MSM120-1M1
 First year mathematics for civil engineers Revision notes 2

Professor Robert A. Wilson

Autumn 2001

Introduction to differentiation The slope (or gradient) of a straight line can be defined as the ratio of the change in the y-value to the change in the x-value. So if the line has equation $y=m x+c$, then every unit change in x corresponds to a change of magnitude m in y, and the slope is m.

For curves, however, this simple definition will not work, as the slope varies as x and y vary. To get a sensible definition of the slope, we need to look at a very small change in x, and see what the corresponding small change in y is. Mathematically, we then take the 'limit', as these changes become smaller and smaller (i.e. as they 'tend to zero').

Let us write δx for a small change in x-that is, we imagine x changing from x to $x+\delta x$. At the same time, the value of y changes from y to $y+\delta y$, and the slope is approximately $\frac{\delta y}{\delta x}$. Our whole problem now is to calculate δy, given δx. [Warning: δx does NOT mean $\delta \times x$, it is a single concept, sometimes written δ_{x} to make this clear.]

To take an example, let $y=x^{2}$. Then $y+\delta y$ is the value of y when x has changed to $x+\delta x$, that is

$$
y+\delta y=(x+\delta x)^{2}=x^{2}+2 x \cdot \delta x+(\delta x)^{2} .
$$

Subtracting the equation $y=x^{2}$ gives us

$$
\begin{aligned}
\delta y & =2 x \cdot \delta x+(\delta x)^{2} \\
\frac{\delta y}{\delta x} & =2 x+\delta x
\end{aligned}
$$

Now as δx tends to 0 , the last term disappears, and in the limit we obtain a slope of $2 x$. We express this as

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x
$$

Formally, then, the definition of the slope $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is as the limit of $\frac{\delta y}{\delta x}$ as δx tends to 0 .

Let us look now at some more examples of differentiation, using the definition in terms of δy and δx (that is, 'from first principles'). If $y=x^{n}$, for n a positive integer, we can use the binomial theorem to show that

$$
\begin{aligned}
y+\delta y & =(x+\delta x)^{n} \\
& =x^{n}+n \cdot \delta x \cdot x^{n-1}+\frac{n(n-1)}{2!} \cdot(\delta x)^{2} \cdot x^{n-2}+\cdots \\
& =y+n \cdot \delta x \cdot x^{n-1}+\frac{n(n-1)}{2} \cdot(\delta x)^{2} \cdot x^{n-2}+\cdots
\end{aligned}
$$

so $\frac{\delta y}{\delta x}=n \cdot x^{n-1}+\delta x \cdot \frac{n(n-1)}{2} x^{n-2}+\cdots$ and in the limit as δx tends to 0 , all the terms on the right tend to 0 and we are left with $\frac{\mathrm{d} y}{\mathrm{~d} x}=n \cdot x^{n-1}$.

You can also differentiate $y=\sin x$ from first principles by Euclidean geometry, but if you don't like geometry you can use the trigonometric formula

$$
\sin (x+y)=\sin x \cdot \cos y+\cos x \cdot \sin y
$$

which implies that

$$
\begin{aligned}
y+\delta y= & \sin (x+\delta x) \\
= & \sin x \cdot \cos \delta x+\cos x \cdot \sin \delta x \\
\approx & \sin x+(\cos x) \cdot(\delta x) \\
& \operatorname{since} \sin \delta x \approx \delta x \text { when } \delta x \text { is small } \\
= & y+\delta x \cdot \cos x
\end{aligned}
$$

so $\frac{\delta y}{\delta x} \approx \cos x$ and in the limit as δx tends to 0 we get $\frac{\mathrm{d}}{\mathrm{d} x}(\sin x)=\cos x$.
Differentiating a product If $y=u v$, where y, u and v are all functions of x, then suppose we increase the value of x to $x+\delta x$, with corresponding values of u, v and y being $u+\delta u, v+\delta v$, and $y+\delta y$. Then by definition

$$
\begin{aligned}
y+\delta y & =(u+\delta u)(v+\delta v) \\
& =u v+v \cdot \delta u+u \cdot \delta v+\delta u \cdot \delta v \\
& =y+v \cdot \delta u+u \cdot \delta v+\delta u \cdot \delta v
\end{aligned}
$$

