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Series

A series is just an extended sum, where we may want to add up infinitely many
numbers. In general it does not make sense to add up infinitely many things, so
we have to be careful.

For example, a geometric series

a + ar + ar2 + ar3 + · · ·+ arn + · · ·

can be continued indefinitely, but does the sum make sense? If a = 1 and r = 2,
we get a sum 1+2+4+8+ · · · which obviously “tends to infinity”—in the sense
that it gets bigger and bigger indefinitely. In this case, we say the series diverges,
or that the series does not have a sum (infinite numbers should never occur in
engineering applications, or else something has gone seriously wrong!).

On the other hand if r =
1

2
, the sum is

1 +
1

2
+

1

4
+

1

8
+ · · ·

Does this have a sum? Well, we can sum the series to n terms, and we get

1− (1
2
)n

1− 1
2

= 2− 2.

(
1

2

)n

and as n gets larger, the last term tends to 0. (In other words, it gets so small
that eventually we can ignore it.) So we can say that in the limit, as n tends to
infinity, the sum tends to 2. We write this as

1 +
1

2
+

1

4
+

1

8
+ · · · = 2,
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or in mathematical shorthand notation

∞∑
n=0

1

2n
= 2.

Here the
∑

just stands for “the sum of”, and the limits n = 0 and ∞ just
mean we take all integer values of n from 0 upwards.

More generally, if
a1 + a2 + a3 + · · ·

is a series, we write the “partial sums”

Sn = a1 + a2 + · · ·+ an

of all the terms up to an, and write

∞∑
n=1

an = lim
n→∞

Sn

for the infinite sum if it exists.
The geometric series gives a model for how all series behave: if the common

ratio r is between −1 and 1, then the series converges, and the sum is
a

1− r
,

whereas if the common ratio is 1 or bigger, or −1 or smaller, then the series

diverges. In this series, an = arn and so r =
an+1

an

for every positive integer n.

In general of course, a series doesn’t have a common ratio, but it still has the
ratios an+1/an, which may vary according to the value of n. If these ratios are
all bigger than 1, then the series diverges. If they are all significantly less than 1,
then the series converges: we need actually that the limit as n tends to infinity
of an+1/an must be between −1 and 1, but not equal to −1 or 1. This is called
D’Alembert’s Ratio Test, and has its most important application to power series
(see below).

An even more obvious test is the divergence test (sometimes called the non-

null test): if the individual terms an do not tend to 0, then the series
∞∑

n=0

an

cannot possibly converge.
On the other hand it is quite possible for the terms an to tend to 0, but for

the series
∞∑

n=0

an to diverge. For example

∞∑
n=1

1

n
= 1 +

1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ · · ·

≥ 1 +
1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ · · ·
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= 1 +
1

2
+ 2.

1

4
+ 4.

1

8
+ · · ·

= 1 +
1

2
+

1

2
+

1

2
+ · · ·

which obviously diverges!

Power series

These are series where you introduce a variable x. They are of the form

∞∑
n=0

bnx
n = b0 + b1x + b2x

2 + b3x
3 + · · ·

You will come across many series like this as solutions to engineering problems,
and the trick is to figure our how many terms you need to take in order to get a
good enough approximation for engineering purposes. Of course, this will depend
both on the series and on the application: generally in civil engineering you won’t
need many terms, but you do need to know how many terms you need to get an
accurate enough answer.

In mathematics, however, we are much more demanding—we demand in-
finitely many terms.

The ratio test tells you when these series converge: you need lim bn+1x/bn to
be between −1 and 1, which means you need x to be between − lim bn/bn+1 and
lim bn/bn+1. Thus we call this latter number the radius of convergence, because
if x is within this distance of 0, then the series converges, and if x is outside this
distance form 0, then the series diverges.

There are many important examples, which describe functions we have already
met. In addition to the binomial theorem

(1 + x)a =
∞∑

n=0

a(a− 1) · · · (a− n + 1)
xn

n!

= 1 + ax + a(a− 1)
x2

2
+ a(a− 1)(a− 2)

x3

6
+ · · ·
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we have the following standard series which you should know:

ex =
∞∑

n=0

xn

n!
= 1 + x +

x2

2
+

x3

6
+

x4

24
+ · · ·

cosh x =
∞∑

n=0

x2n

(2n)!
= 1 +

x2

2
+

x4

24
+ · · ·

sinh x =
∞∑

n=0

x2n+1

(2n + 1)!
= x +

x3

6
+

x5

120
+ · · ·

cos x =
∞∑

n=0

(−1)nx2n

(2n)!
= 1− x2

2
+

x4

24
− · · ·

sin x =
∞∑

n=0

(−1)nx2n+1

(2n + 1)!
= x− x3

6
+

x5

120
− · · ·

ln (1 + x) =
∞∑

n=0

(−1)n+1x

n
= x− x2

2
+

x3

3
− x4

4
+ · · ·

Limits and continuity

Consider the function f(x) =
sin x

x
. This function is only defined when x 6= 0.

