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Abstract

Given a metric d on a permutation group G, the corresponding weight problem is
to decide whether there exists an element g ∈ G such that d(g, e) = k for some
k ∈ N. In this paper we show that this problem is NP-complete for many well
known metrics.
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1 Introduction

Given a metric d on Sn, the weight of a ∈ Sn is defined to be wd(a) = d(a, e),
where e is the identity. Now we are interesting in the following weight problem:

Problem 1.1 d-Weight Problem
Instance: Generators for G in the form of product cycles and k ∈ N .
Question: Whether there is an element g ∈ G such that wd(g) = k.

Often the permutation group G is given by a set of generating permutations
{g1, g2, · · · , gm} where each gi is presented as the product of cycles. From
such input many information, such as |G| and the membership test, can be
obtained by the Schreier–Sims algorithm in polynomial time [3]. And there
are also many other polynomial algorithms obtained for different aspects of
the property of G. For further information, [12] is a good resource.

Despite the discovery of these polynomial algorithms, many complexity
issues concerned G remain unknown. The main result of this paper is that
the weight problem of many well known metrics (Section 2) is NP-complete.

The NP-completeness of the weight problem for the Hamming metric was
independently discovered by Buchheim and Jünger in [1]. On the other hand,
the complexity of subgroup distance problem was discussed by Pinch for Cay-
ley metric in [11], and later been generalized to other cases by Buchheim etc.
in [2].

For the remainder of this paper, we will survey some metrics on permuta-
tion group in Section 2. The NP-completeness of the Hamming weight prob-
lem is proved in Section 3 and of other metrics in Section 4. The maximal
version of the weight problem is discussed in Section 5. Finally, in Section 6
we conclude with some open problems.

2 Some metrics on permutation groups

A metric d on Sn is called right-invariant if d(a, b) = d(ac, bc) for any a, b, c ∈
Sn. If d is right-invariant, then d(a, b) = d(ab−1, e) = wd(ab−1). In this
section we will survey some well known right-invariant metrics on Sn. For
more detailed discussion, we recommend [7,6].

• Hamming Distance: H(π, σ) = |{i|π(i) 6= σ(i)}|.
• Cayley Distance: T (π, σ) = minimum number of transpositions taking π to

σ.

• Footrule: l1(π, σ) =
∑n

i=1 |π(i)− σ(i)|.



• l∞(π, σ) = max1≤i≤n |π(i)− σ(i)|.
• Spearman’s rank correlation: l2(π, σ) =

√∑n
i=1(π(i)− σ(i))2.

• Lee Distance: L(π, σ) =
∑n

i=1 min(|π(i)− σ(i)|, n− |π(i)− σ(i)|)
• Kendall’s tau: I(π, σ) = the minimum number of pairwise adjacent trans-

positions needed to obtain σ from π, i.e,

I(π, σ) = |{(i, j)|1 ≤ i, j ≤ n, π(i) < π(j), σ(i) > σ(j)}.|
• Ulam’s Distance: U(π, σ) = n − the length of longest increasing subse-

quence in (σπ−1(1), · · · , σπ−1(n)).

3 Hamming weight problem

Elements g ∈ G with Hamming weight n (also called fixed point free elements
or derangements are of special interest in many applications. Formally, we
have

WH(g) = n ⇔ fixΩ(g) = {α ∈ Ω|αg = α} = ∅.
All such elements form a subset of G, denoted by:

FPF(G) = {g|WH(g) = n} = {g ∈ G|(∀α ∈ Ω)αg 6= α}.
In short, we will call G fixed point free (FPF) if FPF(G) 6= ∅. Therefore, the
problem of deciding whether there is an element g ∈ G with Hamming weight
n is the the same as the following problem:

Problem 3.1 Fixed-Point-Free (FPF)
Instance: Generators for G in the form of product cycles.
Question: Whether G is FPF.

Since we can verify whether or not g ∈ FPF(G) in polynomial time by
checking the action of g on each point of Ω, FPF belongs to NP. Now we will
prove the NP-completeness of the Hamming weight problem by showing that
FPF is NP-complete. To this end, we constructs a polynomial-time reduction
from NAESAT, a NP-complete problem [10] defined as:

Problem 3.2 NAESAT
Instance: Collection C = {c1, c2, · · · , cm} of clauses on a finite set U of boolean
variables such that |ci| = 3 for 1 ≤ i ≤ m.
Question: Is there a truth assignment for U such that in no clause are all three
literals equal in truth value (neither all true nor all false)?

Given an arbitrary instance of NAESAT (U,C), that is, a set of clauses
C = {c1, c2, · · · , cm} each with three literals, involving the variables x1, · · · , xn,



we will construct a permutation group G such that G is FPF if and only if
there is a truth assignment on the variables such that no clause has all literals
true, or all literals false.

