$$
\begin{aligned}
& \text { Roots } x_{k}(y) \text { of a formal power series } \\
& \qquad f(x, y)=\sum_{n=0}^{\infty} a_{n}(y) x^{n}
\end{aligned}
$$

with applications to graph enumeration and q-series

Alan Sokal
New York University / University College London

Lectures at Queen Mary - 11, 18, 25 March and 8 April 2011

LECTURE \#3

The leading root of the partial theta function

The basic set-up, reviewed

- Start from a formal power series

$$
f(x, y)=\sum_{n=0}^{\infty} a_{n}(y) x^{n}
$$

where
(a) $a_{0}(0)=a_{1}(0)=1$
(b) $a_{n}(0)=0$ for $n \geq 2$
(c) $a_{n}(y)=O\left(y^{\nu_{n}}\right)$ with $\lim _{n \rightarrow \infty} \nu_{n}=\infty$
and coefficients lie in a commutative ring-with-identity-element R.

- There exists a unique formal power series $x_{0}(y) \in R[[y]]$ satisfying $f\left(x_{0}(y), y\right)=0$. We call $x_{0}(y)$ the leading root of f.
- Since $x_{0}(y)$ has constant term -1 , we write $x_{0}(y)=-\xi_{0}(y)$ where $\xi_{0}(y)=1+O(y)$.
- We saw in Lecture \#2 that $\xi_{0}(y)$ can be computed by
- An elementary method.
- A method based on the explicit implicit function formula.
- A method based on the exponential formula.

Method based on the explicit implicit function formula

- In Lecture \#2 we derived the formula

$$
\frac{\xi_{0}(y)^{\beta}-1}{\beta}=\sum_{m=1}^{\infty} \frac{1}{m} \sum_{n_{1}, \ldots, n_{m} \geq 0}\binom{\beta-1+\sum n_{i}}{m-1} \prod_{i=1}^{m}(-1)^{n_{i}} \widehat{a}_{n_{i}}(y)
$$

where

$$
\widehat{a}_{n}(y)= \begin{cases}a_{n}(y)-1 & \text { for } n=0,1 \\ a_{n}(y) & \text { for } n \geq 2\end{cases}
$$

- Can this formula be used for proofs of nonnegativity???
- Recall the definition: $\xi_{0}(y) \in \mathcal{S}_{\beta}$ in case $\frac{\xi_{0}(y)^{\beta}-1}{\beta} \succeq 0$ (coefficientwise nonnegativity)
- Empirically I know that $\xi_{0}(y) \in \mathcal{S}_{\beta}$ when $a_{n}(y)=\alpha_{n} y^{n(n-1) / 2}$ and
(a) $\beta \geq-2$ with $\alpha_{n}=1$ (partial theta function)
(b) $\beta \geq-1$ with $\alpha_{n}=1 / n$! (deformed exponential function)
(c) $\beta \geq-1$ with $\alpha_{n}=(1-q)^{n} /(q ; q)_{n}$ and $q>-1$
- How can we see these facts from this formula??? [open combinatorial problem]
- All these examples have $\widehat{a}_{n}(y) \succeq 0$. The factors $(-1)^{n_{i}}$ then seem to cause trouble.

A very simple case: Alternating signs

Proposition. Suppose that

$$
(-1)^{n} \widehat{a}_{n}(y) \succeq 0 \quad \text { for all } n \geq 0
$$

where

$$
\widehat{a}_{n}(y)= \begin{cases}a_{n}(y)-1 & \text { for } n=0,1 \\ a_{n}(y) & \text { for } n \geq 2\end{cases}
$$

Then $\xi_{0}(y) \in \mathcal{S}_{\beta}$ and in fact

$$
\frac{\xi_{0}(y)^{\beta}-1}{\beta} \succeq \sum_{n=0}^{\infty}(-1)^{n} \widehat{a}_{n}(y)
$$

in the following cases:
(a) $\beta=1$
(b) $\beta=-1$ whenever $a_{0}(y)=1$
(c) $\beta=-3$ whenever $a_{0}(y)=a_{1}(y)=1$
(d) $\beta=-(2 k-1)$ whenever $a_{0}(y)=a_{1}(y)=1$ and $a_{2}(y)=\ldots=a_{k-1}(y)=0$

