Constructions of Fischer’'s Baby Monster over
fields of characteristic not 2

Richard A. Parker

DPMMS, 16, Mill Lane,
Cambridge CB2 1SB

and

Robert A. Wilson

School of Mathematics and Statistics,
The University of Birmingham,
Edgbaston, Birmingham B15 2TT

published in J. Algebra 229 (2000), 109-117

Abstract

In this paper we describe the computer construction of the repre-
sentations of Fischer’s Baby Monster simple group in 4371 dimensions
over the fields of 3 and 5 elements. As applications we construct rep-
resentations for the Thompson group which will assist in determining
much of the 3-modular and 5-modular character tables.

1 Introduction

Fischer’s Baby Monster group is the second largest of the 26 sporadic simple
groups, and has order greater than 4 x 10%3. Many of its basic properties were

1

described by Fischer [2], and its character table was computed by Hunt [3].
It was first constructed by Leon and Sims, essentially as a permutation group
on some 10'° points.

In [9] the second author constructed the 4370-dimensional representation
of the Baby Monster over GF'(2). At that time, the available computers
were stretched to the limit by a representation of this size even over the field
of two elements. A construction of such a representation over a larger field
would have been almost impossible. Nowadays, however, this is well within
range.

Over fields of characteristic not 2, the obvious subgroups to use for the
construction are the large 2-local subgroups. Specifically, we first construct
the appropriate representation of the subgroup 2'*22:Co,, then restrict to
22+10+20:) f, - and finally adjoin an outer automorphism of order 3 to the
latter group. We use the experience gained from constructing the Monster
[5] to help with the construction of 2!*22-:Clo,. Readers who are unfamiliar
with the basic nethod of such constructions are advised to consult [7]. All
calculations here are performed with the Meataxe [6, §].

The 4371-dimensional representation of B restricts to the subgroup 2'+22-Clo,
as 204823000 23. Here the 2048 denotes the unique extension of the unique
faithful irreducible representation of 2'+22, while 2300 denotes one of the two
faithful monomial representations of this degree for the quotient 222:C'o,, and
23 denotes the smallest faithful irreducible for Cos.

2 Construction of 2'122:Co,

The strategy here is essentially the same as is described in [5] for the construc-
tion of 31712:2-Suz:2. We first write down 22 generators for the group 2122
in its faithful irreducible representation, of degree 2048, and then extend to
21%22-Coy, by adjoining elements mapping to two (standard) generators of

the natural quotient Co,.

We define p = ((1) (1) and d = ((1) _01 , and then put p; = Iri-1 ®p®
Is1i-i, and similarly d; = Iyi-1 ® d ® Iy for each ¢ with 1 <4 < 11. Then
the p; are permutation matrices and the d; are diagonal matrices, together
generating 21?2, The subgroups (—1,p; | 1 <i < 11) and (~1,d; | 1 <i <
11) are maximal elementary abelian subgroups, and the commutators satisfy

[pi, dj] = (—1)%.

Next we take two generators for C'o, as 22 x 22 matrices over GF'(2), and
change basis so that the new basis vectors vy, ..., v9s correspond to the pairs
+p; and +d;. In other words we find a symplectic basis, consisting of isotropic
vectors, for the underlying orthogonal space. This can be done by the method
described in [5], but we do not need to be so careful in this relatively small
representation, so we can use more brutal methods. Specifically, we found
a subgroup 23:11, which fixes precisely two totally isotropic 11-dimensional
subspaces, Vi, Vs, say, of the 22-dimensional orthogonal space V. Choosing
bases for each of these, we calculate the matrix M of the symplectic form
with respect to the corresponding basis of V. Finally we change basis on one
of the two subspaces Vi, Vs, by multiplying it by M ~!. This has the effect

0 Iy
I 0) Thus the

basis vectors correspond as required to +p;, £d; in order.

Now for each generator g of Coy, given as a 22 x 22 matrix over GF(2),
we need to construct a 2048 x 2048 matrix ¢ which (up to signs) acts by
conjugation on 2'*22 in the same way that g acts on the natural module V.
Note first that the given basis of 2048-space may be defined (up to a single
scalar) by taking the first basis vector to be a simultaneous eigenvector of
dy,...dy1, with all eigenvalues 1, and defining the basis vectors to be the
images of this eigenvector under (pi,...,p11) (in a particular order).

