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I Lecture 1: Before and beyond Sudoku

I Lecture 2: Proving Theorems in Tehran
(after Reading Lolita in Tehran: A Memoir in Books by Azar
Nafisi)

I Lecture 3: Transgressing the boundaries
(with apologies to Alan Sokal, “Transgressing the
Boundaries: Towards a Transformative Hermeneutics of
Quantum Gravity”, Social Text, Spring/Summer 1996)

I Lecture 4: Cameron felt like counting
(After a character in The Hawkline Monster: A Gothic
Western by Richard Brautigan

‘I count a lot of things that there’s no need to count,’
Cameron said. ‘Just because that’s the way I am. But I
count all the things that need to be counted.’
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From Higman–Sims to Urysohn

Mathematicians in Scandale



My 60th birthday card (by Neill Cameron)



The adjacency matrix of a graph

The adjacency matrix of a graph has rows and columns
indexed by the vertices of the graph; the entry in position (v, w)
is 1 if v is joined to w, 0 otherwise.
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The spectrum of a graph

The spectrum of a graph is the spectrum (the multiset of
eigenvalues) of its adjacency matrix.

It is independent of the ordering of the vertices.

What does the spectrum tell us about the graph?
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Graphs with least eigenvalue −2

Two classes were known:
I Line graphs (vertices of L(Γ) are edges of Γ, joined if they

meet in a vertex);
I Cocktail party graphs (vertices paired up, each vertex

joined to ever other except its pair).

Hoffman merged these two classes together to obtain
generalized line graphs.
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The theorem

Hoffman (unpublished) may have showed that any
“sufficiently large” connected graph with least eigenvalue −2
is a generalized line graph. No indication what “sufficiently
large” meant.

In the 1970s, Jaap Seidel (Eindhoven) and Jean-Marie Goethals
(Brussels) were working on this when I visited them.
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Root systems

A root system is a finite set S of non-zero vectors in real
Euclidean space with the following properties:

I if v, cv ∈ S then c = ±1;

I if v, w ∈ S then 2(v ·w)/(v · v) is an integer;
I S is mapped to itself by the reflection in the hyperplane

perpendicular to any of its vectors. (The reflection
corresponding to v is the map w 7→ w− 2(v ·w)/(v · v)v.)

A root system is indecomposable if it is not contained in the
union of two non-zero orthogonal subspaces; it is spherical if
all roots have the same length.
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The classification

In the course of their classification of simple Lie algebras over
the complex numbers, Cartan and Killing had to find all the
indecomposable root systems.

The spherical ones, which concern us here, form two infinite
families, An (for n ≥ 1) and Dn (for n ≥ 4), and three “sporadic”
ones, E6, E7 and E8. (The subscript is the dimension of the
Euclidean space.)
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The root systems A2 and A3
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The connection

Let Γ have adjacency matrix A with least eigenvalue −2. Then
2I + A is positive semi-definite, so is a matrix of inner products
of a set of vectors in Euclidean space. The lines spanned by
these vectors make angles 90◦ or 60◦ with one another.

Enlarge this set to a maximal such set, and take vectors of fixed
length in both directions along each line. These vectors form a
root system!

So the graph can be “embedded” in An, Dn, E6, E7 or E8.
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The result

Since An is contained in Dn+1 and the exceptions in E8, we only
need consider Dn and E8.

A graph in Dn is precisely one of Hoffman’s generalized line
graphs.

Clearly only finitely many graphs are in E8 (in fact they have at
most 36 vertices).

So we have Hoffman’s theorem with an explicit bound! (“We”
is Jean-Marie Goethals, Jaap Seidel, Ernie Shult, and I)

But the story is not over . . .



The result

Since An is contained in Dn+1 and the exceptions in E8, we only
need consider Dn and E8.

A graph in Dn is precisely one of Hoffman’s generalized line
graphs.

Clearly only finitely many graphs are in E8 (in fact they have at
most 36 vertices).

So we have Hoffman’s theorem with an explicit bound! (“We”
is Jean-Marie Goethals, Jaap Seidel, Ernie Shult, and I)

But the story is not over . . .