Proof. Follows almost immediately from
$\frac{\xi_{0}(y)^{\beta}-1}{\beta}=\sum_{m=1}^{\infty} \frac{1}{m} \sum_{n_{1}, \ldots, n_{m} \geq 0}\binom{\beta-1+\sum n_{i}}{m-1} \prod_{i=1}^{m}(-1)^{n_{i}} \widehat{a}_{n_{i}}(y)$
(a) Set $\beta=1$. Then the RHS of the Proposition comes from the term $m=1$. All the other terms are $\succeq 0$ since $(-1)^{n} \widehat{a}_{n}(y) \succeq 0$ and $\binom{\beta-1+\sum n_{i}}{m-1} \geq 0$.
(b) Set $\beta=-1$ and observe that the sum can be restricted to $n_{1}, \ldots, n_{m} \geq 1$. If $m=1$ we have $\binom{\beta-1+\sum n_{i}}{m-1}=1$ and we get the RHS of the Proposition. If $m \geq 2$ we have $\sum n_{i} \geq 2$, so that $\beta-1+\sum n_{i}$ is a nonnegative integer and hence $\binom{\beta-1+\sum n_{i}}{m-1} \geq 0$.
(c) is analogous to (b), but using $\beta=-3$ and observing that the sum can be restricted to $n_{1}, \ldots, n_{m} \geq 2$, so that $m \geq 2$ implies $\sum n_{i} \geq 4$.
(d) is analogous to (b), but using $\beta=-(2 k-1)$ and observing that the sum can be restricted to $n_{1}, \ldots, n_{m} \geq k$, so that $m \geq 2$ implies $\sum n_{i} \geq 2 k$.

A slight strengthening (by rescaling of f)

Corollary.

(a) If $(-1)^{n} \frac{a_{n}(y)}{a_{1}(y)} \succeq 0$ for all $n \neq 1$, then $\xi_{0}(y) \in \mathcal{S}_{1}$ and satisfies

$$
\xi_{0}(y) \succeq \frac{a_{0}(y)}{a_{1}(y)}+\sum_{n=2}^{\infty}(-1)^{n} \frac{a_{n}(y)}{a_{1}(y)}
$$

(b) If $1-\frac{a_{1}(y)}{a_{0}(y)} \succeq 0$ and $(-1)^{n} \frac{a_{n}(y)}{a_{0}(y)} \succeq 0$ for all $n \geq 2$, then $\xi_{0}(y) \in \mathcal{S}_{-1}$ and satisfies

$$
\xi_{0}(y)^{-1} \preceq \frac{a_{1}(y)}{a_{0}(y)}-\sum_{n=2}^{\infty}(-1)^{n} \frac{a_{n}(y)}{a_{0}(y)}
$$

Proof.

(a) Apply part (a) of the Proposition to $f(x, y) / a_{1}(y)$.
(b) Apply part (b) of the Proposition to $f(x, y) / a_{0}(y)$.

Alternative (elementary) proof of the Corollary

- No need to use explicit implicit function formula. Just bare hands!
- Proof of part (a): Start from the equation $f\left(-\xi_{0}(y), y\right)=0$, divide by $a_{1}(y)$, and add $\xi_{0}(y)$ to both sides:

$$
\xi_{0}(y)=\frac{a_{0}(y)}{a_{1}(y)}+\sum_{n=2}^{\infty}(-1)^{n} \frac{a_{n}(y)}{a_{1}(y)} \xi_{0}(y)^{n}
$$

- The unique solution to this equation can be found iteratively as follows: Define a map $\mathcal{F}: R[[y]] \rightarrow R[[y]]$ by

$$
(\mathcal{F} \xi)(y)=\frac{a_{0}(y)}{a_{1}(y)}+\sum_{n=2}^{\infty}(-1)^{n} \frac{a_{n}(y)}{a_{1}(y)} \xi(y)^{n}
$$

and define a sequence $\xi_{0}^{(0)}, \xi_{0}^{(1)}, \ldots \in R[[y]]$ by $\xi_{0}^{(0)}=1$ and $\xi_{0}^{(k+1)}=\mathcal{F} \xi_{0}^{(k)}$. I then claim that

$$
\xi_{0}^{(0)} \preceq \xi_{0}^{(1)} \preceq \xi_{0}^{(2)} \preceq \ldots \preceq \xi_{0}
$$

and that

$$
\xi_{0}^{(k)}(y)=\xi_{0}(y)+O\left(y^{k+1}\right) .
$$

Proof of claim:

