
Roots xk(y) of a formal power series

f (x, y) =

∞∑

n=0

an(y) xn

with applications to graph enumeration
and q-series

Alan Sokal
New York University / University College London

Lectures at Queen Mary — 11, 18, 25 March and 8 April 2011

LECTURE #4

Higher roots and Hadamard-product formulae

1



Higher roots: The simplest situation (analytic approach)

• Consider, for concreteness, a power series

f(x, y) =
∞∑

n=0

αn xn yn(n−1)/2

where α0 = 1 and αn ∈ C r {0} satisfy lim
n→∞

|αn|
1/n2

≤ 1.

• Examples:

– Partial theta function: αn = 1.

– Deformed exponential function: αn = 1/n!.

– Rogers–Ramanujan function: αn =
(1 − q)n

(q; q)n
with |q| < 1.

• For 0 < |y| < 1, f( · , y) is a nonpolynomial entire function

of order 0.

• It therefore has infinitely many zeros xk(y) (k = 0, 1, 2, . . .)

and a Hadamard factorization

f(x, y) =
∞∏

k=0

(
1 −

x

xk(y)

)

where
∑

|xk(y)|−α < ∞ for every α > 0.

• For now the xk(y) have no special ordering, and need not be smooth in y.

• But wherever a root xk(y) is simple , it is analytic in y.
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Higher roots at small |y| (analytic approach)

• Let f(x, y) =

∞∑

n=0

αn xn yn(n−1)/2 with α0 = 1 and all αn 6= 0

• Leading root x0(y): write f(x, y) = (α0 + α1x) + small corrections

=⇒ x0(y) = −(α0/α1) ξ0(y) where ξ0(y) = 1 + O(y)

• Root xk(y): write f(x, y) = (αkx
kyk(k−1)/2 + αk+1x

k+1yk(k+1)/2) +

small corrections

=⇒ xk(y) = −y−k (αk/αk+1) ξk(y) where ξk(y) = 1 + O(y)

• Therefore expect to write f as a Hadamard product

f(x, y) =
∞∏

k=0

(
1 + xyk αk+1

αk
ηk(y)

)

where ηk(y) = 1/ξk(y) = 1 + O(y) are analytic for small |y|.

• Can prove this when |y| . 0.207875
/

sup
n≥1

∣∣∣∣
an−1 an+1

a2
n

∣∣∣∣ .

• Proof uses a Rouché argument:

– There exist radii 0 = R0 < R1 < R2 < . . . with lim
k→∞

Rk = ∞

(these radii depend on |y|) such that when |x| = Rk the series

is dominated by the term n = k and hence f(x, y) 6= 0.

– Then Rouché implies that there is precisely one root xk(y)

in the annulus Rk < |x| < Rk+1.

– Since lim
k→∞

Rk = ∞, there are no other roots.

– Hence all the roots are simple and satisfy |x0(y)| < |x1(y)| < . . .,

and they vary analytically with y.

– All this holds when |y| lies in the stated disc, and can fail for

larger |y|.
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The general situation for formal power series

• Consider a formal power series

f(x, y) =
∞∑

n=0

αn(y) yλn xn

where the αn(y) are formal power series with invertible constant term

(coefficients lying in a commutative ring-with-identity-element R)

and (λn)
∞
n=0 is a strictly convex sequence of integers.

• Then I expect to be able to prove the following:

– There exists a unique formal Laurent series xk(y) with leading

term of order y−(λk+1−λk) that is a root of f(x, y), and it is

of the form

xk(y) = −
αk(0)

αk+1(0)
y−(λk+1−λk) ξk(y)

where ξk(y) is a formal power series with constant term 1.

– For m ∈ Z not of the form λk+1 − λk, there does not exist

any formal Laurent series with leading term of order y−m

that is a root of f(x, y).