The result

Since An is contained in Dn+1 and the exceptions in E8, we only
need consider Dn and E8.

A graph in Dn is precisely one of Hoffman’s generalized line
graphs.

Clearly only finitely many graphs are in E8 (in fact they have at
most 36 vertices).

So we have Hoffman’s theorem with an explicit bound! (“We”
is Jean-Marie Goethals, Jaap Seidel, Ernie Shult, and I)

But the story is not over . . .



The result

Since An is contained in Dn+1 and the exceptions in E8, we only
need consider Dn and E8.

A graph in Dn is precisely one of Hoffman’s generalized line
graphs.

Clearly only finitely many graphs are in E8 (in fact they have at
most 36 vertices).

So we have Hoffman’s theorem with an explicit bound! (“We”
is Jean-Marie Goethals, Jaap Seidel, Ernie Shult, and I)

But the story is not over . . .



The result

Since An is contained in Dn+1 and the exceptions in E8, we only
need consider Dn and E8.

A graph in Dn is precisely one of Hoffman’s generalized line
graphs.

Clearly only finitely many graphs are in E8 (in fact they have at
most 36 vertices).

So we have Hoffman’s theorem with an explicit bound! (“We”
is Jean-Marie Goethals, Jaap Seidel, Ernie Shult, and I)

But the story is not over . . .



Möbius function

This is a generalization of the “Inclusion–Exclusion Principle”.

If we know the size of the whole set, and the sizes of the circles
and their intersections, we can calculate the size of the part
outside all the circles. It is a sum of the other numbers
multiplied by +1 or −1.

For more general situations, we replace the ±1s by the values
of the Möbius function.



Möbius function

This is a generalization of the “Inclusion–Exclusion Principle”.

If we know the size of the whole set, and the sizes of the circles
and their intersections, we can calculate the size of the part
outside all the circles. It is a sum of the other numbers
multiplied by +1 or −1.

For more general situations, we replace the ±1s by the values
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Daily News

I Details of the museums of Tehran (to which we were taken
on excursions)

I The invited speakers’ mathematical genealogy
I Menus, e.g. for Bagali Polo, which we had for lunch
I Summary of Persian music
I Competitions for students, e.g. “Discover the middle

names of the invited speakers”
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The winner . . .



Proving theorems in Tehran

During and after the conference I did three pieces of work
which resulted in papers in the conference proceedings.

One of these was work with three postdocs at IPM: Maimani,
Omidi and Tayfeh-Reziae, in connection with a problem in
design theory.

We have a particular permutation group acting on a set of n
elements. (Actually the group PSL(2, q), where n = q + 1). We
want to find, for each value of k, all possible sizes of sets of
k-element subsets which admit the action of this group, and
how many of each size there are.
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Data on the group

To solve this problem, whe need to know three things about the
group:

I All of its subgroups (these were determined by Dickson in
the early 20th century).

I Their orbit lengths (these are relatively easy and were
worked out before).

I The so-called “Möbius function” of each possible
subgroup. This turns out also to be known but is more
obscure.
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A trailer

There are three “exceptional” subgroups of our group, which
don’t fit into a regular pattern. These are the rotation groups of
the regular polyhedra: tetrahedron, cube, and dodecahedron.

Ignoring signs, the values of the Möbius function of these three
groups turn out to be 3, 2, 1 respectively (ignoring signs).

But there is another occurrence of these numbers . . .
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John McKay
John McKay’s most famous discovery was

196 883 + 1 = 196 884.

This was at the time when the Monster, the largest sporadic
finite simple group, had been “discovered” but not
constructed. Evidence suggested that the smallest size of
matrices which can represent this group over the complex
numbers is 196 883× 196 883.

The number 196 884 is the first non-trivial Fourier coefficient of
the modular function, which arises in classical
(nineteenth-century) complex analysis.

At the time McKay was maybe the only mathematician in the
world who knew both of these facts. This led to the conjectures
termed “Monstrous moonshine” by Conway and Norton and
proved by Borcherds, connections to conformal field theory
and Lie algebras, etc.
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The McKay correspondence

John McKay noticed another curious thing.