When x = 0 it reduces to the “formula”
0

0
, which is meaningless. But as x gets

very close to 0, the function is actually very well behaved. If we use the series
expansion for sin x, then we can see what happens as x gets very small:

sin x

x
=

x− x3/3! + x5/5!− · · ·
x

= 1− x2

3!
+

x4

5!
− · · ·

and as x gets smaller, all the terms except 1 become insignificant. And ‘in the
limit’ as x approaches 0, the value of the function approaches 1.

We express this by writing

lim
x→0

sin x

x
= 1

or:
sin x

x
→ 1 as x → 0. So one way to think of such a limit is as the value the

function ‘should’ take if it behaved properly.
A more formal definition, as used by mathematicians to make things rigorous,

is as follows. We say limx→a f(x) = ` if for every real number ε > 0 there is a
real number δ > 0 with the property that if |x− a| < δ then |f(x)− `| < ε.
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(In this definition, ε measures how close you want the value of the function
to get to `, and δ measures how close you need x to be to a in order to make this
approximation close enough.)

In general you can do algebra with limits in the same way you can with
functions. The only problem is you must make sure you NEVER DIVIDE BY
ZERO. So if lim

x→a
f(x) = ` and lim

x→a
g(x) = m then

lim
x→a

k.f(x) = k.` for any constant k

lim
x→a

(f + g)(x) = ` + m

lim
x→a

(f.g)(x) = `.m

lim
x→a

f(x)

g(x)
=

`

m
PROVIDED m 6= 0

Sometimes you will find a function which tends to one limit as you approach
x = a from the left, and a different limit as you approach from the right. For

example, if f(x) =
3

4
1
x + 7

for x 6= 0, then when x tends to 0 through positive

values,
1

x
tends to +∞, so 4

1
x tends to +∞, and so f(x) tends to 0. On the other

hand, when x tends to 0 through negative values,
1

x
tends to −∞, so 4

1
x tends to

0, and so f(x) tends to 3
7
. In this situation we talk about left and right limits,

and we write

lim
x→0+

f(x) = 0

lim
x→0−

f(x) =
3

7

Many, but by no means all, of the functions you will encounter will be contin-
uous, which means that its graph can be drawn without taking your pencil off the
page. More formally, we say that f(x) is continuous at x = a, if lim

x→a
f(x) = f(a).

Examples: tan x is discontinous at x = ±π

2
,±3π

2
,±5π

2
, . . ., but continuous

everywhere else.
The algebra of limits described above implies that if f and g are continuous

functions, then so is kf (k a constant), f +g, f.g, and f ◦g at the relevant points.
Also f/g except where g(x) = 0.

Now you have probably used the fact that for a continuous function, if it starts
off negative and ends up positive (or the other way round), then there must be a
root in between. That is to say, if f(x) is a continuous function on the interval
a ≤ x ≤ b, and f(a) < 0 and f(b) > 0 (or f(a) > 0 and f(b) < 0), then there
exists a number c with a < c < b and f(c) = 0.

This is a form of the Intermediate value theorem (or IVT for short). It can
be stated in a more general form: as the function goes from f(a) to f(b) it must
go through all values in between.

5



Intermediate value theorem If f(x) is a continuous function from the inter-
val a ≤ x ≤ b to R, and f(a) 6= f(b), then for every value d between f(a) and
f(b), there is a number c between a and b such that f(c) = d.

Differentiation

If f(x) is a function, we define the derivative

df

dx
= f ′(x) = lim

δx→0

f(x + δx)− f(x)

δx
.

This is just the same as our earlier informal definition of
dy

dx
as the limit of

δy

δx
as δx tends to 0.

For example, if f(x) = xk, for any real number k, then we use the binomial
expansion of (x + δx)k as (xk + k.xk−1δx + · · ·) to calculate

f ′(x) = lim
δx→0

(xk + k.xk−1δx + · · ·)− xk

δx

= lim
δx→0

k.xk−1δx + · · ·
δx

= lim
δx→0

(k.xk−1 + · · ·)
= k.xk−1

since all the remaining terms have a factor δx, so tend to 0.
Similarly, if f(x) = ex, we use the power series expansion for ex to get

f ′(x) = lim
δx→0

ex+δx − ex

δx

= lim
δx→0

ex eδx − 1

δx

= ex. lim
δx→0

(1 + δx + (δx)2

2
+ · · ·)− 1

δx

= ex. lim
δx→0

δx + (δx)2

2
+ · · ·

δx

= ex. lim
δx→0

(
1 +

δx

2
+ · · ·

)
= ex

However, not all functions have derivatives, as the required limit may not
exist. For example, let f(x) = |x|, and consider what happens near x = 0. We
have

f(δx)− f(0)

δx
=
|δx|
δx
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which is 1 if δx > 0, and −1 if δx < 0, so

lim
δx→0+

f(δx)− f(0)

δx
= 1

lim
δx→0−

f(δx)− f(0)

δx
= −1

which means the limit does not exist.