G is generated by 2n generators {g1, g
′
1, · · · , gn, g

′
n} where the cycles struc-

ture of each generator is given as follows.

Step 1: For each xi in U , we have the variable gadget (2i − 1, 2i) and
associate it with generators gi and g′i.

Step 2: For each clause Cj = cj,1 ∨ cj,2 ∨ cj,3, we have the clause gadgets

• hj,1 = (p + 1, p + 2)(p + 3, p + 4)

• hj,2 = (p + 1, p + 3)(p + 2, p + 4)

• hj,3 = (p + 1, p + 4)(p + 2, p + 3)

where p = 2n + 4(j − 1).

Each clause gadget is associated with a generator via the following way:

• If cj,k = xt, then hj,k is associated with generator gt.

• If cj,k = x̄t, then hj,k is associated with generator g′t.

Because each instance of NAESAT with n variables and m clauses will
be transformed to a group with 2n generators acting on a set with 2n + 4m
points, such procedure can be completed in polynomial time. Now we claim:

Lemma 3.3 FPF(G) 6= ∅ if and only if (U,C) has a truth assignment such
that each clause has diverse values.

Proof.

Suppose t is a truth assignment of (U,C) satisfying the condition in the
lemma. We want to show that

g = gy1

1 g′1
1−y1 · · · gyn

n g′n
1−yn ∈ FPF(G),

where yj = 0 if t(x1) = F and yj = 1 otherwise.

For each α ∈ Ω, it belongs to one of the following two cases:

• α ≤ 2n. This implies ∃1 ≤ i ≤ n s.t α ∈ [2i − 1, 2i], therefore αg =
αgyi

i g′i
1−yi = α(2i− 1, 2i)yi+1−yi = α(2i− 1, 2i) 6= α.

• α > 2n. This means α ∈ [p+1, p+4] for some p = 2n+4(k−1), 1 ≤ k ≤ m.
W.l.o.g, we can assume α = 2n + 1 and c1 = x1 ∨ x2 ∨ x3. Then

αg = αgy1

1 gy2

2 gy3

3 = αhy1

1,1h
y2

1,2h
y3

1,3 6= α

because v = (y1, y2, y3) 6= (0, 0, 0) and v 6= (1, 1, 1).



Similarly, if g ∈ FPF(G), then g can be expressed as gy1

1 g′1
1−y1 · · · gyn

n g′n
1−yn

for some (y1, · · · , yn) where yk ∈ {0, 1} because each generator is of order 2.
Then we can show that the assignment t corresponding to (y1, · · · , yn) is a
truth assignment satisfying the condition of NAESAT. 2

The above lemma implies:

Theorem 3.4 FPF is NP-complete.

Our construction shows more:

Corollary 3.5 FPF is NP-complete even when G is an elementary abelian
2-group and each orbit has size at most 4.

Because FPF is a special case of the Hamming weight problem, now we
obtain the following theorem:

Theorem 3.6 The Hamming weight problem is NP-complete, even when G
is an elementary abelian 2-group and each orbit has size at most 4.

4 The Weight Problem for other metrics

In this section we will consider the weight problems corresponding to the
metrics defined in the Section 2.

4.1 Cayley weight problem

Lemma 4.1 For an elementary abelian 2-group G, we have

WH(g) = 2 ·WT (g) for all g ∈ G.

Proof. Because G is an elementary abelian 2-group, we know each g ∈ G has
only 1-cycles and 2-cycles. And any 1-cycle contributes 0 to both Hamming
and Cayley weights, while 2-cycles contribute 2 to the Hamming weight and
1 to the Cayley weight. 2

Theorem 4.2 The Cayley weight problem is NP-complete, even when G is
an elementary abelian 2-group and each orbit has size at most 4.

4.2 l1 and l2 weight problem

We define the span of an orbit to be the size of the interval between its
minimum and maximum element.



We need to modify the clause gadgets a bit to get the transformation from
NAESAT: for each clause Cj = cj,1 ∨ cj,2 ∨ cj,3, the clause gadgets should be:

• h′j,1 = (p+1, p+2)(p+3, p+4)(p+5, p+7)(p+6)(p+8)(p+9, p+12)(p+
10, p + 11)

• h′j,2 = (p + 1, p + 3)(p + 2, p + 4)(p + 5, p + 8)(p + 6, p + 7)(p + 9, p + 10)(p +
11, p + 12)

• h′j,3 = (p + 1, p + 4)(p + 2, p + 3)(p + 5, p + 6)(p + 7, p + 8)(p + 9, p + 11)(p +
10, p + 12)

where p = 2n + 12(k − 1).

