$$
\begin{aligned}
& \text { Roots } x_{k}(y) \text { of a formal power series } \\
& \qquad f(x, y)=\sum_{n=0}^{\infty} a_{n}(y) x^{n}
\end{aligned}
$$

with applications to graph enumeration and q-series

Alan Sokal
New York University / University College London

Lectures at Queen Mary - 11, 18, 25 March and 8 April 2011

LECTURE \#4

Higher roots and Hadamard-product formulae

Higher roots: The simplest situation (analytic approach)

- Consider, for concreteness, a power series

$$
f(x, y)=\sum_{n=0}^{\infty} \alpha_{n} x^{n} y^{n(n-1) / 2}
$$

where $\alpha_{0}=1$ and $\alpha_{n} \in \mathbb{C} \backslash\{0\}$ satisfy $\lim _{n \rightarrow \infty}\left|\alpha_{n}\right|^{1 / n^{2}} \leq 1$.

- Examples:
- Partial theta function: $\alpha_{n}=1$.
- Deformed exponential function: $\alpha_{n}=1 / n$!.
- Rogers-Ramanujan function: $\alpha_{n}=\frac{(1-q)^{n}}{(q ; q)_{n}}$ with $|q|<1$.
- For $0<|y|<1, f(\cdot, y)$ is a nonpolynomial entire function of order 0 .
- It therefore has infinitely many zeros $x_{k}(y)(k=0,1,2, \ldots)$ and a Hadamard factorization

$$
f(x, y)=\prod_{k=0}^{\infty}\left(1-\frac{x}{x_{k}(y)}\right)
$$

where $\sum\left|x_{k}(y)\right|^{-\alpha}<\infty$ for every $\alpha>0$.

- For now the $x_{k}(y)$ have no special ordering, and need not be smooth in y.
- But wherever a root $x_{k}(y)$ is simple, it is analytic in y.

Higher roots at small $|y|$ (analytic approach)

- Let $f(x, y)=\sum_{n=0}^{\infty} \alpha_{n} x^{n} y^{n(n-1) / 2}$ with $\alpha_{0}=1$ and all $\alpha_{n} \neq 0$
- Leading root $x_{0}(y)$: write $f(x, y)=\left(\alpha_{0}+\alpha_{1} x\right)+$ small corrections

$$
\Longrightarrow x_{0}(y)=-\left(\alpha_{0} / \alpha_{1}\right) \xi_{0}(y) \text { where } \xi_{0}(y)=1+O(y)
$$

- Root $x_{k}(y): \quad$ write $f(x, y)=\left(\alpha_{k} x^{k} y^{k(k-1) / 2}+\alpha_{k+1} x^{k+1} y^{k(k+1) / 2}\right)+$ small corrections

$$
\Longrightarrow x_{k}(y)=-y^{-k}\left(\alpha_{k} / \alpha_{k+1}\right) \xi_{k}(y) \text { where } \xi_{k}(y)=1+O(y)
$$

- Therefore expect to write f as a Hadamard product

$$
f(x, y)=\prod_{k=0}^{\infty}\left(1+x y^{k} \frac{\alpha_{k+1}}{\alpha_{k}} \eta_{k}(y)\right)
$$

where $\eta_{k}(y)=1 / \xi_{k}(y)=1+O(y)$ are analytic for small $|y|$.

- Can prove this when $|y| \lesssim 0.207875 / \sup _{n \geq 1}\left|\frac{a_{n-1} a_{n+1}}{a_{n}^{2}}\right|$.
- Proof uses a Rouché argument:
- There exist radii $0=R_{0}<R_{1}<R_{2}<\ldots$ with $\lim _{k \rightarrow \infty} R_{k}=\infty$ (these radii depend on $|y|)$ such that when $|x|=R_{k}$ the series is dominated by the term $n=k$ and hence $f(x, y) \neq 0$.
- Then Rouché implies that there is precisely one root $x_{k}(y)$ in the annulus $R_{k}<|x|<R_{k+1}$.
- Since $\lim _{k \rightarrow \infty} R_{k}=\infty$, there are no other roots.
- Hence all the roots are simple and satisfy $\left|x_{0}(y)\right|<\left|x_{1}(y)\right|<\ldots$, and they vary analytically with y.
- All this holds when $|y|$ lies in the stated disc, and can fail for larger $|y|$.

