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Introduction to differentiation The slope (or gradient) of a straight line can
be defined as the ratio of the change in the y-value to the change in the x-value.
So if the line has equation y = mx + c, then every unit change in x corresponds
to a change of magnitude m in y, and the slope is m.

For curves, however, this simple definition will not work, as the slope varies
as x and y vary. To get a sensible definition of the slope, we need to look at
a very small change in x, and see what the corresponding small change in y is.
Mathematically, we then take the ‘limit’, as these changes become smaller and
smaller (i.e. as they ‘tend to zero’).

Let us write δx for a small change in x—that is, we imagine x changing from
x to x + δx. At the same time, the value of y changes from y to y + δy, and the

slope is approximately
δy

δx
. Our whole problem now is to calculate δy, given δx.

[Warning: δx does NOT mean δ× x, it is a single concept, sometimes written δx

to make this clear.]
To take an example, let y = x2. Then y + δy is the value of y when x has

changed to x + δx, that is

y + δy = (x + δx)2 = x2 + 2x.δx + (δx)2.

Subtracting the equation y = x2 gives us

δy = 2x.δx + (δx)2

δy

δx
= 2x + δx

Now as δx tends to 0, the last term disappears, and in the limit we obtain a slope
of 2x. We express this as

dy

dx
= 2x.
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Formally, then, the definition of the slope
dy

dx
is as the limit of

δy

δx
as δx tends

to 0.
Let us look now at some more examples of differentiation, using the definition

in terms of δy and δx (that is, ‘from first principles’). If y = xn, for n a positive
integer, we can use the binomial theorem to show that

y + δy = (x + δx)n

= xn + n.δx.xn−1 +
n(n− 1)

2!
.(δx)2.xn−2 + · · ·

= y + n.δx.xn−1 +
n(n− 1)

2
.(δx)2.xn−2 + · · ·

so
δy

δx
= n.xn−1 + δx.

n(n− 1)

2
xn−2 + · · · and in the limit as δx tends to 0, all the

terms on the right tend to 0 and we are left with
dy

dx
= n.xn−1.

You can also differentiate y = sinx from first principles by Euclidean geometry,
but if you don’t like geometry you can use the trigonometric formula

sin(x + y) = sin x. cos y + cos x. sin y

which implies that

y + δy = sin(x + δx)
= sin x. cos δx + cos x. sin δx
≈ sin x + (cos x).(δx)

since sin δx ≈ δx when δx is small
= y + δx. cos x

so
δy

δx
≈ cos x and in the limit as δx tends to 0 we get

d

dx
(sin x) = cos x.

Differentiating a product If y = uv, where y, u and v are all functions of x,
then suppose we increase the value of x to x + δx, with corresponding values of
u, v and y being u + δu, v + δv, and y + δy. Then by definition

y + δy = (u + δu)(v + δv)
= uv + v.δu + u.δv + δu.δv
= y + v.δu + u.δv + δu.δv

Now cancelling out the y from both sides of the equation, and dividing by δx,
gives us

δy

δx
= v.

δu

δx
+ u.

δv

δx
+ δu.

δv

δx
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and in the limit as δx tends to 0 we get

dy

dx
= v.

du

dx
+ u.

dv

dx
+ 0.

dv

dx

= v.
du

dx
+ u.

dv

dx

Integration The next topic is integration. This has two quite different mean-
ings, and it is far from obvious why the two are connected.

The first type of integration is antidifferentiation, that is just the opposite of
differentiation, also called the indefinite integral.

The second type of integration is the area under a curve, also called the definite
integral.

Antidifferentiation If
dy

dx
= z, say, i.e. you differentiate y to get z, then you

integrate z to get back to y. We say that y is the indefinite integral (of z, with
respect to x).

We write y =
∫

z dx, and read “y is the integral of z with respect to x”. The
sign

∫
is called the integral sign, and we use the symbol dx to show that the

variable is x.

Example If y = x then
dy

dx
= 1, so (using the above notation) z = 1, which

means that
∫

1 dx = x.

But what happens if y = x + 2? Again we have
dy

dx
= 1, so by the above

definition we have
∫

1 dx = x + 2.

Indeed, if we add any constant to y, we do not change
dy

dx
, so we cannot tell

which constant we started with. Thus we normally write∫
1 dx = x + C,

with the C denoting an arbitrary constant. Usually, we then have to look at some
other information in the problem, to determine what the correct value of C is in
any given case.