Now cancelling out the y from both sides of the equation, and dividing by δx, gives us

$$
\frac{\delta y}{\delta x}=v \cdot \frac{\delta u}{\delta x}+u \cdot \frac{\delta v}{\delta x}+\delta u \cdot \frac{\delta v}{\delta x}
$$

and in the limit as δx tends to 0 we get

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =v \cdot \frac{\mathrm{~d} u}{\mathrm{~d} x}+u \cdot \frac{\mathrm{~d} v}{\mathrm{~d} x}+0 \cdot \frac{\mathrm{~d} v}{\mathrm{~d} x} \\
& =v \cdot \frac{\mathrm{~d} u}{\mathrm{~d} x}+u \cdot \frac{\mathrm{~d} v}{\mathrm{~d} x}
\end{aligned}
$$

Integration The next topic is integration. This has two quite different meanings, and it is far from obvious why the two are connected.

The first type of integration is antidifferentiation, that is just the opposite of differentiation, also called the indefinite integral.

The second type of integration is the area under a curve, also called the definite integral.

Antidifferentiation If $\frac{\mathrm{d} y}{\mathrm{~d} x}=z$, say, i.e. you differentiate y to get z, then you integrate z to get back to y. We say that y is the indefinite integral (of z, with respect to x).

We write $y=\int z \mathrm{~d} x$, and read " y is the integral of z with respect to x ". The sign \int is called the integral sign, and we use the symbol $\mathrm{d} x$ to show that the variable is x.

Example If $y=x$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=1$, so (using the above notation) $z=1$, which means that $\int 1 \mathrm{~d} x=x$.

But what happens if $y=x+2$? Again we have $\frac{\mathrm{d} y}{\mathrm{~d} x}=1$, so by the above definition we have $\int 1 \mathrm{~d} x=x+2$.

Indeed, if we add any constant to y, we do not change $\frac{\mathrm{d} y}{\mathrm{~d} x}$, so we cannot tell which constant we started with. Thus we normally write

$$
\int 1 \mathrm{~d} x=x+C,
$$

with the C denoting an arbitrary constant. Usually, we then have to look at some other information in the problem, to determine what the correct value of C is in any given case.

Example If $y=x^{2}$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x$, so (using the above notation) $z=2 x$, which means that $\int 2 x \mathrm{~d} x=x^{2}+C$. Dividing both sides by 2 gives

$$
\int x \mathrm{~d} x=\frac{x^{2}}{2}+k
$$

where k is again an arbitrary constant.

Example If $y=x^{n+1}$, where n is a positive integer, then

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=(n+1) x^{n}
$$

so $z=(n+1) x^{n}$ and

$$
\int(n+1) x^{n} \mathrm{~d} x=x^{n+1}+C
$$

and therefore

$$
\int x^{n} \mathrm{~d} x=\frac{x^{n+1}}{n+1}+k .
$$

Example Actually, the above calculation works for n being a negative integer as well, and even for n being any real number, except for the case $n=-1$.

What goes wrong in this case?
The answer is that if $n=-1$ then $n+1=0$, and in the last line of the calculation we have divided by 0 . THIS IS NOT ALLOWED.

It is still true that

$$
\int(n+1) x^{n} \mathrm{~d} x=x^{n+1}+C
$$

but now this only tells us that $\int 0 \mathrm{~d} x=x^{0}+C$, in other words $\int 0 \mathrm{~d} x$ is a constant. But we knew this anyway, and it does not tell us anything about $\int x^{-1} \mathrm{~d} x$.

In fact, since $\frac{\mathrm{d}}{\mathrm{d} x} \log _{e}(x)=\frac{1}{x}$, we have

$$
\int \frac{1}{x} \mathrm{~d} x=\log _{e}(x)
$$

where $e \approx 2 \cdot 71828$. These logarithms are called natural logarithms, as they arise naturally in this integral. Thus the number e is called the base of natural logarithms, just as π is the "natural base" for the trigonometric functions.

When mathematicians write $\log (x)$, without specifying a base, they ALWAYS MEAN $\log _{e}(x)$. Many people write $\ln x$ for $\log _{e}(x)$.