The general situation for formal power series

- Consider a formal power series

$$
f(x, y)=\sum_{n=0}^{\infty} \alpha_{n}(y) y^{\lambda_{n}} x^{n}
$$

where the $\alpha_{n}(y)$ are formal power series with invertible constant term (coefficients lying in a commutative ring-with-identity-element R) and $\left(\lambda_{n}\right)_{n=0}^{\infty}$ is a strictly convex sequence of integers.

- Then I expect to be able to prove the following:
- There exists a unique formal Laurent series $x_{k}(y)$ with leading term of order $y^{-\left(\lambda_{k+1}-\lambda_{k}\right)}$ that is a root of $f(x, y)$, and it is of the form

$$
x_{k}(y)=-\frac{\alpha_{k}(0)}{\alpha_{k+1}(0)} y^{-\left(\lambda_{k+1}-\lambda_{k}\right)} \xi_{k}(y)
$$

where $\xi_{k}(y)$ is a formal power series with constant term 1 .

- For $m \in \mathbb{Z}$ not of the form $\lambda_{k+1}-\lambda_{k}$, there does not exist any formal Laurent series with leading term of order y^{-m} that is a root of $f(x, y)$.
- $f(x, y)$ has a Hadamard factorization

$$
f(x, y)=y^{\lambda_{0}} \prod_{k=0}^{\infty}\left(1+x y^{\lambda_{k+1}-\lambda_{k}} \frac{\alpha_{k+1}(0)}{\alpha_{k}(0)} \eta_{k}(y)\right)
$$

where $\eta_{k}(y)=1 / \xi_{k}(y)=1+O(y)$.

Computational use of Hadamard factorization

- Consider for simplicity $f(x, y)=\sum_{n=0}^{\infty} \alpha_{n} x^{n} y^{n(n-1) / 2}$ with $\alpha_{0}=1$
- Recall from Lecture \#2: Define $\left\{\widetilde{c}_{n}(y)\right\}_{n=1}^{\infty}$ by

$$
\frac{x f^{\prime}(x, y)}{f(x, y)}=\sum_{n=1}^{\infty} \widetilde{c}_{n}(y) x^{n}
$$

where ' denotes $\partial / \partial x$. Can be computed by the recursion

$$
\widetilde{c}_{n}(y)=n \alpha_{n} y^{n(n-1) / 2}-\sum_{k=1}^{n-1} \widetilde{c}_{k}(y) \alpha_{n-k} y^{(n-k)(n-k-1) / 2}
$$

- Now insert Hadamard factorization

$$
f(x, y)=\prod_{k=0}^{\infty}\left(1+x y^{k} \frac{\alpha_{k+1}}{\alpha_{k}} \xi_{k}(y)^{-1}\right)
$$

where $\xi_{k}(y)=1+O(y)$.

- Computing logarithmic derivative and taking $\left[x^{n}\right]$ yields

$$
(-1)^{n-1} \widetilde{c}_{n}(y)=\sum_{k=0}^{\infty}\left(\alpha_{k+1} / \alpha_{k}\right)^{n} y^{k n} \xi_{k}(y)^{-n}
$$

- Taking only the $k=0$ term implies

$$
(-1)^{n-1} \widetilde{c}_{n}(y)=\left(\alpha_{1} / \alpha_{0}\right)^{n} \xi_{0}(y)^{-n}+O\left(y^{n}\right),
$$

which allows us to compute $\xi_{0}(y)$ through order y^{n-1} (as we saw in greater generality in Lecture \#2).

Computational use of Hadamard factorization (continued)

- But now we can go farther, using

$$
(-1)^{n-1} \widetilde{c}_{n}(y)=\sum_{k=0}^{\infty}\left(\alpha_{k+1} / \alpha_{k}\right)^{n} y^{k n} \xi_{k}(y)^{-n}
$$

to compute higher $\xi_{k}(y)$:

- First use $\widetilde{c}_{n}(y)$ to compute $\xi_{0}(y)$ through order y^{n-1}.
- Then use $\widetilde{c}_{n / 2}(y)$ and $\xi_{0}(y)$ to compute $\xi_{1}(y)$ through order $y^{n / 2-1}$.
- Then use $\widetilde{c}_{n / 4}(y), \xi_{0}(y)$ and $\xi_{1}(y)$ to compute $\xi_{2}(y)$ through order $y^{n / 4-1}$.
- And so forth ...
- This computes $\xi_{k}(y)$ but only up to $k \approx \log _{2} n_{\max }$.
- Can we do better by using the complete set of $\left\{\widetilde{c}_{n}(y)\right\}_{n=1}^{n_{\max } ? ? ?}$
- And how can this calculation be organized most efficiently???
- It is like trying to calculate the eigenvalues of a matrix M given $\operatorname{tr} M^{n}$ for $n=1,2,3, \ldots$.

