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A Background

The theory of finite groups is of central importance in mathematics, and finds wide applications in all
the physical sciences and elsewhere. In essence it is the deep study of symmetry in all its innumerable
manifestations, and so has applications in all situations where symmetry occurs. The building blocks of
finite groups are the ‘simple’ groups, analogous to the prime numbers in number theory, which are so-
called because they cannot be broken down into smaller pieces. The study of ‘simple’ groups, however,
just like the study of prime numbers, turns out to be not simple at all.

The completion around 1980 of the massive world-wide project for complete classification of the finite
simple groups (see, for example, [17]), revealed that they mostly fall into various reasonably well under-
stood families, with precisely twenty-six exceptions, known as the ‘sporadic’ simple groups. These range
in size from the little Mathieu group, known since 1860, which has 7920 elements, to the Fischer–Griess
Monster (or Friendly Giant), ([18], [12]), suspected since 1973 but not constructed until 1980, which
has nearly 1054 elements. The latter is of particular interest, and all but six of the other sporadic
groups may be found within it. It has attracted enormous interest since its discovery and turns out to
be connected with such diverse areas as modular forms, quantum field theory and Kac–Moody algebras
[4]. The recent award of a Fields Medal to Richard Borcherds was for his work in this area. At least
two conferences have been devoted entirely to this single group and its properties.

Now that we know the names of all the finite simple groups, attention has shifted to studying their
properties, especially their maximal subgroups, and Brauer character tables. There has been a major
worldwide project in classifying the maximal subgroups of the ‘generic’ simple groups, which is still
very much in progress. When it comes to the sporadic groups, however, the ‘generic’ methods do not
apply, and essentially only ‘ad hoc’ methods are useful.

Computation has played, and continues to play, an important role in the investigation of the other 25
sporadic simple groups (see, for example, the works of the proposer, P. Kleidman and S. A. Linton,
referred to in the bibliography in [30]). Such computation generally depends on representing elements
of the group as permutations or matrices and determining the images of points or vectors under group
elements and products of group elements. With modern computers, one can work with matrices up to di-
mension 20000 or so, over small fields, and with permutations on up to 10 million points. Unfortunately,
the Monster has no matrix representation smaller than dimension 196882, or permutation representa-
tion on fewer than about 1020 points. For this reason, and since most of the relevant algorithms are
cubic in the dimension, existing methods will not extend directly to this group.

In this project an alternative, more mathematically sophisticated approach is taken. We no longer store
the group generators as huge matrices, using matrix multiplication to find the images of vectors under
group elements. Instead we store the generators as subroutines which compute the images of vectors
directly. This approach makes certain calculations enormously faster, but at the same time necessitates
a complete rethinking of the methods for solving standard problems. Essentially this is because we
can no longer multiply group elements together, so that algorithms which in the standard model are
polynomial-time, now become exponential-time.
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B Key advances and supporting methodology

B.1 Aims and Objectives

The aim of the project was to further research into and understanding of:

• the Fischer–Griess Monster;
• sporadic (and other) simple groups and related structures and
• computational algebra.

The specific objectives of the project were:

• to improve existing software enabling elements of the Fischer–Griess Monster to be represented
and manipulated, so that it can usefully be made available to other researchers in the field;

• to make progress in the maximal subgroup problem for the Monster—specifically we aim to deal
with at least half of the remaining 11 cases;

• to gain insight into the Monster, in particular into its subgroup structure; and
• to answer other specific questions about the Monster, which other researchers in the field wish to

know the answers to.

These objectives were achieved:

• Software was improved and converted into both GAP and MAGMA. The latter version is by far
the faster of the two, and will be made available in a future version of MAGMA.

• Six of the 11 cases of the maximal subgroup problem have been completed, and three more are
in progress, with completion envisaged soon.

• Much other information about subgroups of the Monster was obtained.
• Work is in progress on various aspects: classification of ‘nets’, character tables of some maximal

subgroups, explicit constructions of small representations of some maximal subgroups, etc.

