Roots $x_k(y)$ of a formal power series $f(x, y) = \sum_{n=0}^{\infty} a_n(y) x^n$

with applications to graph enumeration and q-series

Alan Sokal New York University / University College London

Lectures at Queen Mary — 11, 18, 25 March and 8 April 2011

LECTURE #4

Higher roots and Hadamard-product formulae

Higher roots: The simplest situation (analytic approach)

• Consider, for concreteness, a power series

$$f(x,y) = \sum_{n=0}^{\infty} \alpha_n x^n y^{n(n-1)/2}$$

where $\alpha_0 = 1$ and $\alpha_n \in \mathbb{C} \setminus \{0\}$ satisfy $\lim_{n \to \infty} |\alpha_n|^{1/n^2} \leq 1$.

- Examples:
 - Partial theta function: $\alpha_n = 1$.
 - Deformed exponential function: $\alpha_n = 1/n!$.
 - Rogers-Ramanujan function: $\alpha_n = \frac{(1-q)^n}{(q;q)_n}$ with |q| < 1.
- For 0 < |y| < 1, $f(\cdot, y)$ is a nonpolynomial entire function of order 0.
- It therefore has infinitely many zeros $x_k(y)$ (k = 0, 1, 2, ...)and a Hadamard factorization

$$f(x,y) = \prod_{k=0}^{\infty} \left(1 - \frac{x}{x_k(y)}\right)$$

where $\sum |x_k(y)|^{-\alpha} < \infty$ for every $\alpha > 0$.

- For now the $x_k(y)$ have no special ordering, and need not be smooth in y.
- But wherever a root $x_k(y)$ is *simple*, it is analytic in y.

Higher roots at small |y| (analytic approach)

- Let $f(x,y) = \sum_{n=0}^{\infty} \alpha_n x^n y^{n(n-1)/2}$ with $\alpha_0 = 1$ and all $\alpha_n \neq 0$
- Leading root $x_0(y)$: write $f(x, y) = (\alpha_0 + \alpha_1 x) + \text{small corrections}$ $\implies x_0(y) = -(\alpha_0/\alpha_1) \, \xi_0(y)$ where $\xi_0(y) = 1 + O(y)$
- Root $x_k(y)$: write $f(x, y) = (\alpha_k x^k y^{k(k-1)/2} + \alpha_{k+1} x^{k+1} y^{k(k+1)/2}) +$ small corrections

$$\implies x_k(y) = -y^{-k} \left(\alpha_k / \alpha_{k+1} \right) \xi_k(y) \text{ where } \xi_k(y) = 1 + O(y)$$

• Therefore expect to write f as a Hadamard product

$$f(x,y) = \prod_{k=0}^{\infty} \left(1 + xy^k \frac{\alpha_{k+1}}{\alpha_k} \eta_k(y) \right)$$

where $\eta_k(y) = 1/\xi_k(y) = 1 + O(y)$ are *analytic* for small |y|.

• Can prove this when $|y| \lesssim 0.207875 / \sup_{n \ge 1} \left| \frac{a_{n-1} a_{n+1}}{a_n^2} \right|$.

• Proof uses a Rouché argument:

- There exist radii $0 = R_0 < R_1 < R_2 < \dots$ with $\lim_{k \to \infty} R_k = \infty$ (these radii depend on |y|) such that when $|x| = R_k$ the series is dominated by the term n = k and hence $f(x, y) \neq 0$.
- Then Rouché implies that there is precisely one root $x_k(y)$ in the annulus $R_k < |x| < R_{k+1}$.
- Since $\lim_{k\to\infty} R_k = \infty$, there are no other roots.
- Hence all the roots are simple and satisfy $|x_0(y)| < |x_1(y)| < \ldots$, and they vary analytically with y.
- All this holds when |y| lies in the stated disc, and can fail for larger |y|.

The general situation for *formal* power series

• Consider a formal power series

$$f(x,y) = \sum_{n=0}^{\infty} \alpha_n(y) y^{\lambda_n} x^n$$

where the $\alpha_n(y)$ are formal power series with invertible constant term (coefficients lying in a commutative ring-with-identity-element R) and $(\lambda_n)_{n=0}^{\infty}$ is a *strictly convex* sequence of integers.

- Then I expect to be able to prove the following:
 - There exists a unique formal Laurent series $x_k(y)$ with leading term of order $y^{-(\lambda_{k+1}-\lambda_k)}$ that is a root of f(x, y), and it is of the form

$$x_k(y) = -rac{lpha_k(0)}{lpha_{k+1}(0)} y^{-(\lambda_{k+1}-\lambda_k)} \xi_k(y)$$

where $\xi_k(y)$ is a formal power series with constant term 1.

- For $m \in \mathbb{Z}$ not of the form $\lambda_{k+1} \lambda_k$, there does not exist any formal Laurent series with leading term of order y^{-m} that is a root of f(x, y).
- -f(x,y) has a Hadamard factorization

$$f(x,y) = y^{\lambda_0} \prod_{k=0}^{\infty} \left(1 + x y^{\lambda_{k+1}-\lambda_k} \frac{\alpha_{k+1}(0)}{\alpha_k(0)} \eta_k(y) \right)$$

where $\eta_k(y) = 1/\xi_k(y) = 1 + O(y)$.