Then we can calculate (up to sign) the images of di,...,d;; under g.
Choose signs arbitrarily, to obtain ey, ..., ej1, say. Then find the simultane-
ous eigenvector vy of eq, ..., ey1, with all eigenvalues 1. This is of course only
defined up to arbitrary scalar multiplication. We show later how to choose
it canonically, up to sign.

Next we calculate images of py,...,p;; under §g. Again we have 11 ar-
bitrary choices of sign, and we obtain ¢,...,qy1, say. Then we calculate
the images of vy under (gi,...,q11) (in the same order as above). These
vectors now form the rows of a matrix giving a lift of g into 21*22:C'oy (mod-
ulo scalars). Indeed, once we have lifted a generating set for Cos, we have
obtained a central product of a group of scalars with 2!+22:Co,. We can
therefore remove the unwanted scalars by passing to the derived group.

of changing the symplectic form to the standard one (

3 The monomial part of the representation

The group 2'+22:Co, has a unique subgroup of index 2300, and it has shape
22.220 (2 x Ug(2):2). In particular, the derived quotient is 22. Thus there are
just four linear characters, which can be induced up to 21722-Coy. The trivial
character of course induces up to the permutation representation, while one
other character has the 2'*22 in its kernel, so induces up to a proper monomial
representation of the quotient C'os. The remaining two both induce up to
faithful monomial representations of 222-Cos.

It is not immediately obvious which one of these is the correct one (i.e.
the one which occurs in the desired representation of the Baby Monster), but
they can be distinguished by measuring character values, and therefore if we
make them both then we can tell which is the correct one. One of them is the
action by conjugation on the 2300 pairs of elements in a particular conjugacy
class in the normal subgroup 2}:“22. It turns out that this one is the wrong
onel!

In fact, of course, the permutation parts of all four representations are
the same, and they differ only in the signs. Moreover, any sign in one of
the three proper monomial representations is the product of the two corre-
sponding signs in the other two representations. Therefore we can construct
the required representation from the other two. In each case we attach signs
to the permutation representation. In one case these signs come from the
action of C'og on an appropriate orbit of 1-spaces in the Leech lattice, or (for
easier calculation) the 23-dimensional irreducible representation over GF'(3).
In the other case, the signs come from the action by conjugation of 2!722-Clo,
on a conjugacy class of 2 x 2300 involutions in the normal subgroup 222,

In practical terms, we need first to fix a numbering of the 2300 points,
and use the same numbering in all the different representations. This can
be done by a typical ‘standard basis’ argument, but the problem is that one
then needs to store all 2300 ‘points’, and in one of our cases each such ‘point’
is a 2048 x 2048 matrix. A naive implementation would therefore require
in excess of a gigabyte of storage. We avoid this by precomputing a list of
instructions for making all the points in the ‘standard’ ordering. Details of
the algorithm used for this can be found in the next three sections.

4 Spanning trees of coset graphs

For many purposes it is useful to have an efficient method for listing all
elements of a group, or, more generally, all cosets of a given subgroup. The
algorithm described here is designed to explore such a coset graph (really
a labelled digraph, with directed edges labelled by group generators) in a
suitable small representation, and output a list of instructions for making all
of the cosets, once each. This list of instructions can then be used in a very
large representation, typically dividing the amount of work to be done by
the number of generators. More importantly, it avoids the need to store all
the cosets—in our example, when we ran the program for C'os acting on the
2300 cosets of Ug(2):2, it never needed to store more than 5 cosets at a time.

The instructions are just four—store, load, apply, and process. The
first two are memory functions: store n copies the current coset into memory
location n, while load n copies the contents of memory location n to the
current coset. The third creates a new current coset: apply n replaces the
current coset by its image under generator n. Finally, process does whatever
work the user requires to be done, to the current coset. It is the user’s job
to interpret the four instructions in the context of the required application.

5 The algorithm

The algorithm consists of two parts. In the first part, a spanning tree is
computed, and in the second part, this is converted into a list of instructions
for traversing the tree.