Example If y = x2 then
dy

dx
= 2x, so (using the above notation) z = 2x, which

means that
∫

2x dx = x2 + C. Dividing both sides by 2 gives∫
x dx =

x2

2
+ k,

where k is again an arbitrary constant.
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Example If y = xn+1, where n is a positive integer, then

dy

dx
= (n + 1)xn

so z = (n + 1)xn and ∫
(n + 1)xn dx = xn+1 + C

and therefore ∫
xn dx =

xn+1

n + 1
+ k.

Example Actually, the above calculation works for n being a negative integer
as well, and even for n being any real number, except for the case n = −1.

What goes wrong in this case?
The answer is that if n = −1 then n + 1 = 0, and in the last line of the

calculation we have divided by 0. THIS IS NOT ALLOWED.
It is still true that ∫

(n + 1)xn dx = xn+1 + C

but now this only tells us that
∫

0 dx = x0 + C, in other words
∫

0 dx is a
constant. But we knew this anyway, and it does not tell us anything about∫

x−1 dx.

In fact, since
d

dx
loge(x) =

1

x
, we have∫

1

x
dx = loge(x)

where e ≈ 2 · 71828. These logarithms are called natural logarithms, as they
arise naturally in this integral. Thus the number e is called the base of natural
logarithms, just as π is the “natural base” for the trigonometric functions.

When mathematicians write log(x), without specifying a base, they ALWAYS
MEAN loge(x). Many people write ln x for loge(x).

Example We have
d

dx
(sinx) = cosx, so∫

cosx dx = sinx,

and similarly ∫
sinx dx = −cosx.
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Areas under curves If y is a function of x, and y is always positive, then you
can ask for the area between the curve and the x-axis. For example, what is the
area beneath the curve y = sin x and the x-axis, in the range 0 ≤ x ≤ π? More
generally, we define the definite integral∫ b

a

y dx

to be the area under the curve between the values x = a and x = b.
For example, if y = c, a constant, then the area in question is just a rectangle

and ∫ b

a

c dx = c(b− a)

What happens if c is negative? Then this formula gives a negative value, and the
area in question is below the x-axis. So be careful: areas below the x-axis come
with a minus sign attached.

Take another example, such as y = mx. Then by calculating areas of triangles
it is easy to see that ∫ b

a

mx dx =
m

2
b2 − m

2
a2

which is the same as: (indefinite integral evaluated at x = b) – (indefinite integral
evaluated at x = a). [Notice that the constants of integration cancel out.]

For example if y = x2, so that
∫

x2 dx =
x3

3
+ C, then

∫ b

a

x2 dx =

[
x3

3
+ C

]b

a

=

(
b3

3
+ C

)
−

(
a3

3
+ C

)
=

b3

3
− a3

3

More examples: ∫ π

0

sin x dx = [− cos x]π0

= − cos π − (− cos 0)
= 2∫ a

1

1

x
dx = [ln x]a1

= ln a− ln 1
= ln a
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Polar coordinates So far all our curves have been written as an equation
involving x and y, which measure horizontal and vertical distance respectively.
However, in practice many curves are easier to describe using polar coordinates,
which means specifying the actual distance from a specified origin (the ‘original
point’ you start from), and the direction. Here we specify the direction by the
angle from the horizontal, measured anticlockwise. This angle is traditionally
called θ, and the distance from the origin is called r.

Thus by Pythagoras, r2 = x2 +y2, and trigonometry tells you that
y

x
= tan θ.

So r = ±
√

x2 + y2 and θ = tan−1 y

x
. Have you spotted the deliberate mistake?

What happens if x is negative? Well, in this case θ = tan−1 y

x
± π. So there are

two slight problems here: one is to determine the sign of r (common sense says
it is always positive, but it also makes sense mathematically to consider negative
values of r), and the other is to determine whether you need to add π onto the
angle θ. You will need to use your common sense, and inspection of the diagram,
to solve these problems.

This shows how to convert from (x, y)-coordinates to polar coordinates. What
about going the other way? If we know r and θ, how do we calculate x and y?

Well, sin θ =
y

r
, so y = r sin θ, and similarly x = r cos θ.

Example A circle of radius a centred at the origin has equation r = a, which
is much simpler than the Cartesian version x2 + y2 = a2.

Exercise Sketch the curve defined by the equation r = sin θ. Most people draw
a rough egg-shape of height 1 balancing on the origin. But did you realise it was
really a circle? To see this, translate it back into (x, y)-coordinates. Multiplying
the equation through by r we get

r2 = r sin θ
so x2 + y2 = y

x2 + y2 − y +
1

4
=

1

4

x2 + (y − 1

2
)2 =

1

4

which is the equation of a circle of radius
1

2
centred at the point (0,

1

2
).

Exercise Sketch the curve r = θ.
(Harder) Sketch the curve r = tan θ.
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