Computational use of Hadamard factorization

- Consider for simplicity $f(x, y) = \sum_{n=0}^{\infty} \alpha_n x^n y^{n(n-1)/2}$ with $\alpha_0 = 1$
- Recall from Lecture #2: Define $\{\widetilde{c}_n(y)\}_{n=1}^{\infty}$ by

$$\frac{x f'(x, y)}{f(x, y)} = \sum_{n=1}^{\infty} \widetilde{c}_n(y) x^n$$

where ' denotes $\partial/\partial x$. Can be computed by the recursion

$$\widetilde{c}_n(y) = n \alpha_n y^{n(n-1)/2} - \sum_{k=1}^{n-1} \widetilde{c}_k(y) \alpha_{n-k} y^{(n-k)(n-k-1)/2}$$

• Now insert Hadamard factorization

$$f(x,y) = \prod_{k=0}^{\infty} \left(1 + xy^k \frac{\alpha_{k+1}}{\alpha_k} \xi_k(y)^{-1} \right)$$

where $\xi_k(y) = 1 + O(y)$.

• Computing logarithmic derivative and taking $[x^n]$ yields

$$(-1)^{n-1}\widetilde{c}_n(y) = \sum_{k=0}^{\infty} (\alpha_{k+1}/\alpha_k)^n y^{kn} \xi_k(y)^{-n}$$

• Taking only the k = 0 term implies

$$(-1)^{n-1}\widetilde{c}_n(y) = (\alpha_1/\alpha_0)^n \,\xi_0(y)^{-n} + O(y^n) \,,$$

which allows us to compute $\xi_0(y)$ through order y^{n-1} (as we saw in greater generality in Lecture #2).

Computational use of Hadamard factorization (continued)

• But now we can go farther, using

$$(-1)^{n-1}\widetilde{c}_n(y) = \sum_{k=0}^{\infty} (\alpha_{k+1}/\alpha_k)^n y^{kn} \xi_k(y)^{-n}$$

to compute higher $\xi_k(y)$:

- First use $\widetilde{c}_n(y)$ to compute $\xi_0(y)$ through order y^{n-1} .
- Then use $\widetilde{c}_{n/2}(y)$ and $\xi_0(y)$ to compute $\xi_1(y)$ through order $y^{n/2-1}$.
- Then use $\widetilde{c}_{n/4}(y)$, $\xi_0(y)$ and $\xi_1(y)$ to compute $\xi_2(y)$ through order $y^{n/4-1}$.
- And so forth ...
- This computes $\xi_k(y)$ but only up to $k \approx \log_2 n_{\max}$.
- Can we do better by using the *complete* set of $\{\widetilde{c}_n(y)\}_{n=1}^{n_{\max}???}$
- And how can this calculation be organized most efficiently???
- It is like trying to calculate the eigenvalues of a matrix M given tr M^n for n = 1, 2, 3, ...

The partial theta function $\Theta_0(x, y) = \sum_{n=0}^{\infty} x^n y^{n(n-1)/2}$ We have proven that $\xi_0(y) \in \mathcal{S}_1$:

$$\xi_0(y) = 1 + y + 2y^2 + 4y^3 + 9y^4 + 21y^5 + 52y^6 + 133y^7 + 351y^8 + 948y^9 + 2610y^{10} + \dots + \text{ terms through order } y^{6999}$$

and more strongly that $\xi_0(y) \in \mathcal{S}_{-1}$:

$$\xi_0(y)^{-1} = 1 - y - y^2 - y^3 - 2y^4 - 4y^5 - 10y^6 - 25y^7 - 66y^8 - 178y^9 - 490y^{10} - \dots - \text{terms through order } y^{6999}$$

And we have conjectured that $\xi_0(y) \in \mathcal{S}_{-2}$:*

$$\xi_0(y)^{-2} = 1 - 2y - y^2 - y^4 - 2y^5 - 7y^6 - 18y^7 - 50y^8 - 138y^9 - 386y^{10} - \dots - \text{terms through order } y^{6999}$$

What about higher roots?

* Note Added (13 April 2011): I have now proven this, using an extension of the argument employed in Lecture #3 to prove $\xi_0(y) \in S_{-1}$.

Higher roots for the partial theta function

• It seems that ξ_1 has the *reverse* behavior:

$$\xi_1(y) = 1 - y^3 - 3y^4 - 9y^5 - 23y^6 - 60y^7 - 153y^8 - 397y^9 - 1043y^{10} - 2796y^{11} - \dots - \text{terms through order } y^{3499}$$

But I don't know how to prove it.