– f(x, y) has a Hadamard factorization

f(x, y) = yλ0

∞∏

k=0

(
1 + xyλk+1−λk

αk+1(0)

αk(0)
ηk(y)

)

where ηk(y) = 1/ξk(y) = 1 + O(y).
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Computational use of Hadamard factorization

• Consider for simplicity f(x, y) =
∞∑

n=0

αn xn yn(n−1)/2 with α0 = 1

• Recall from Lecture #2: Define {c̃n(y)}∞n=1 by

x f ′(x, y)

f(x, y)
=

∞∑

n=1

c̃n(y) xn

where ′ denotes ∂/∂x. Can be computed by the recursion

c̃n(y) = nαn yn(n−1)/2 −

n−1∑

k=1

c̃k(y) αn−k y(n−k)(n−k−1)/2

• Now insert Hadamard factorization

f(x, y) =

∞∏

k=0

(
1 + xyk αk+1

αk
ξk(y)−1

)

where ξk(y) = 1 + O(y).

• Computing logarithmic derivative and taking [xn] yields

(−1)n−1c̃n(y) =
∞∑

k=0

(αk+1/αk)
n ykn ξk(y)−n

• Taking only the k = 0 term implies

(−1)n−1c̃n(y) = (α1/α0)
n ξ0(y)−n + O(yn) ,

which allows us to compute ξ0(y) through order yn−1

(as we saw in greater generality in Lecture #2).
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Computational use of Hadamard factorization (continued)

• But now we can go farther, using

(−1)n−1c̃n(y) =
∞∑

k=0

(αk+1/αk)
n ykn ξk(y)−n

to compute higher ξk(y):

– First use c̃n(y) to compute ξ0(y) through order yn−1.

– Then use c̃n/2(y) and ξ0(y) to compute ξ1(y) through order

yn/2−1.

– Then use c̃n/4(y), ξ0(y) and ξ1(y) to compute ξ2(y) through

order yn/4−1.

– And so forth . . .

• This computes ξk(y) but only up to k ≈ log2 nmax.

• Can we do better by using the complete set of {c̃n(y)}nmax
n=1 ???

• And how can this calculation be organized most efficiently???

• It is like trying to calculate the eigenvalues of a matrix M

given tr Mn for n = 1, 2, 3, . . . .
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The partial theta function Θ0(x, y) =
∞∑

n=0
xn yn(n−1)/2

We have proven that ξ0(y) ∈ S1:

ξ0(y) = 1 + y + 2y2 + 4y3 + 9y4 + 21y5 + 52y6 + 133y7 + 351y8

+948y9 + 2610y10 + . . . + terms through order y6999

and more strongly that ξ0(y) ∈ S−1:

ξ0(y)−1 = 1 − y − y2 − y3 − 2y4 − 4y5 − 10y6 − 25y7 − 66y8

−178y9 − 490y10 − . . . − terms through order y6999

And we have conjectured that ξ0(y) ∈ S−2:
∗

ξ0(y)−2 = 1 − 2y − y2 − y4 − 2y5 − 7y6 − 18y7 − 50y8

−138y9 − 386y10 − . . . − terms through order y6999

What about higher roots?
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Real zeros of partial theta function

∗ Note Added (13 April 2011): I have now proven this, using an extension of the argument employed
in Lecture #3 to prove ξ0(y) ∈ S−1.
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Higher roots for the partial theta function

• It seems that ξ1 has the reverse behavior:

ξ1(y) = 1 − y3 − 3y4 − 9y5 − 23y6 − 60y7 − 153y8 − 397y9

−1043y10 − 2796y11 − . . . − terms through order y3499

But I don’t know how to prove it.

• ξ2 has no fixed sign:

ξ2(y) = 1 + y6 + 3y7 + 9y8 + 22y9 + 50y10 + . . . + 1467y17

−192y18 − . . . − 2749396y28 + 2493265y29 + . . .

with sign alternations at period ≈ 23. This suggests that the

singularity of ξ2(y) closest to the origin has phase ≈ ±2π/23.