- If $f(y)$ and $g(y)$ are formal power series satisfying $0 \preceq f \preceq g$, then the hypotheses of the Corollary [part (a)] guarantee that $0 \preceq \mathcal{F} f \preceq \mathcal{F} g$.
- Applying this repeatedly to the obvious inequality $0 \preceq \xi_{0}^{(0)} \preceq \xi_{0}^{(1)}$, we obtain $\xi_{0}^{(0)} \preceq \xi_{0}^{(1)} \preceq \xi_{0}^{(2)} \preceq \ldots$.
- Likewise, if $f(y)$ and $g(y)$ are formal power series satisfying $f(y)-g(y)=O\left(y^{\ell}\right)$ for some $\ell \geq 0$, then it is easy to see that $(\mathcal{F} f)(y)-(\mathcal{F} g)(y)=O\left(y^{\ell+1}\right) \quad\left[\right.$ since $a_{n}(y) / a_{1}(y)=O(y)$ for all $n \geq 2$].
- Applying this repeatedly to the obvious fact $\xi_{0}^{(1)}(y)-\xi_{0}^{(0)}(y)=$ $O(y)$, we obtain $\xi_{0}^{(k+1)}(y)-\xi_{0}^{(k)}(y)=O\left(y^{k+1}\right)$.
- It follows that $\xi_{0}^{(k)}(y)$ converges as $k \rightarrow \infty$ (in the topology of formal power series) to a limiting series $\xi_{0}^{(\infty)}(y)$, and that this limiting series satisfies $\mathcal{F} \xi_{0}^{(\infty)}=\xi_{0}^{(\infty)}$. But this means that $\xi_{0}^{(\infty)}(y)=\xi_{0}(y)$. It also follows that $\xi_{0}^{(k)}(y)=\xi_{0}(y)+$ $O\left(y^{k+1}\right)$. The inequality of the Corollary is precisely the statement $\xi_{0} \succeq \xi_{0}^{(1)}$.
- The proof of part (b) is similar.
- Can parts (c) and (d) of the Proposition be given a similarly elementary proof?
- Can results analogous to the Proposition be proven for the spaces \mathcal{S}_{β} with $\beta \neq 1,-1,-3,-5, \ldots$?

But isn't the case of alternating signs too trivial?

- After all, the most interesting examples have constant signs.
- Then the irritating factors $(-1)^{n_{i}}$ cannot be avoided.

The partial theta function $\Theta_{0}(x, y)=\sum_{n=0}^{\infty} x^{n} y^{n(n-1) / 2}$ (which has constant signs!)

It seems that $\xi_{0}(y) \in \mathcal{S}_{1}$:

$$
\begin{aligned}
\xi_{0}(y)=1 & +y+2 y^{2}+4 y^{3}+9 y^{4}+21 y^{5}+52 y^{6}+133 y^{7}+351 y^{8} \\
& +948 y^{9}+2610 y^{10}+\ldots+\text { terms through order } y^{6999}
\end{aligned}
$$

and indeed that $\xi_{0}(y) \in \mathcal{S}_{-1}$:

$$
\begin{aligned}
\xi_{0}(y)^{-1}= & 1-y-y^{2}-y^{3}-2 y^{4}-4 y^{5}-10 y^{6}-25 y^{7}-66 y^{8} \\
& -178 y^{9}-490 y^{10}-\ldots-\text { terms through order } y^{6999}
\end{aligned}
$$

and indeed that $\xi_{0}(y) \in \mathcal{S}_{-2}$:

$$
\begin{aligned}
\xi_{0}(y)^{-2}= & 1-2 y-y^{2}-y^{4}-2 y^{5}-7 y^{6}-18 y^{7}-50 y^{8} \\
& -138 y^{9}-386 y^{10}-\ldots-\text { terms through order } y^{6999}
\end{aligned}
$$

Can we prove any of this???
Yes!!! (for the first two properties; the third is still open)

Proof for the partial theta function

- Use standard notation for q-shifted factorials:

$$
\begin{aligned}
(a ; q)_{n} & =\prod_{j=0}^{n-1}\left(1-a q^{j}\right) \\
(a ; q)_{\infty} & =\prod_{j=0}^{\infty}\left(1-a q^{j}\right) \quad \text { for }|q|<1
\end{aligned}
$$

- A pair of identities for the partial theta function:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} x^{n} y^{n(n-1) / 2}=(y ; y)_{\infty}(-x ; y)_{\infty} \sum_{n=0}^{\infty} \frac{y^{n}}{(y ; y)_{n}(-x ; y)_{n}} \\
& \sum_{n=0}^{\infty} x^{n} y^{n(n-1) / 2}=(-x ; y)_{\infty} \sum_{n=0}^{\infty} \frac{(-x)^{n} y^{n^{2}}}{(y ; y)_{n}(-x ; y)_{n}}
\end{aligned}
$$

as formal power series and as analytic functions on $(x, y) \in \mathbb{C} \times \mathbb{D}$