The partial theta function $\Theta_{0}(x, y)=\sum_{n=0}^{\infty} x^{n} y^{n(n-1) / 2}$ We have proven that $\xi_{0}(y) \in \mathcal{S}_{1}$:

$$
\xi_{0}(y)=1+y+2 y^{2}+4 y^{3}+9 y^{4}+21 y^{5}+52 y^{6}+133 y^{7}+351 y^{8}
$$

$$
+948 y^{9}+2610 y^{10}+\ldots+\text { terms through order } y^{6999}
$$

and more strongly that $\xi_{0}(y) \in \mathcal{S}_{-1}$:

$$
\begin{aligned}
\xi_{0}(y)^{-1}= & 1-y-y^{2}-y^{3}-2 y^{4}-4 y^{5}-10 y^{6}-25 y^{7}-66 y^{8} \\
& -178 y^{9}-490 y^{10}-\ldots-\text { terms through order } y^{6999}
\end{aligned}
$$

And we have conjectured that $\xi_{0}(y) \in \mathcal{S}_{-2} \cdot: \cdot$

$$
\begin{aligned}
\xi_{0}(y)^{-2}= & 1-2 y-y^{2} \quad-y^{4}-2 y^{5}-7 y^{6}-18 y^{7}-50 y^{8} \\
& -138 y^{9}-386 y^{10}-\ldots-\text { terms through order } y^{6999}
\end{aligned}
$$

What about higher roots?

[^0]Higher roots for the partial theta function

- It seems that ξ_{1} has the reverse behavior:

$$
\begin{aligned}
\xi_{1}(y)=1 & -y^{3}-3 y^{4}-9 y^{5}-23 y^{6}-60 y^{7}-153 y^{8}-397 y^{9} \\
& -1043 y^{10}-2796 y^{11}-\ldots-\text { terms through order } y^{3499}
\end{aligned}
$$

But I don't know how to prove it.

- ξ_{2} has no fixed sign:

$$
\begin{array}{r}
\xi_{2}(y)=1+y^{6}+3 y^{7}+9 y^{8}+22 y^{9}+50 y^{10}+\ldots+1467 y^{17} \\
-192 y^{18}-\ldots-2749396 y^{28}+2493265 y^{29}+\ldots
\end{array}
$$

with sign alternations at period ≈ 23. This suggests that the singularity of $\xi_{2}(y)$ closest to the origin has phase $\approx \pm 2 \pi / 23$. Indeed one finds a double root of $\Theta_{0}(x, y)$ at $y \approx 0.452374 e^{2 \pi i / 22.8092}$, which is closer to the origin than the real root $y \approx 0.516959$.

- ξ_{3} seems to behave like ξ_{1} :

$$
\begin{aligned}
\xi_{3}(y)= & 1-y^{10}-3 y^{11}-9 y^{12}-22 y^{13}-51 y^{14}-107 y^{15} \\
& -218 y^{16}-420 y^{17}-\ldots-\text { terms through order } y^{874}
\end{aligned}
$$

- ξ_{4} again has no fixed sign.
- And so forth: ξ_{5} and ξ_{7} behave like ξ_{1} and ξ_{3}, while ξ_{6} has no fixed sign.
- How to prove this???
- And what is pattern of crossing of roots in the complex y-plane?

