
MSM120—1M1
First year mathematics for civil engineers

Revision notes 3

Professor Robert A. Wilson

Autumn 2001

Functions Definition of a function: it is a rule which, given a value of the
independent variable (often but not always called x) determines the value of the
dependent variable (often but not always called y). We write y = f(x), to denote
that y is a function of x, and the letter f here denotes the ‘function’ itself.

A simple example of a function is f(x) = x2, which tells us that for any given
value of x (such as x = −2), we get the corresponding value of y as x2 (such as
y = x2 = (−2)2 = 4).

The domain of a function is the set of allowed values of x. Usually our
functions will be defined for any value of x, so the domain will be the set of
all real numbers, which we write R. Sometimes however we need to restrict to

smaller sets. For example, y =
1

x
is not defined for x = 0, so the domain in this

case is the set of all real numbers except 0.
The codomain of a function is the set of allowed values of y (almost always

R for us), not just the values of y which actually occur. The range, on the other
hand, is just the set of values of y which actually occur. Example: y = f(x) = x2,
domain and codomain are both R, range is R≥0.

Functions do not have to be given by a single formula. All you need is a rule
that enables you to calculate f(x), given any value of x.

Example The following is a perfectly good definition of a particular function
f . Draw its graph.

y = f(x) =
{

2 if x ≥ 2
1 otherwise

Definition and examples of sum and product of two functions: if f and g are
two functions, then f+g is just the function you get by adding together the values
of the two functions f and g. So for example if f(x) = 2x2 and g(x) = x − 1,
then

(f + g)(x) = 2x2 + x− 1.
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Similarly f.g is the function you get by multiplying together the values of the
two functions f and g. So in the above example

(f.g)(x) = 2x2.(x− 1) = 2x3 − 2x2.

Composition of functions If y = f(x) and z = g(y) you can substitute one
into the other to get z = g(f(x)), so that z is a function of x. This function is
written g ◦ f , and is called the composite function of g with f .

Example If f(x) = sin x and g(x) = 3x2−1, then by changing the name of the
variable, we can write g(y) = 3y2 − 1. Substituting in y = f(x) = sin x we get

(g ◦ f)(x) = g(f(x)) = g(sin x) = 3(sin x)2 − 1 = 3 sin2 x.

On the other hand, if we compose the functions in the opposite order, by writing
f(y) = sin y and y = g(x) we get

(f ◦ g)(x) = f(g(x)) = f(3x2 − 1) = sin(3x2 − 1).

Notice that f ◦ g and g ◦ f are completely different functions.

Examples of functions Polynomial functions are functions of the form

f(x) = axn + bxn−1 + · · ·+ k

where a, b, . . . , k are constants. They are always defined for all values of x, that
is, for all real numbers, so here f : R → R. The positive integer n is called the
degree of the polynomial, and a, . . . are the coefficients.

Rational functions are functions of the form one polynomial divided by an-
other. These are in general not defined for all real values of x. For exam-

ple, f(x) =
1

x
is not defined when x = 0. More generally, a rational func-

tion f(x)/g(x), where f(x) and g(x) are polynomials, will not be defined when
g(x) = 0.

A rational function of this form is called proper if the degree of f is smaller
than the degree of g. Otherwise, it is called improper, and we can divide g(x) into
f(x) (using long division of polynomials) to get a quotient q(x) and a remainder
r(x). This means that

f(x)

g(x)
= q(x) +

r(x)

g(x)

and so the improper rational function has been expressed as the sum of a poly-
nomial and a proper rational function.

Try this yourself with an example:

3x3 − x + 1

x2 + 2

A proper rational function may then be simplified further using the method
of partial fractions.
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Partial fractions This method is also very important for integrating rational
functions. If you are given a complicated rational function to integrate, then you
will have no hope unless you simplify it as much as possible first.