• ξ_2 has *no* fixed sign:

$$\xi_2(y) = 1 + y^6 + 3y^7 + 9y^8 + 22y^9 + 50y^{10} + \ldots + 1467y^{17} -192y^{18} - \ldots - 2749396y^{28} + 2493265y^{29} + \ldots$$

with sign alternations at period ≈ 23 . This suggests that the singularity of $\xi_2(y)$ closest to the origin has phase $\approx \pm 2\pi/23$. Indeed one finds a double root of $\Theta_0(x, y)$ at $y \approx 0.452374 e^{2\pi i/22.8092}$, which is closer to the origin than the real root $y \approx 0.516959$.

• ξ_3 seems to behave like ξ_1 :

$$\xi_3(y) = 1 - y^{10} - 3y^{11} - 9y^{12} - 22y^{13} - 51y^{14} - 107y^{15} -218y^{16} - 420y^{17} - \dots - \text{terms through order } y^{874}$$

- ξ_4 again has no fixed sign.
- And so forth: ξ_5 and ξ_7 behave like ξ_1 and ξ_3 , while ξ_6 has no fixed sign.
- How to prove this???
- And what is pattern of crossing of roots in the complex *y*-plane?

Partially explicit formulae for $\xi_k(y)$

- From G.E. Andrews, Ramanujan's "lost" notebook. IX. The partial theta function as an entire function, Adv. Math. 191, 408–422 (2005).
- Translated to my notation, we have

$$\xi_k(y) = 1 - \frac{A_k(y)}{(y;y)_{\infty}^3} - \frac{A_k(y) B_k(y)}{(y;y)_{\infty}^6} + O(y^{3(k+1)(k+2)/2})$$

where

$$A_k(y) = \sum_{j=k+1}^{\infty} (-1)^j y^{j(j+1)/2}$$
$$B_k(y) = \sum_{j=k+1}^{\infty} (-1)^j j y^{j(j+1)/2}$$

each start at order $y^{(k+1)(k+2)/2}$.

- Proof is based on perturbation around the full theta function, whose roots are known from the Jacobi triple product formula.
- Can this method be pushed to higher order? To all orders???[†]

[†] Note Added (13 April 2011): In discussion after my lecture, Thomas Prellberg asked whether we might have $(-1)^{k+1}A_k(y)/(y;y)_{\infty}^3 \succeq 0$ and $(-1)^{k+1}A_k(y)B_k(y)/(y;y)_{\infty}^6 \succeq 0$, and whether this might be used to prove the conjectured behavior $1 - \xi_k(y) \succeq 0$ for k odd. The answer to the first question appears to be yes; indeed, it appears that we have the stronger inequalities $(-1)^{k+1}A_k(y)/(y;y)_{\infty} \succeq 0$ and $(-1)^{k+1}B_k(y)/(y;y)_{\infty} \succeq 0$. Perhaps this can be proven using the identities for the partial theta function shown in Lecture #3. The second suggestion is a promising idea, but first we will need to extend this expansion to all orders.

Partially explicit formulae for $\xi_k(y)$, continued

- For the Rogers–Ramanujan function $A(x,y) = \sum_{n=0}^{\infty} \frac{x^n y^{n(n-1)}}{(y;y)_n}$, similar results can be found in
 - G.E. Andrews, Ramanujan's "lost" notebook. VIII. The entire Rogers–Ramanujan function, Adv. Math. 191, 393–407 (2005)
 - T. Huber, Hadamard products for generalized Rogers–Ramanujan series, J. Approx. Theory 151, 126–154 (2008)

But I don't yet understand these papers very well!

Another approach to higher roots

- Let $f(x,y) = \sum_{n=0}^{\infty} \alpha_n x^n y^{n(n-1)/2}$ with $\alpha_0 = 1$ and all $\alpha_n \neq 0$
- Substitute $x = (\alpha_k / \alpha_{k+1}) X y^{-k}$, and extract prefactors:

$$f_k(X, y) = \sum_{n=-k}^{\infty} \alpha_n^{(k)} X^n y^{n(n-1)/2}$$

where $\alpha_n^{(k)} = \frac{\alpha_{k+n}}{\alpha_k} \left(\frac{\alpha_k}{\alpha_{k+1}}\right)^n$.

- Root $\xi_k(y)$ for f is the *leading* root $\xi_0(y)$ of the *Laurent* series f_k .
- General theory of leading root extends to *bilateral* series

$$f(x,y) = \sum_{n=-\infty}^{\infty} a_n(y) x^n$$

where $a_n(y) \in R[[y]]$ with

(a)
$$a_0(0) = a_1(0) = 1;$$

(b) $a_n(0) = 0$ for $n \in \mathbb{Z} \setminus \{0, 1\};$ and
(c) $a_n(y) = O(y^{\nu_n})$ with $\lim_{n \to \pm \infty} \nu_n = +\infty$

• Explicit implicit function formula also extends:

- Might this help to understand $\xi_k(y)$ in the partial theta function?
- For deformed exponential function, $\alpha_n^{(k)}$ is a *rational* function of k for each n, so can do calculations *symbolically in k* (see Lecture #1).
- Does method based on exponential formula extend? I'm not sure \dots If it did, we could push calculations to large k and learn more.

• Finally, bilateral series should also have a Hadamard-product formula: prototype is Jacobi triple product formula for theta function.