Example We have $\frac{\mathrm{d}}{\mathrm{d} x}(\sin x)=\cos x$, so

$$
\int \cos x \mathrm{~d} x=\sin x
$$

and similarly

$$
\int \sin x \mathrm{~d} x=-\cos x
$$

Areas under curves If y is a function of x, and y is always positive, then you can ask for the area between the curve and the x-axis. For example, what is the area beneath the curve $y=\sin x$ and the x-axis, in the range $0 \leq x \leq \pi$? More generally, we define the definite integral

$$
\int_{a}^{b} y \mathrm{~d} x
$$

to be the area under the curve between the values $x=a$ and $x=b$.
For example, if $y=c$, a constant, then the area in question is just a rectangle and

$$
\int_{a}^{b} c \mathrm{~d} x=c(b-a)
$$

What happens if c is negative? Then this formula gives a negative value, and the area in question is below the x-axis. So be careful: areas below the x-axis come with a minus sign attached.

Take another example, such as $y=m x$. Then by calculating areas of triangles it is easy to see that

$$
\int_{a}^{b} m x \mathrm{~d} x=\frac{m}{2} b^{2}-\frac{m}{2} a^{2}
$$

which is the same as: (indefinite integral evaluated at $x=b$) - (indefinite integral evaluated at $x=a$). [Notice that the constants of integration cancel out.]

For example if $y=x^{2}$, so that $\int x^{2} \mathrm{~d} x=\frac{x^{3}}{3}+C$, then

$$
\begin{aligned}
\int_{a}^{b} x^{2} \mathrm{~d} x & =\left[\frac{x^{3}}{3}+C\right]_{a}^{b} \\
& =\left(\frac{b^{3}}{3}+C\right)-\left(\frac{a^{3}}{3}+C\right) \\
& =\frac{b^{3}}{3}-\frac{a^{3}}{3}
\end{aligned}
$$

More examples:

$$
\begin{aligned}
\int_{0}^{\pi} \sin x \mathrm{~d} x & =[-\cos x]_{0}^{\pi} \\
& =-\cos \pi-(-\cos 0) \\
& =2 \\
\int_{1}^{a} \frac{1}{x} \mathrm{~d} x & =[\ln x]_{1}^{a} \\
& =\ln a-\ln 1 \\
& =\ln a
\end{aligned}
$$

Polar coordinates So far all our curves have been written as an equation involving x and y, which measure horizontal and vertical distance respectively. However, in practice many curves are easier to describe using polar coordinates, which means specifying the actual distance from a specified origin (the 'original point' you start from), and the direction. Here we specify the direction by the angle from the horizontal, measured anticlockwise. This angle is traditionally called θ, and the distance from the origin is called r.

Thus by Pythagoras, $r^{2}=x^{2}+y^{2}$, and trigonometry tells you that $\frac{y}{x}=\tan \theta$. So $r= \pm \sqrt{x^{2}+y^{2}}$ and $\theta=\tan ^{-1} \frac{y}{x}$. Have you spotted the deliberate mistake? What happens if x is negative? Well, in this case $\theta=\tan ^{-1} \frac{y}{x} \pm \pi$. So there are two slight problems here: one is to determine the sign of r (common sense says it is always positive, but it also makes sense mathematically to consider negative values of r), and the other is to determine whether you need to add π onto the angle θ. You will need to use your common sense, and inspection of the diagram, to solve these problems.

This shows how to convert from (x, y)-coordinates to polar coordinates. What about going the other way? If we know r and θ, how do we calculate x and y ? Well, $\sin \theta=\frac{y}{r}$, so $y=r \sin \theta$, and similarly $x=r \cos \theta$.

Example A circle of radius a centred at the origin has equation $r=a$, which is much simpler than the Cartesian version $x^{2}+y^{2}=a^{2}$.

Exercise Sketch the curve defined by the equation $r=\sin \theta$. Most people draw a rough egg-shape of height 1 balancing on the origin. But did you realise it was really a circle? To see this, translate it back into (x, y)-coordinates. Multiplying the equation through by r we get

$$
\begin{aligned}
r^{2} & =r \sin \theta \\
\text { so } x^{2}+y^{2} & =y \\
x^{2}+y^{2}-y+\frac{1}{4} & =\frac{1}{4} \\
x^{2}+\left(y-\frac{1}{2}\right)^{2} & =\frac{1}{4}
\end{aligned}
$$

which is the equation of a circle of radius $\frac{1}{2}$ centred at the point $\left(0, \frac{1}{2}\right)$.
Exercise Sketch the curve $r=\theta$.
(Harder) Sketch the curve $r=\tan \theta$.