Partially explicit formulae for $\xi_{k}(y)$

- From G.E. Andrews, Ramanujan's "lost" notebook. IX. The partial theta function as an entire function, Adv. Math. 191, 408-422 (2005).
- Translated to my notation, we have

$$
\xi_{k}(y)=1-\frac{A_{k}(y)}{(y ; y)_{\infty}^{3}}-\frac{A_{k}(y) B_{k}(y)}{(y ; y)_{\infty}^{6}}+O\left(y^{3(k+1)(k+2) / 2}\right)
$$

where

$$
\begin{aligned}
& A_{k}(y)=\sum_{j=k+1}^{\infty}(-1)^{j} y^{j(j+1) / 2} \\
& B_{k}(y)=\sum_{j=k+1}^{\infty}(-1)^{j} j y^{j(j+1) / 2}
\end{aligned}
$$

each start at order $y^{(k+1)(k+2) / 2}$.

- Proof is based on perturbation around the full theta function, whose roots are known from the Jacobi triple product formula.
- Can this method be pushed to higher order? To all orders???

[^1]Partially explicit formulae for $\xi_{k}(y)$, continued

- For the Rogers-Ramanujan function $A(x, y)=\sum_{n=0}^{\infty} \frac{x^{n} y^{n(n-1)}}{(y ; y)_{n}}$,
similar results can be found in
- G.E. Andrews, Ramanujan's "lost" notebook. VIII. The entire Rogers-Ramanujan function, Adv. Math. 191, 393-407 (2005)
- T. Huber, Hadamard products for generalized Rogers-Ramanujan series, J. Approx. Theory 151, 126-154 (2008)

But I don't yet understand these papers very well!

Another approach to higher roots

- Let $f(x, y)=\sum_{n=0}^{\infty} \alpha_{n} x^{n} y^{n(n-1) / 2}$ with $\alpha_{0}=1$ and all $\alpha_{n} \neq 0$
- Substitute $x=\left(\alpha_{k} / \alpha_{k+1}\right) X y^{-k}$, and extract prefactors:

$$
f_{k}(X, y)=\sum_{n=-k}^{\infty} \alpha_{n}^{(k)} X^{n} y^{n(n-1) / 2}
$$

where $\alpha_{n}^{(k)}=\frac{\alpha_{k+n}}{\alpha_{k}}\left(\frac{\alpha_{k}}{\alpha_{k+1}}\right)^{n}$.

- Root $\xi_{k}(y)$ for f is the leading root $\xi_{0}(y)$ of the Laurent series f_{k}.
- General theory of leading root extends to bilateral series

$$
f(x, y)=\sum_{n=-\infty}^{\infty} a_{n}(y) x^{n}
$$

where $a_{n}(y) \in R[[y]]$ with
(a) $a_{0}(0)=a_{1}(0)=1$;
(b) $a_{n}(0)=0$ for $n \in \mathbb{Z} \backslash\{0,1\}$; and
(c) $a_{n}(y)=O\left(y^{\nu_{n}}\right)$ with $\lim _{n \rightarrow \pm \infty} \nu_{n}=+\infty$.

- Explicit implicit function formula also extends:
- Might this help to understand $\xi_{k}(y)$ in the partial theta function?
- For deformed exponential function, $\alpha_{n}^{(k)}$ is a rational function of k for each n, so can do calculations symbolically in k (see Lecture \#1).
- Does method based on exponential formula extend? I'm not sure ... If it did, we could push calculations to large k and learn more.
- Finally, bilateral series should also have a Hadamard-product formula: prototype is Jacobi triple product formula for theta function.

[^0]: * Note Added (13 April 2011): I have now proven this, using an extension of the argument employed in Lecture $\# 3$ to prove $\xi_{0}(y) \in \mathcal{S}_{-1}$.

[^1]: \dagger Note Added (13 April 2011): In discussion after my lecture, Thomas Prellberg asked whether we might have $(-1)^{k+1} A_{k}(y) /(y ; y)_{\infty}^{3} \succeq 0$ and $(-1)^{k+1} A_{k}(y) B_{k}(y) /(y ; y)_{\infty}^{6} \succeq 0$, and whether this might be used to prove the conjectured behavior $1-\xi_{k}(y) \succeq 0$ for k odd. The answer to the first question appears to be yes; indeed, it appears that we have the stronger inequalities $(-1)^{k+1} A_{k}(y) /(y ; y)_{\infty} \succeq 0$ and $(-1)^{k+1} B_{k}(y) /(y ; y)_{\infty} \succeq 0$. Perhaps this can be proven using the identities for the partial theta function shown in Lecture $\# 3$. The second suggestion is a promising idea, but first we will need to extend this expansion to all orders.