Calculation shows that Wl1(h
′
j,1) = Wl1(h

′
j,2) = Wl1(h

′
j,3) = 20 and Wl2(h

′
j,1) =

Wl2(h
′
j,2) = Wl2(h

′
j,3) = 4

√
42. Therefore we have the following theorem:

Theorem 4.3 l1 and l2 weight problem is NP-complete, even when G is an
elementary abelian 2-group and each orbit has span at most 12.

In fact, we can define the lp metric on permutation group for any p ∈ N by
lp(π, σ) = p

√∑n
i=1(π(i)− σ(i))p and it’s easy to show the lp weight problem is

NP-complete.

4.3 l∞ weight problem

The proof that the l∞ weight problem is NP-complete is similar but a bit
more complicated and will appear elsewhere. We note one difference: the
l∞ maximum weight problem is in P. For the maximum l∞-weight is just the
maximum span of an orbit of G, and the orbits can be computed in polynomial
time.

4.4 Lee weight problem

The Lee weight problem is similar to the l1 weight problem. More precisely, if
G is a permutation group on {1, . . . , n} which fixes all points α > n/2, then
the Lee weight and l1 weight coincide on G.

Theorem 4.4 The Lee weight problem is NP-complete, even when G is an
elementary abelian 2-group and each orbit has span at most 12.



4.5 Kendall’s tau and Ulam weight problem

We use the same construction as that for lp weight problem in Section 4.2.
We have WI(h

′
j,1) = WI(h

′
j,2) = WI(h

′
j,3) = 12 and WU(h′j,1) = WU(h′j,2) =

WU(h′j,3) = 7, which imply the following theorem:

Theorem 4.5 Kendall’s tau and Ulam weight problems are NP-complete,
even when G is an elementary abelian 2-group.

5 Maximal Weight Problem

Let MaxWd(G) = max{wd(g)|g ∈ G}. The maximal version of weight prob-
lem is defined as follows.

Problem 5.1 d Maximal Weight Problem
Instance: Generators for G in the form of product cycles and a k ∈ N .
Question: Whether the maximal d weight value in G is k.

From the constructions in Section 3 and 4, we know:

Theorem 5.2 For all metrics in Section 2 except l∞, the corresponding max-
imal weight problems are NP-complete. The l∞ maximal weight problem is in
P.

6 Conclusions and Further Directions

The main contribution of this paper is that we discuss the (maximal) weight
problem for most of well known metrics on permutation groups. For maximal
weight problem, we show that l∞ is in P while all other metrics in Section 2 are
NP-complete. For weight problem, all metrics in Section 2 are NP-complete
except l∞, which remains open.

One natural consequence of the NP-completeness of weight problems is
that we know the corresponding counting problems are #P-complete. For ex-
ample, it’s easy to show #FPF is #P complete. But when G is transitive, the
FPF problem is trivial but the complexity #FPF remains unknown though
the approximation is easy via a conclusion in [4].

Another consequence is that to decide wether G contains some specified
structure element turns to be NP-complete. For instance, to decide the non-
trivial maximal cycles in G is NP-complete.

Finally, from our construction, the G is abelian but generally we know that
the computation in in nonabelian group is harder than that in abelian case. It



would be interesting to understand the role of commutativity in these issues.
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[1] Buchheim, C. and Jünger, M., Linear Optimization over Permutation Groups,
Discrete Optimization, 2 (2005), 308–319.

[2] Buchheim, C., Cameron, P.J., and Wu, T., On the Subgroup Distance Problem,
in preparation.

[3] Cameron, P.J., “Permutation groups,” Cambridge University Press, 1999.

[4] Cameron, P.J, and Cohen, A.M., On the number of fixed point free elements in
a permutation group, Discrete Math. 106/107,(1992),135–138.

[5] Cook, S., The complexity of theorem-proving procedures, Conference Record of
Third Annual ACM Symposium on Theory of Computing, 1971,151–158.

[6] Deza, M. and Huang, T., Metrics on Permutations, a Survey.

[7] Diaconis, P., “Group Representations in Probability and Statistics,” Institute
of Mathematical Statistics, 1988.

[8] Garey, M. and Johnson, D., “Computers and Intractability; A Guide to the
Theory of NP-Completeness,” WH Freeman and Company, 1979.

[9] Jordan, C., Recherches sur les substitutions, J. Liouville 17,(1872),151-367.

[10] Papadimitriou, C.H., “Computational Complexity,” Addison-Wesley Publishing
Company,Inc. 1994

[11] Pinch, R.G.E., The distance of a permutation from a subgroup of Sn,
Combinatorics, Probability and Computing, to appear, 2006.

[12] Seress, A., “Permutation group algorithms,” Cambridge University Press,2003.