- Rewrite these as

$$
\begin{aligned}
& \sum_{n=0}^{\infty} x^{n} y^{n(n-1) / 2}=(y ; y)_{\infty}(-x y ; y)_{\infty}\left[1+x+\sum_{n=1}^{\infty} \frac{y^{n}}{(y ; y)_{n}(-x y ; y)_{n-1}}\right] \\
& \sum_{n=0}^{\infty} x^{n} y^{n(n-1) / 2}=(-x y ; y)_{\infty}\left[1+x+\sum_{n=1}^{\infty} \frac{(-x)^{n} y^{n^{2}}}{(y ; y)_{n}(-x y ; y)_{n-1}}\right]
\end{aligned}
$$

- Brackets on the RHS (minus the initial $1+x$) have alternating signs in x (i.e. have nonnegative coefficients as a series in $-x$ and y)
- So we have reduced to the easy case of alternating signs!
- The second identity has $a_{0}(y)=1$, so we prove also $\xi_{0}(y) \in \mathcal{S}_{-1}$.

The preceding proof, written more explicitly

- Let's say we use the first identity:

$$
\Theta_{0}(x, y)=(y ; y)_{\infty}(-x y ; y)_{\infty}\left[1+x+\sum_{n=1}^{\infty} \frac{y^{n}}{(y ; y)_{n}(-x y ; y)_{n-1}}\right]
$$

- So $\Theta_{0}(x, y)=0$ is equivalent to "brackets $=0$ ".
- Insert $x=-\xi_{0}(y)$ and bring $\xi_{0}(y)$ to the LHS:

$$
\xi_{0}(y)=1+\sum_{n=1}^{\infty} \frac{y^{n}}{\prod_{j=1}^{n}\left(1-y^{j}\right) \prod_{j=1}^{n-1}\left[1-y^{j} \xi_{0}(y)\right]}
$$

- This formula can be used iteratively to determine $\xi_{0}(y)$, and in particular to prove the strict positivity of its coefficients:
- Define the map $\mathcal{F}: \mathbb{Z}[[y]] \rightarrow \mathbb{Z}[[y]]$ by

$$
(\mathcal{F} \xi)(y)=1+\sum_{n=1}^{\infty} \frac{y^{n}}{\prod_{j=1}^{n}\left(1-y^{j}\right) \prod_{j=1}^{n-1}\left[1-y^{j} \xi(y)\right]}
$$

- Define a sequence $\xi_{0}^{(0)}, \xi_{0}^{(1)}, \ldots \in \mathbb{Z}[[y]]$ by $\xi_{0}^{(0)}=1$ and $\xi_{0}^{(k+1)}=\mathcal{F} \xi_{0}^{(k)}$.
- Then $\xi_{0}^{(0)} \preceq \xi_{0}^{(1)} \preceq \ldots \preceq \xi_{0}$ and $\xi_{0}^{(k)}(y)=\xi_{0}(y)+O\left(y^{3 k+1}\right)$.
- In particular, $\lim _{k \rightarrow \infty} \xi_{0}^{(k)}(y)=\xi_{0}(y)$, and $\xi_{0}(y)$ has strictly positive coefficients.
- Thomas Prellberg has a combinatorial interpretation of $\xi_{0}(y)$ and $\xi_{0}^{(k)}(y)$.

Elementary proof of the first identity

- Proof uses nothing more than Euler's first and second identities

$$
\begin{aligned}
& \frac{1}{(t ; q)_{\infty}}=\sum_{n=0}^{\infty} \frac{t^{n}}{(q ; q)_{n}} \\
& (t ; q)_{\infty}=\sum_{n=0}^{\infty} \frac{(-t)^{n} q^{n(n-1) / 2}}{(q ; q)_{n}}
\end{aligned}
$$

valid for $(t, q) \in \mathbb{D} \times \mathbb{D}$ and $(t, q) \in \mathbb{C} \times \mathbb{D}$, respectively.