Indeed one finds a double root of Θ0(x, y) at y ≈ 0.452374 e2πi/22.8092,

which is closer to the origin than the real root y ≈ 0.516959.

• ξ3 seems to behave like ξ1:

ξ3(y) = 1 − y10 − 3y11 − 9y12 − 22y13 − 51y14 − 107y15

−218y16 − 420y17 − . . . − terms through order y874

• ξ4 again has no fixed sign.

• And so forth: ξ5 and ξ7 behave like ξ1 and ξ3, while ξ6 has no fixed sign.

• How to prove this???

• And what is pattern of crossing of roots in the complex y-plane?
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Partially explicit formulae for ξk(y)

• From G.E. Andrews, Ramanujan’s “lost” notebook. IX. The

partial theta function as an entire function, Adv. Math. 191,

408–422 (2005).

• Translated to my notation, we have

ξk(y) = 1 −
Ak(y)

(y; y)3∞
−

Ak(y) Bk(y)

(y; y)6∞
+ O(y3(k+1)(k+2)/2)

where

Ak(y) =
∞∑

j=k+1

(−1)j yj(j+1)/2

Bk(y) =
∞∑

j=k+1

(−1)j j yj(j+1)/2

each start at order y(k+1)(k+2)/2.

• Proof is based on perturbation around the full theta function,

whose roots are known from the Jacobi triple product formula.

• Can this method be pushed to higher order? To all orders???†

† Note Added (13 April 2011): In discussion after my lecture, Thomas Prellberg asked whether
we might have (−1)k+1Ak(y)/(y; y)3∞ � 0 and (−1)k+1Ak(y)Bk(y)/(y; y)6∞ � 0, and whether this might
be used to prove the conjectured behavior 1 − ξk(y) � 0 for k odd. The answer to the first question
appears to be yes; indeed, it appears that we have the stronger inequalities (−1)k+1Ak(y)/(y; y)∞ � 0 and
(−1)k+1Bk(y)/(y; y)∞ � 0. Perhaps this can be proven using the identities for the partial theta function
shown in Lecture #3. The second suggestion is a promising idea, but first we will need to extend this
expansion to all orders.
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Partially explicit formulae for ξk(y), continued

• For the Rogers–Ramanujan function A(x, y) =
∞∑

n=0

xn yn(n−1)

(y; y)n
,

similar results can be found in

– G.E. Andrews, Ramanujan’s “lost” notebook. VIII. The entire

Rogers–Ramanujan function, Adv. Math. 191, 393–407

(2005)

– T. Huber, Hadamard products for generalized Rogers–Ramanujan

series, J. Approx. Theory 151, 126–154 (2008)

But I don’t yet understand these papers very well!
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Another approach to higher roots

• Let f(x, y) =
∞∑

n=0

αn xn yn(n−1)/2 with α0 = 1 and all αn 6= 0

• Substitute x = (αk/αk+1) X y−k, and extract prefactors:

fk(X, y) =
∞∑

n=−k

α(k)
n Xn yn(n−1)/2

where α(k)
n =

αk+n

αk

( αk

αk+1

)n

.

• Root ξk(y) for f is the leading root ξ0(y) of the Laurent series fk.

• General theory of leading root extends to bilateral series

f(x, y) =

∞∑

n=−∞

an(y) xn

where an(y) ∈ R[[y]] with

(a) a0(0) = a1(0) = 1;

(b) an(0) = 0 for n ∈ Z r {0, 1}; and

(c) an(y) = O(yνn) with lim
n→±∞

νn = +∞.

• Explicit implicit function formula also extends:

– Might this help to understand ξk(y) in the partial theta function?

– For deformed exponential function, α
(k)
n is a rational function

of k for each n, so can do calculations symbolically in k

(see Lecture #1).

• Does method based on exponential formula extend? I’m not sure . . .

If it did, we could push calculations to large k and learn more.
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• Finally, bilateral series should also have a Hadamard-product formula:

prototype is Jacobi triple product formula for theta function.
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