A rotation group in 3-dimensional space (such as the
polyhedral groups) has a “double cover”, a group of 2× 2
complex unitary matrices twice as large.

Each of these groups is described by a graph, whose vertices
are the irreducible representations of the group, vertices V and
W being joined if W is a constituent of V⊗ S, where S is the
representation by 2× 2 matrices we start with.

The fact that S is unitary implies that the graph is undirected. If
we label each vertex with its dimension, the number at each
vertex is the sum of the numbers at its neighbours.
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we label each vertex with its dimension, the number at each
vertex is the sum of the numbers at its neighbours.



The McKay correspondence

The graphs associated to the binary polyhedral groups are
precisely the extended Coxeter–Dynkin diagrams associated
with the exceptional root systems E6, E7 and E8. These
diagrams are obtained by taking a “fundamental basis” (with
non-positive inner products), and adjoining the “largest root”.s s s s s s s s s s s s s s s s s s s sss s s



Connection numbers

Each root system spans a lattice L in Euclidean space. Because
the inner products of root vectors are integers, the lattice is
contained in its dual lattice L†, consisting of all vectors v such
that v ·w ∈ Z for all w ∈ L. It is known that L†/L is a finite
group. Its order is the connection number of the root system.

For the root systems E6, E7, E8, the connection numbers are
3, 2, 1 respectively (the same as the Möbius functions of the
polyhedral groups.)

What is the connection?
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From Higman–Sims to Urysohn

A character in my thesis was a remarkable graph with 100
vertices constructed by Higman and Sims. It contains no
triangles, and the automorphism group is transitive on 3-claws.
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Its automorphism group has a simple subgroup of index 2, the
sporadic Higman–Sims group.
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Henson’s graph

Henson discovered an infinite graph with some similarities. It
has no triangles, and the automorphism group is transitive on
n-claws for all n. (Its automorphism group is also simple, a
very recent result of Macpherson and Tent.)

For rather complicated reasons I began to wonder: Does
Henson’s graph admit a cyclic automorphism? That is, can you
arrange the vertices along a line so that a shift one place to the
right preserves the graph?
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Sum-free sets

If so, label the vertices by integers, and let S be the set of
positive neighbours of zero. Then

I S determines the graph;
I the graph is triangle-free if and only if S is sum-free (i.e. if

x, y ∈ S, then x + y /∈ S);
I the graph is Henson’s if and only if the sum-free set is

universal.
No explicit construction of a universal sum-free set is known
. . .
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The random graph

If we forget about the triangle-free condition, there is a
remarkable countable graph called the random graph. As its
name suggests, if you choose edges at random, you are almost
certain to get this graph!

If you choose a set S of positive integers at random, you are
almost certain to get a universal set, which will give a cyclic
automorphism of the random graph.
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Random sum-free sets

If you choose a sum-free set at random, it turns out that you
don’t get a universal sum-free set. Something much more
interesting happens . . .

Universal sum-free sets do exist; the existence proof is
non-constructive, but uses ideas from topology (Baire category)
rather than probability.



Random sum-free sets

If you choose a sum-free set at random, it turns out that you
don’t get a universal sum-free set. Something much more
interesting happens . . .

Universal sum-free sets do exist; the existence proof is
non-constructive, but uses ideas from topology (Baire category)
rather than probability.



Random sum-free sets

If you choose a sum-free set at random, it turns out that you
don’t get a universal sum-free set. Something much more
interesting happens . . .

Universal sum-free sets do exist; the existence proof is
non-constructive, but uses ideas from topology (Baire category)
rather than probability.



The Urysohn space

After I spoke about the random graph at the European
Congress of Mathematics at Barcelona in 2000, Anatoly Vershik
told me about the Urysohn space, a remarkable metric space
which is in some sense the “random complete metric space”.

By similar methods, we were able to show that the Urysohn
space also admits a cyclic isometry all of whose cycles are
dense; so the space has an abelian group structure. Indeed it
has many different abelian group structures! The story goes on
. . .
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