For example, a proper rational function such as
x + 2

(x− 1)(x + 1)
can be written

in the form
A

x− 1
+

B

x + 1
, where A and B are constants—which I am sure you will

agree is much simpler. To find the values of A and B, first clear denominators:

x + 2

(x− 1)(x + 1)
=

A

x− 1
+

B

x + 1

x + 2 = A(x + 1) + B(x− 1)

Now the important point to note is that this equation is supposed to be true for
all values of x, so we can substitute in helpful values of x if we like. For example,
if x = 1, then the term involving B disappears, and we get 3 = A.2, so A = 3

2
.

Similarly, if x = −1, then the term involving A disappears, giving 1 = B.(−2),
so B = −1

2
.

The same method works for any number of linear factors in the denominator,
provided there are no repeated factors. If there are repeated factors, use the

following method: as an example, take
x2 + x

(x− 1)3
. This time we can reduce it to

the form

x2 + x

(x− 1)3
=

A

x− 1
+

B

(x− 1)2
+

C

(x− 1)3

so x2 + x = A(x− 1)2 + B(x− 1) + C

Now putting x = 1 gives 2 = C. We can also equate coefficients—because we
have an equality of polynomials here, which means that the two polynomials are
equal for all values of x, all the coefficients must be the same. So the coefficient
of x2 on the left hand side is 1, while the coeffecient of x2 on the right hand side
is A, so A = 1. Similarly, the constant term on the left hand side is 0, while on
the right hand side it is A − B + C, so A − B + C = 0, but we already know
A = 1 and C = 2, so B = 3.

If you have quadratic factors which cannot be factorised into linear factors,
then you need something of the form Ax + B on top of them. For example,

x2 − 2

(x− 1)(x2 + 1)
=

A

x− 1
+

Bx + C

x2 + 1

x2 − 2 = A(x2 + 1) + (Bx + C)(x− 1)
= Ax2 + A + Bx2 −Bx + Cx− C
= (A + B)x2 + (C −B)x + (A− C)
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Putting x = 1 in the second line gives 2 = 2A so A = 1. Now equating coefficients
of x gives B = C, and equating constant terms gives −2 = A − C = 1 − C so
C = 3, and therefore B = 3.

Sketching the graph of a rational function First simplify it as above. The
polynomial part tells you approximately what the function looks like as x tends
to ±∞, because when x is very large the proper rational functions are very small.
The linear factors in the denominator tell you the points where the function is
not defined—near to these points the function shoots off to either +∞ or −∞ or
both. Plot some points to tell you which.

Inverse functions If we are given y as a function of x, we often want to
invert the relationship, and express x as a function of y instead. For example,
if y = 3x − 2 then we deduce y + 2 = 3x and so x = 1

3
(y + 2). In functional

notation, we started with y = f(x), where f(x) = 3x − 2, and ended up with
x = g(y), where g(y) = 1

3
(y + 2), or, by changing the name of the variable but

not changing the function g, g(x) = 1
3
(x + 2).

Consider another example: y = x2. Then we have x = ±√y so how do we
know which sign to take? In general you don’t, so this function DOES NOT
HAVE AN INVERSE. However, if you restrict to the case when x ≥ 0, then
you know x = +

√
y, and everything works. So this requires us to restrict the

DOMAIN of the original function to R≥0.
Similarly with a function like y = sin x. The general solution of this is x =

±(π
2

+ sin−1 y) + (2n − 1
2
)π, so to get a unique solution we need to restrict to a

suitable domain for x, such as −π
2
≤ x ≤ π

2
.

Hyperbolic functions The function ex arises frequently in engineering appli-
cations, for example in solutions of differential equations, but more often than not
there is a symmetry involved, so that the function that actually arises is ex + e−x

or ex − e−x. These functions (divided by 2 to make things easier later on) are
therefore given special names.

cosh x =
ex + e−x

2

sinh x =
ex − e−x

2

tanh x =
sinh x

cosh x

sech x =
1

cosh x

cosech x =
1

sinh x
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coth x =
1

tanh x

Exercise Sketch the graphs of these functions.
There are many identities between hyperbolic functions, analogous to the

trigonometric identities which you should have seen already.
For example, corresponding to cos2 x+sin2 x = 1 we have cosh2 x−sinh2 x = 1.

