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Introduction It is obvious that you can’t do civil engineering (or any other
kind of engineering) properly without a certain amount of mathematics. You will
have done some of the mathematics you need at A-level, or the equivalent, but
there is a lot more that will be useful to you.

If you are going to end up building bridges and such like things, then you are
going to have to do a fair amount of mathematics to calculate stresses in the bridge
components, to make sure the bridge is strong enough to cope with the traffic it
is designed for. (This part of mechanics is called Statics.) At a more advanced
level, you need to take account of the Dynamics of the structure as well. This
involves solving differential equations to predict the way the bridge will move, or
oscillate. You wouldn’t want to make the mistakes made in the Millenium Bridge
in London, which oscillates so much it has been declared unsafe.

In statics the basic tools are trigonometry, for resolving forces, surveying sites
using triangulation, etc., and integration for calculating the cumulative effect of
distributed loads, especially where complicated shapes are involved.

For example, suppose a bridge is made from a semi-circular arch of radius `
and width w, and thickness t at its thinnest point, supported by two pillars of
depth d and height h. If the density of the material is ρ, what is the total weight
of the bridge? (Draw a picture, and work out the answer for yourself. Then check
that you get the answer ρw(2`(` + t) + 2hd− 1

2
π`2).)

We begin the course with a review of material which most of you will be
familiar with. We do this because it is essential that you are all completely on
top of this material before we go on to more advanced topics. Then we discuss
differentiation at some length, supported by the topic of series, especially power
series.

The recommended textbook for this course is Engineering Mathematics by K.
A. Stroud. If you are having difficulty with the lectures, you may find Stroud’s
explanations helpful. You are strongly encouraged to invest in a copy of this
book.
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There are certain basic topics which are no longer guaranteed to be in the
A-level syllabus, but which we need. The first of these is:

Long division of polynomials For example, x4−x2−x+1 has a root x = 1,
so is divisible by x− 1. How do we find the quotient? The basic algorithm (i.e.
method) is just like long division of integers, except that it is easier because there
is no guesswork involved, and no carrying. At each step we divide the leading
term of the divisor into the leading term of the remainder so far, to get the next
term of the answer.

x3 +x2 −1
x− 1 ) x4 −x2 −x +1

x4 −x3

x3 −x2

x3 −x2

−x +1
−x +1

0

Try the following example yourself: divide x4 − 2x3 + 4x by x2 + x + 1. This
time it does not go exactly: there is a remainder left at the end. Check that you
have a quotient x2 − 3x + 2 and remainder 5x− 2. This means that

x4 − 2x3 + 4x = (x2 + x + 1)(x2 − 3x + 2) + (5x− 2)

or in other words

x4 − 2x3 + 4x

x2 + x + 1
= x2 − 3x + 2 +

5x− 2

x2 + x + 1
.

Sums of geometric series (See F.7 in Stroud)
Example: S = 1 + 2 + 4 + 8 + 16 + 32. This is a sum of six terms, where the

first term is 1, and the common ratio is 2 (that is, each term is twice the previous
term). If we multiply the equation through by 2 (i.e. the common ratio), we get

2S = 2 + 4 + 8 + 16 + 32 + 64.

Subtracting one equation from the other we get

2S − S = 2 + 4 + 8 + 16 + 32 + 64
−(1 + 2 + 4 + 8 + 16 + 32)

so S = −1 + 64
= 63

More generally, if we have a geometric series of n terms, where the first term
is a and the common ratio is r, then the sum of the series is S, where

S = a + ar + ar2 + ar3 + · · ·+ arn−1
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so that
rS = ar + ar2 + ar3 + · · ·+ arn−1 + arn

and subtracting one equation from the other we obtain

(r − 1)S = arn − a = a(rn − 1)

since all the other terms cancel out. Therefore

S = a.
rn − 1

r − 1
= a.

1− rn

1− r
.

Another example: S = 36 − 12 + 4 − 4
3

+ · · · to 7 terms. Here we have
a = 36 = 22.32, and r = −1

3
, and n = 7. Therefore

S = 36.
1− (1

3
)7

1 + 1
3

=
4.9.(1 + 3−7)

4/3
= 33 + 3−4.

Exponentials and logarithms If a is a real number and n is a positive integer
(whole number) then you define an = a.a. · · · .a, the product of n copies of a, so
that a2 = a.a and a3 = a.a.a etc. Then it is easy to deduce the following laws of
exponents:

am.an = am+n

(am)n = amn

a−n = 1/an

am/an = am−n

Indeed, it is possible to generalise this to the case where n is any real number,
and the same laws apply. For example a1/2.a1/2 = a1/2+1/2 = a1 = a, so a1/2 is a
square root of a.

Logarithms are defined as the “opposite” of raising a number to a power in
this way. So if ax = y, we say that x is the logarithm of y (to the base a). This
is written x = loga(y). If the base a is not specified, it should always be assumed
to be e ≈ 2 · 71828. This special number is the base of natural logarithms, and is
chosen because it simplifies lots of formulae which you will see later on. It really
is a natural choice of base. Many people write lnx for loge(x).

From the laws of exponents given above we can deduce corresponding laws of
logarithms.

loga(xy) = loga(x) + loga(y)
loga(x

y) = y. loga(x)
loga(1/x) = − loga(x)
loga(x/y) = loga(x)− loga(y)

Let us prove the first of these as an example:
Suppose that p = loga(x) and q = loga(y). Then x = ap and y = aq, so

xy = ap.aq = ap+q, which means that loga(xy) = p + q = loga(x) + loga(y), as
required.
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Radians Just as e is the “natural” base for logarithms, so π is the “natural”
base for trigonometric functions. One whole revolution of a circle corresponds to
an arc length equal to the whole circumference of the circle, that is 2πr, where r is
the radius. For simplicity, take a circle of radius 1, so that the circumference is 2π.
So 360◦ corresponds to an arc length of 2π. Therefore an angle of θ◦ corresponds

to an arc length of 2π.
θ

360
. This last figure is the same angle measured in radians.

Thus for example,
π

2
radians equals 90◦. To convert from degrees to radians,

multiply by
π

180
, and to convert from radians to degrees, multiply by

180

π
.

Binomial expansions (See F.7 in Stroud)
Multiplying out we obtain (a + b)2 = (a + b)(a + b) = a2 + 2ab + b2, and then

(a + b)3 = (a + b)(a + b)2 = (a + b)(a2 + 2ab + b2)
= a3 + 3a2b + 3ab2 + b3

(a + b)4 = (a + b)(a + b)3 = (a + b)(a3 + 3a2b + 3ab2 + b3)
= a4 + 4a3b + 6a2b2 + 4ab3 + b4

Each coefficient in the right hand side here is obtained by adding together the
two nearest coefficients in the row above: for example, the term in a2b2 in the last
row above is obtained from a times 3ab2, plus b times 3a2b, giving a coefficient
of 6 = 3 + 3. Thus we can build up a triangle of these coefficients, and for each
new entry, we just add together the two nearest entries in the row above. This is
called Pascal’s triangle (although it was well-known centuries before the time of
Pascal).

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

There is a formula for the entries in Pascal’s triangle: the (k + 1)th entry in the
nth row is

n.(n− 1). · · · .(n− k + 1)

1.2. · · · .k
which can also be written as

n.(n− 1). · · · .(n− k + 1)

k!
or

n!

(n− k)!k!
,

where n! = n.(n − 1).(n − 2). . . . .3.2.1 is n factorial, the product of all integers
from 1 up to n.
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