- Write

$$
\sum_{n=0}^{\infty} x^{n} y^{n(n-1) / 2}=\sum_{n=0}^{\infty} x^{n} y^{n(n-1) / 2} \frac{(y ; y)_{\infty}}{(y ; y)_{n}\left(y^{n+1} ; y\right)_{\infty}}
$$

- Insert Euler's first identity for $1 /\left(y^{n+1} ; y\right)_{\infty}$:

$$
\begin{aligned}
\Theta_{0}(x, y) & =(y ; y)_{\infty} \sum_{n=0}^{\infty} \frac{x^{n} y^{n(n-1) / 2}}{(y ; y)_{n}} \sum_{k=0}^{\infty} \frac{y^{(n+1) k}}{(y ; y)_{k}} \\
& =(y ; y)_{\infty} \sum_{k=0}^{\infty} \frac{y^{k}}{(y ; y)_{k}} \sum_{n=0}^{\infty} \frac{\left(x y^{k}\right)^{n} y^{n(n-1) / 2}}{(y ; y)_{n}} \\
& =(y ; y)_{\infty} \sum_{k=0}^{\infty} \frac{y^{k}}{(y ; y)_{k}}\left(-x y^{k} ; y\right)_{\infty} \text { by Euler's second identity } \\
& =(y ; y)_{\infty}(-x ; y)_{\infty} \sum_{k=0}^{\infty} \frac{y^{k}}{(y ; y)_{k}(-x ; y)_{k}}
\end{aligned}
$$

- This identity goes back to Heine (1847), but does not seem to be very well known.
- It can be found in Fine (1988) and Andrews and Warnaar (2007).
- Did anyone know it between 1847 and 1988???

Proof of the first and second identities

- A simple limiting case of Heine's first and second transformations

$$
\begin{aligned}
{ }_{2} \phi_{1}(a, b ; c ; q, z) & =\frac{(b ; q)_{\infty}(a z ; q)_{\infty}}{(c ; q)_{\infty}(z ; q)_{\infty}}{ }_{2} \phi_{1}(c / b, z ; a z ; q, b) \\
{ }_{2} \phi_{1}(a, b ; c ; q, z) & =\frac{(c / a ; q)_{\infty}(a z ; q)_{\infty}}{(c ; q)_{\infty}(z ; q)_{\infty}}{ }_{2} \phi_{1}(a b z / c, a ; a z ; q, c / a)
\end{aligned}
$$

for the basic hypergeometric function

$$
{ }_{2} \phi_{1}(a, b ; c ; q, z)=\sum_{n=0}^{\infty} \frac{(a ; q)_{n}(b ; q)_{n}}{(q ; q)_{n}(c ; q)_{n}} z^{n}
$$

- Just set $b=q$ and $z=-x / a$, then take $a \rightarrow \infty$ and $c \rightarrow 0$.
- This is how Heine (1847) proved the first identity.
- Heine didn't know his second transformation, which is apparently due to Rogers (1893).
- Who first wrote the second identity for the partial theta function???
- Surely it must have been known before Andrews and Warnaar (2007)!?!

Can any of this be generalized?

- Recall our friend

$$
\widetilde{R}(x, y, q)=\sum_{n=0}^{\infty} \frac{x^{n} y^{n(n-1) / 2}}{(1+q) \cdots\left(1+q+\ldots+q^{n-1}\right)}
$$

- Can this proof be extended to cases $q \neq 0$?
- Here is a general identity:

$$
\sum_{n=0}^{\infty} \frac{x^{n} y^{n(n-1) / 2}}{(q ; q)_{n}}=\frac{1}{(q ; q)_{\infty}} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} q^{\ell(\ell+1) / 2}}{(q ; q)_{\ell}} \Theta_{0}\left(x q^{\ell}, y\right)
$$

- Can deduce generalizations of the first and second identities for the partial theta function:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{x^{n} y^{n(n-1) / 2}}{(q ; q)_{n}}= \\
& \quad \frac{(y ; y)_{\infty}}{(q ; q)_{\infty}} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} q^{\ell(\ell+1) / 2}}{(q ; q)_{\ell}}\left(-x q^{\ell} ; y\right)_{\infty} \sum_{n=0}^{\infty} \frac{y^{n}}{(y ; y)_{n}\left(-x q^{\ell} ; y\right)_{n}} \\
& \sum_{n=0}^{\infty} \frac{x^{n} y^{n(n-1) / 2}}{(q ; q)_{n}}= \\
& \quad \frac{1}{(q ; q)_{\infty}} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} q^{\ell(\ell+1) / 2}}{(q ; q)_{\ell}}\left(-x q^{\ell} ; y\right)_{\infty} \sum_{n=0}^{\infty} \frac{\left(-x q^{\ell}\right)^{n} y^{n^{2}}}{(y ; y)_{n}\left(-x q^{\ell} ; y\right)_{n}}
\end{aligned}
$$

- But I don't know what to do with these formulae, because of the factors $(-1)^{\ell}$.