We can deduce this easily from the definitions, as follows:

cosh2 x− sinh2 x =

(
ex + e−x

2

)2

−
(

ex − e−x

2

)2

=

(
ex

2

)2

+ 2
ex

2

e−x

2
+

(
e−x

2

)2

−

{(
ex

2

)2

− 2
ex

2

e−x

2
+

(
e−x

2

)2
}

=
4e0

4
= 1

Similarly, we have

cosh(2t) = 2 cosh2 t− 1
sinh(x + y) = sinh x cosh y + cosh x sinh y

etc. etc. Many of these identities can be found on your formula sheet.
Since you know that the derivative of ex is ex, you can easily work out the

derivatives of the hyperbolic functions. For example

d

dx
(cosh x) =

d

dx

(
ex + e−x

2

)
=

ex − e−x

2
= sinh x

and similarly
d

dx
(sinh x) = cosh x.

Also

d

dx
(tanh x) =

d

dx

(
sinh x

cosh x

)
=

cosh x cosh x− sinh x sinh x

cosh2 x

=
1

cosh2 x
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Equations with hyperbolic functions in them can often be solved by sub-
stituting in the definitions (in terms of ex), and multiplying up by a common
denominator. For example, to solve

5 cosh x + 3 sinh x = 4

we write it in the following equivalent forms:

5

2
(ex + e−x) +

3

2
(ex − e−x) = 4

4ex + e−x = 4
4e2x − 4ex + 1 = 0

(2ex − 1)2 = 0

from which we deduce that ex = 1
2
, so x = ln 1

2
= − ln 2.

Inverse hyperbolic functions If y = sinh x then by the definition of inverse
functions, we have x = sinh−1 y. The other inverse hyperbolic functions are
definied similarly. In fact, they all have alternative expressions in terms of loga-
rithms, which can be deduced by the same method we have just used for solving
equations.

Suppose y = sinh x = 1
2
(ex − e−x), and we want to solve for x as above.

Then multiply up by 2ex to get 2.ex.y = e2x− 1, which we rewrite as a quadratic
equation in ex

(ex)2 − 2y(ex)− 1 = 0

so ex = y±
√

y2 + 1. Now if we took the negative square root, then the expression

y−
√

y2 + 1 would be negative, whereas ex is always positive, so this case cannot
happen. Therefore we have to take the positive square root, and taking logs then
gives

x = sinh−1 y = ln(y +
√

y2 + 1).

Similarly we can obtain the identity

cosh−1 y = ln(y +
√

y2 − 1).

But notice in this case that there are two possible values of x corresponding to
each possible value of cosh x, since cosh(−x) = cosh x. By convention cosh−1 y is
taken to be the positive value of x.

Parametric functions Often a curve is difficult to describe just with an equa-
tion in x and y coordinates (or polar coordinates r and θ) and may be easier to
describe by having both x and y as functions of a third variable, traditionally
called t.
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For example, a circle of radius a centred at the origin can be described by the
equations

x = a cos t
y = a sin t

Similarly, one half of the rectangular hyperbola x2− y2 = a2 can be described by

x = a cosh t
y = a sinh t

(This explains why these functions are called hyperbolic functions.)

Exercise Sketch the curve defined by the equations

x = t2

y = t3 − 2t

Applications of hyperbolic functions A rope or cable hanging under its
own weight hangs in the shape of a hyperbolic cosine. If you take a suitable
origin of coordinates, then the equation is of the form y = Acosh(Bx), where A
and B are constants depending on the dimensions.

Now consider a suspension bridge. First you build the pylons to support the
weight. Then you hang a heavy cable between the tops of the pylons—this has
to be heavy because it supports the entire weight of the bridge. It hangs in the
shape of y = Acosh(Bx). Then you hang light vertical cables from the main
cable, each supporting a small part of the deck. Since these are light, they do
not alter the shape of the main cable much. The deck itself is flat, so applies an
evenly balanced load across the width of the bridge. So this doesn’t affect the
shape of the main cable either.

Another application concerns two rivers, travelling at different speeds, meet-
ing. After the rivers have joined together, the speed varies across the river ac-
cording to a function of the form y = Atanh(Bx) + C.
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