We assume that the input consists of a list of group generators, each of
which is a permutation on n points, stored in image format. Thus each entry
of each generator corresponds to a (directed) edge of the coset graph. The
first part of the program deletes edges (in a particular order) until only a
spanning tree remains.

We maintain a list of points in the order in which we find them, and
process each in turn until every generator has been applied to every point.
At each stage we also have a ‘current point’, which is usually the last point
in the list at that stage. We apply the next generator to the current point.
If this gives us a new point, we add it to the list, and move to the new point.
If not, we delete the corresponding edge of the graph, and continue until we
run out of generators to apply to the current point. When this happens, we

return to the first point in the list which has not been completely processed.

The reason for doing things in this way, is in order to produce a thin
straggly spanning tree, rather than a fat bushy tree. This then minimises the
number of nodes which need to be remembered (i.e. stored) when traversing
the tree.

In the second part of the algorithm, we essentially write out the edges of
the spanning tree in a suitable order. At each stage, we first decide whether
the current point needs to be stored: this happens if and only if we have
visited the point for the first time, but more than one edge of the spanning
tree leaves this point. We next apply the last possible generator to the current
point. If no generator is left in the spanning tree at this point, we return to
the last point which was stored.

6 Technicalities

First we take the permutation representation of Co; on 2300 points, and
choose standard generators for the group as in [10]. Then we take our stan-
dard copy of the point stabilizer Us(2):2 as in [11], and use this as the first
coset. In other words, we start our algorithm with the fixed point of this
subgroup. Running the algorithm now produces a list of instructions for
making all 2300 points, in a particular order.

Consider next the monomial representation of C'o, on 1-spaces in GF(3)%.
We again compute our standard copy of the subgroup Ug(2):2, and compute
the fixed 1-space thereof. For each 1-space we choose (arbitrarily) the ‘posi-
tive’ direction to be the vector in the 1-space whose first nonzero coordinate
is 1. Then for each such 1-space, we compute the images of the positive
vector under each group generator, and see whether the result is positive or
negative.

Finally we need to use these instructions in the 2048-dimensional repre-
sentation. The ‘points’ are now pairs of 2048 x 2048 (monomial) matrices.
At this point, we have to decide exactly what information we need to calcu-
late in this representation. For our application, we have two generators for
21+22-(Cloy, which are chosen to map onto standard generators for the quotient
Co,, and we need to attach signs to the corresponding permutations, in order
to create monomial generators for 222:Co,. The 4600 involutions are them-
selves monomial matrices, and for simplicity we choose the ‘positive’ one of
each pair to be the one which has +1 in the top row. Then the signs are

obtained by conjugating these monomial matrices by the group generators,
and observing whether the top row has a +1 or —1.

Thus we can implement the four instructions very simply: store and load
just copy files, while apply is just conjugation of matrices. Finally, process
consists of two matrix conjugations, followed by processing of the top rows
of the results.

In fact, there are two computational tricks available to simplify this.
Firstly, we do not need to do full matrix multiplication just to get the top
row. Secondly, we do not need to create the matrices by conjugation, because
they are already determined up to sign by the corresponding vector in 2%2,
so they can be built ‘from scratch’ in this way when necessary.

7 The full representation

At this stage we can create the full representation of the subgroup 21722-Co,
as 2048 @ 2300 6 23, that is the direct sum of the two representations con-
structed above with the 23-dimensional representation of C'oy. Everything
so far can be done over any field of characteristic not 2, or even over Z[3].

The next step is to restrict to the subgroup 22.22°.2'°My,, namely the
centralizer of a suitable 4-group. This is easy, for example using the words
given in [11], and we can chop up the representation with the Meataxe into
its irreducible constituents for this subgroup. We find the following decom-
position:

2048 — 1024a @ 1024b
2300 — 1024c ® 1232 @ 22a O 22b
23 = 22¢p1

It is sufficient now to find a suitable element fusing the three constituents of
degree 1024, and the three of degree 22. First we need to define, and find
explicitly, suitable sets of standard generators for our subgroup, and then
find the corresponding standard bases.

Note that each of the 1024-dimensional constituents represents the group
modulo one of the three central involutions. Similarly each of the 22-dimensional
constituents represents one of the three quotients 2% My,.