Differentiation of power series term by term. This always works, and the
new power series has the same radius of convergence as the old one. For example,

if f(x) = ex = 1 + x +
x2

2!
+ · · ·+ xn

n!
+ · · ·, then we differentiate term by term to

get

f ′(x) = 0 + 1 + x +
x2

2!
+ · · ·+ xn−1

(n− 1)!
+ · · ·

= ex

To take another example:

f(x) = sin x

= x− x3

3!
+

x5

5!
− · · ·+ (−1)n−1 x2n−1

(2n− 1)!
+ · · ·

so f ′(x) = 1− x2

2!
+

x4

4!
− · · ·+ (−1)n−1 x2n−2

(2n− 2)!
+ · · ·

= cos x

In the above calculations we have already used the basic rules of differentia-
tion, namely

d

dx
(kf(x)) = kf ′(x)

d

dx
(f(x) + g(x)) = f ′(x) + g′(x)

You also already know the formula for differentiating a product

d

dx
(f(x).g(x)) = f ′(x).g(x) + f(x).g′(x)

We can now also derive the Chain Rule for differentiating a function of a
function (i.e. a composite function). Suppose we have y = f(x) and z = g(y).
Then

dz

dx
= lim

δx→0

δz

δx
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= lim
δx→0

δz

δy
.
δy

δx

= lim
δx→0

δz

δy
. lim
δx→0

δy

δx

= lim
δy→0

δz

δy
. lim
δx→0

δy

δx

=
dz

dy
.
dy

dx

This can also be written in our other notation as

(g ◦ f)′(x) = g′(y).f ′(x)
= g′(f(x)).f ′(x)

For example, if y = f(x) = 3x2 + 1 and z = g(y) =
√

y then z =
√

3x2 + 1,
and we have

dz

dx
=

dz

dy
.
dy

dx

=
1

2
y−1/2.6x

=
3x√

3x2 + 1

Now try an example yourself. Differentiate ex2+2 sin x. (You may want to put
y = x2 + 2 sin x and z = ey so that you can follow the same method as above.
With practice you will be able to write down the answer directly.)

Another consequence of the Chain Rule is the formula for differentiating a
quotient: to differentiate 1/f(x), write y = f(x) and z = 1/y, so that

d

dx

(
1

f(x)

)
=

dz

dy
.
dy

dx

= − 1

y2
.f ′(x)

=
−f ′(x)

(f(x))2

and combining this with the formula for differentiating a product

d

dx

(
g(x)

f(x)

)
=

d

dx

(
g(x).

1

f(x)

)
= g(x).

−f ′(x)

(f(x))2
+

1

f(x)
.g′(x)

=
f(x).g′(x)− g(x).f ′(x)

(f(x))2
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Implicit differentiation Often the relationship between two variables, such as
x and y, is not so easily expressed in the form y = f(x). Perhaps the relationship
is only expressed in an implicit form, such as x2 + y2 + xy = 1. How do we

determine
dy

dx
in such a situation? Well, we can differentiate the whole equation

with respect to x, using the chain rule carefully, to get:

d

dx

(
x2 + y2 + xy

)
=

d

dx
(0)

2x + 2y
dy

dx
+ (x

dy

dx
+ 1.y) = 0

(2x + y) + (2y + x)
dy

dx
= 0

dy

dx
= −2x + y

2y + x

Of course, when we do this, the answer is expressed in terms of x and y, rather
than just x.

Differentiation of inverse functions Inverse functions can be differentiated
by using implicit differentiation as above. For example, if y = sin−1 x then

x = sin y, so 1 = cos y.
dy

dx
, so

dy

dx
= sec y. Also, since sin y = x, we have

cos y = ±
√

1− sin2 y = ±
√

1− x2, and looking at the graph of sin−1 x shows
that the slope is always positive, so

d

dx

(
sin−1 x

)
=
√

1− x2

As an exercise, find the derivative of y = tan−1 x.

Example If x = ey, then 1 = ey dy

dx
and the inverse function is given by y =

loge x, and so
dy

dx
= e−y =

1

x
.

This justifies our earlier assertion that

d

dx
(loge x) =

1

x
.

[However, it still depends on the power series exapnsion for ex, which we have
not justified.]
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Logarithmic differentiation Certain functions, such as xx, cannot be differ-
entiated directly by the methods we have used so far. There is a trick, which is
to take the logarithm first, and then use implicit differentiation. So, if y = xx,
then taking the log of both sides gives ln y = x ln x, and then differentiating both
sides with respect to x gives

1

y

dy

dx
= x.

1

x
+ 1. ln x

so
dy

dx
= y(1 + ln x) = xx(1 + ln x).

This method works whenever you have a function of the form y = f(x)g(x).
So for example, if y = (cos x)sin x then

ln y = sin x.(ln cos x)
1

y

dy

dx
= sin x.

1

cos x
.(− sin x) + cos x.(ln cos x)

dy

dx
= (cos x)sin x.(− sin x. tan x + cos x.(ln cos x))
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