable to $q \neq 0$.