B.2 Methodology

Experience over many years has shown that the only way to determine completely the very small
maximal subgroups of a large sporadic group is by extensive computer searches, coupled with detailed
theoretical knowledge of the larger and already known maximal subgroups. The basic method is to
build up from small known subgroups (usually soluble groups and A5) by extending the normalizer of
some proper subgroup. On the other hand, this group is still so big relative to available technology, that
a näıve application of standard techniques will not work. Our work uses a novel approach, avoiding
multiplications of group elements entirely. This entails quite new methods of computing with elements
of the group, and therefore new algorithms for finding the necessary subgroups.

In the case of the Monster, we have three computer constructions, the 2-local construction over GF (3)
(see [31]), and the 3-local construction over GF (2) (see [26]) and over GF (7). For classifying maximal
subgroups, we have so far used the first construction exclusively. The extra benefits of working with
involutions seem to be crucial for our calculations.

The two constructions using the 3-local subgroups were used to calculate character values modulo 14,
in order to determine conjugacy classes of elements. The subgroup 31+122.Suz:2 has been constructed
again over the field of order 103, in order to help in calculating the character table of this group.

One crucial step in our work (for the cases L2(16) and U3(4) of the maximal subgroup problem) is
to create a small representation of the subquotient C(5B)/〈5B〉 ∼= 56:2.J2 from specific generators of
C(5B) in the 196882-dimensional representation of the Monster. We used the techniques of Lübeck and
Neunhöffer [32] to create such a representation, implicitly permuting an orbit of 15625 vectors (which
is too big to be stored in our computer memory).

B.3 Description of the work undertaken

The 11 cases of the maximal subgroup problem which were left open at the start of the grant were the
classifications of subgroups with socle isomorphic to L2(q) (q = 7, 8, 13, 16, 17, 27), U3(q) (q = 3, 4, 8),
L3(3) and Sz(8). In each case we needed to identify a suitable generating amalgam, such that it is
possible to enumerate all realizations of the amalgam in the Monster. The first amalgam we looked
at was (S4, S4)S3 (it turned out that we did not need to use (S4, S4)D8). This dealt with the cases
L2(7), L2(17), L3(3) and U3(3) (see [20]). There were several different classes of S4 to consider, and the
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CPU requirement is measured in decades for each case. As we were compelled to continue borrowing
computing resources for these cases, they took longer than originally anticipated.

The next case we dealt with was L2(13), via the amalgam (13:6, D12)6. The number of cases here
is huge, and the computations are still continuing, although all the programming is complete and we
simply have to wait for the programs to finish running.

Two more cases have been completed, namely L2(8) and L2(16). The former used the amalgam
(23:7, D14)7, and the latter (A5, D30)D10 . Work is still in progress on the cases U3(4) and U3(8),
and we envisage that these cases will be completed soon. The case U3(4) is being done by taking a
subgroup A5 × 5 (which in the case we are looking at, when the A5 contains 5B-elements, is unique
up to conjugacy in the Monster), and extending a diagonal 5-element to D10. This merely needs more
computer time to run through the cases which have already been determined. The case U3(8) is less
far advanced, but we believe that the amalgam (L2(8), L2(8))23 will work here.

The remaining two cases, L2(27) and Sz(8), have so far remained resistant to our attacks. In these
cases there is no convenient amalgam to use, and we have not made as much progress as we might have
hoped in utilising an inconvenient amalgam! (The amalgam (23:7, D14)7 for Sz(8) unfortunately does
not work. In the case of L2(8), we can complete the calculation because the 7-elements are in class 7B,
and we can show that the group 23:7 lies inside the involution centralizer. For Sz(8) this strategy does
not work because we have to consider 7A-elements as well.)

We also calculated the Schur indicator of the 196882-dimensional representation over GF (2). This turns
out to be +, showing that the Monster lies inside the corresponding orthogonal group [23].

At the same time, my research student Richard Barraclough was working on various aspects of the
structure of the Monster. First, he improved the software for both the 3-local constructions, so that
he could measure traces of matrices mod 2 and mod 7 effectively, thereby determining character values
modulo 14. Combining this with the order of the element, and the same information for various powers,
gives enough information to determine the conjugacy class to which the element belongs, up to some
ambiguities [3].

Secondly, he is looking at classifying ‘nets’ in the sense of S. P. Norton. These are obtained by applying
braiding operations to triples (a, b, c) of 2A-elements in the Monster. These nets have ‘faces’ with at
most 6 sides, so are either genus 0 (‘footballs’) or genus 1 (toroidal). So far he has calculated all the nets
centralized by an element of prime order ≥ 7. Work is in progress on those centralized by elements of
order 2, 3 or 5, after which only those with trivial centralizer remain. These of course are the hardest,
and most interesting, cases.

In the course of this work he has calculated the character table of 31+122Suz2, and the class fusion to
the Monster, in order to identify all the nets centralized by an element of class 3B.

When Dr Holmes took up her Dorothy Hodgkin Fellowship, Dr Bray took over her post for the final
8 months of the project. I decided to utilise his expertise in cohomology and non-split extensions of
groups, and characteristic 0 representations, to investigate other interesting aspects of the Monster.
First, we constructed representations of most of the (known) maximal subgroups of the Monster. The
interesting cases here are the p-local subgroups, especially when p is small. He used his knowledge to
excellent effect in constructing groups such as the non-split 38O−8 (3).2 in 204 dimensions over GF (3),
independently of the existence of the Monster.

The only maximal subgroups which have not been treated in this way are the 2-local subgroups 2.B,
21+24Co1, 210+16O+

10(2), 25+10+20(S3 × L5(2)) and 23+6+12+18(L3(2)× 3S6).

Secondly, Dr Bray initiated a construction of the Monster representation in characteristic 0. This
has not yet been completed, and may not be of much use unless or until we have better methods of
computing with it.

C Project plan review

The proposed start date of September 2002 was brought forward, as the proposed PDRA, Dr Holmes,
was available earlier, and we started instead in May 2002. Purchase and installation of the computer
was however delayed by some months because the School computer officer did not have the time to deal
with it. Other than this, the project ran closely according to plan.

The transfer of Dr Holmes onto other funding after 16 months enabled us to appoint Dr Bray for 8
months to work on other aspects of the Monster.
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Our original plan to convert our software into a GAP share package was abandoned, as the GAP
infrastructure was inadequate to support the computations required. Instead it is to be incorporated
into a future version of MAGMA. Papers have been prepared for publication during the course of the
project, rather than at the end, as this seems more efficient. Timing of visits to collaborators and
conferences was changed according to availability.

D Research impact and benefits to society

Mathematicians working with groups greatly appreciate the ability to perform explicit calculations, as
the wide use of packages such as GAP and MAGMA testifies. Similarly, the explicit generators for the
other 25 of the 26 sporadic simple groups which I have collected (see [37]) are well used. This suggests
that there will be a strong demand for our explicit generators for the Monster, and the MAGMA
programs to manipulate them. This will give an opportunity for mathematicians who work with the
other sporadic groups to extend their work to the Monster.

Other immediate beneficiaries of this work will be the considerable number of mathematicians who
study the Monster and the structures associated to it. For example, Jianbei An (Auckland) is using
our constructions of maximal subgroups to verify the Alperin–McKay–Dade–Uno conjectures for the
Monster (see also [1, 2]). The Monster has a significance beyond being the largest of the sporadic
simple groups, due to its connections with other areas of mathematics and theoretical physics, including
modular functions, and string theory, so researchers in these other areas will also benefit.

The work on maximal subgroups is a significant contribution to the ongoing world-wide project on
classifying the maximal subgroups of all finite simple groups. Once the remaining cases in the Monster
are completed (probably in the next couple of years) this will complete the determination of all the
maximal subgroups of all the sporadic simple groups, which will be a siginificant milestone.

E Explanation of expenditure

Expenditure closely followed the original plan, and paid for (i) a PDRA to do the work, and (ii) a
powerful computer to perform the necessary calculations.

Dr Petra Holmes was appointed at the start of the grant, as envisaged in the application, before leaving
after 16 months to take up a Dorothy Hodgkin Research Fellowship in her own right. She was replaced
for the final 8 months of the grant by Dr John Bray.

The computer which we bought was a slight upgrade of what was proposed in the application, made
possible by continued decreases in the prices of equipment. In addition we were able to buy a workstation
for the RA, a printer, and other small items.

Travel money was used to fund (or partly fund) various visits to collaborators: the MAGMA group in
Sydney (by Bray and Wilson), Linton in St Andrews (by Holmes), O’Brien and An in Auckland (by
Wilson), the Cambridge group (by Holmes), and the Aachen group (by Holmes and Wilson). The visits
to Cambridge, Aachen and Auckland were combined with attendance at conferences, and additionally
Holmes and Wilson were funded to attend the international Computational group theory conference in
Columbus, Ohio, in March 2003.

Unfortunately, the sum requested for computer officer support was removed by EPSRC from the grant,
which meant we were unable to pay for this essential service. This had a serious knock-on effect, as it
delayed the commissioning of our computational facility by several months.

F Further research or dissemination activities

F.1 Other research carried out using our equipment

A significant benefit of the grant was that the high-powered computing equipment was available for
use by other researchers when we did not require sole use of it. Our nodes were added to an existing
cluster, to form a cluster of 20 dual-processor nodes of varying specifications. Many people used this
facility, including:

• Gerhard Röhrle and Simon Goodwin: Studied the action of a parabolic subgroup P of a simple
algebraic group on the Lie algebra of its unipotent radical. They classified all submodules which
are prehomogeneous spaces, when P is either a Borel subgroup in rank at most 8, or an arbitrary
parabolic subgroup in types E6 and F4, subject to certain conditions.
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• Simon Nickerson: Finding words in standard generators for the maximal subgroups of HN.2,
O’N.2, Fi22.2 and Fi24 [33]. Computing explicit complex representations for finite groups of Lie
type (in progress).

• Gary Sharpe and Simon Watt: The cluster was utilised in our work on the initiation and stability
of cylindrically and spherically expanding detonation waves. This was acheived by using the
cluster for high-resolution calculations using the CFD package, Cobra [36].

F.2 Other work carried out by the PDRAs

Another significant benefit of the grant was that the two PDRAs were able to contribute to other
research projects. In particular, Dr Bray has continued work related to an earlier EPSRC grant
(GR/N27491/01), completing work on symmetric presentations of the Fischer groups [6] and mak-
ing further improvements to his ground-breaking Double Coset Enumerator [5]. We have also proved
some new results on automorphism groups of finite groups by constructing various families of finite
groups with unexpectedly small automorphism groups [8, 9], and collaborated with J. S. Wilson in
proving a new characterisation of finite soluble groups [7]. In addition, Dr Bray has made contributions
to the Web-Atlas of Representations [37], anticipating his appointment on the grant GR/S41319/01.

Dr Holmes has proved results on minimal factorisations of some sporadic simple groups [21, 25], (which
has applications to cryptography), and on ‘coverings’ of some of these groups (as a union of subgroups)
[22], which has applications in combinatorics.

F.3 Dissemination and exploitation

The results of the project were and will be disseminated through the usual academic routes of publication
in refereed journals and presentation at national and international conferences. By the time that all
the work on this project has been written up, we would expect to publish approximately 10 papers
that would not have been written had this project not been funded. In addition, the grant has greatly
facilitated the writing of many other papers not directly related to the grant project itself. We have
already given seminars on this work in Perth (Australia), and at international conferences in Columbus
(Ohio) and Edinburgh.

In addition the data and software produced will be made available on the Internet, and we anticipate
that the software we have produced will be available in MAGMA v2.12.

F.4 Further work

As indicated above, the project is continuing in a number of directions, some of which may be the
subject of future grant applications. Work on the maximal subgroup problem is being continued by
Dr Holmes in her new Research Fellowship. The work of Dr Bray on the Monster and other groups
is continuing under the auspices of my new EPSRC grant GR/41319/01, ‘A world-wide-web atlas of
group representations’, as the latter can subsume many different calculations of group-theoretical data.
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