8 Standard generators and standard bases

The group C/(22) = 2!+ H10+10+10 10 has a somewhat subtle structure. Mod-
ulo the centre, the group has the shape 2!1°+29:My,, in which the normal sub-
group 21920 i5 a special group. Modulo the second centre, we have 220: Ms,,
in which there are four classes of complements M. Lifting first to 210720\,
the four classes do not split further. Now lifting to 22710+20)[,, we find that
only one class lifts to Mass, while the other three lift to 2- Mss. In particular,
there is a unique conjugacy class of subgroups My, in 21F1H10+10+10 7,

Returning now to the explicit computations, first we find a subgroup My
in 21HIH0HI0HI0 A) “and find standard generators s, s, for it. It is somewhat
harder to define suitable standard generators for the rest of the group. If we
take an element of order 7 in My, it fixes a unique non-zero vector in each
210 factor, so its full centralizer in 22+19*20 has order 2°. We can certainly
find elements in this centralizer which are zero in one of the quotient groups
219: My, and nonzero in the other two. These are therefore defined modulo a
group N of order 8. It turns out that four of the elements in each such coset
have order 2, while the other four have order 4. Let us choose representatives
s3, 54 of order 2 in two of the three cosets, so that there are just 42 possible
choices for s3 and s4.

It turns out that these choices fall into four orbits of size 4 under inner
automorphisms, so that really there is a choice of four possibilities for the set
{s1, 82, $3, 54} of standard generators at this stage. We choose one arbitrarily,
and now try to find the images of sy, s9, s3, s4 under an outer automorphism
of order 3. We may assume that s; and sy are centralized by this automor-
phism, and modulo the group N of order 8, the generators s3, s, are mapped
to s3s4 and s3, respectively. Again, inner automorphisms allow us to assume
that s4 is mapped to s3, and s3 is mapped to one of the four involutions in
the coset Ns3s,. We then use relations in the group to determine which is
the correct one of these cases, say s5.

Finally we put the entire representation into standard basis, first with
respect to the generator list sy, 9, S3, 54, and again with respect to the list
s1, S2, 54, s3. This gives us a matrix conjugating the first list of generators to
the second.

9 Checking the cases

In practice, therefore, we adjoined an element of order 3 cycling the three
consituents of degree 1024, and the three of degree 22. Thus the resulting
group 2*M10T20(N5y x 3) has constituent degrees 3072 + 1232 + 66 + 1. In
particular, the number of degrees of freedom is 8 — 3 — 4+ 1 = 2. This
means that once we have determined the correct standard generators, over
GF(3), say, there are just 22 = 4 cases to consider. As usual, we very quickly
eliminate three of these, and what is left must be the Baby Monster.

Similarly, over GF(5) there are 4> = 16 cases to check, and again it is
easy to eliminate all but one of these.

Finally, we want to find ‘standard generators’ for the Baby Monster in
both these representations. We do this by following the instructions in [11],
with some shortcuts provided by using the trace to help identify conjugacy
classes. We found an element of order 30 with trace 1, which is therefore in
class 308, and has 10th power, y say, in 3A. We also found an element of
order 52, whose 26th power, x say, is therefore in 2C. Then by conjugating
x and y by pseudorandom elements of the group we quickly find standard
generators as defined in [11].

10 Applications

The impetus for this construction came from modular representation theory.

Specifically, the restriction to the Thompson group T'h is a uniserial module
248

with structure 3875, and the resulting 3875-dimensional module will be very

248
helpful in calculating more of the 3-modular character table of Th. Jiirgen

Miiller is working on this problem, by condensing the tensor square of this
3875-dimensional module.

A second application is to identifying conjugacy classes of elements given
as words in the standard generators. Such elements can now be computed in
the natural representations in characteristics 2, 3 and 5, and so the (rational)
character values on the 4371-dimensional representation can be determined
modulo 30.

Acknowledgements. The research described in this paper forms part of
a joint project between Lehrstuhl D fiir Mathematik, RWTH Aachen and

the School of Mathematics and Statistics in the University of Birmingham,
supported by grants from the British Council and the Deutsche Akademische
Austauschdienst.

References

1]

2]
3]
[4]

[10]

[11]

J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson,
An ATLAS of Finite Groups, Oxford University Press, 1985.

B. Fischer, A note concerning {3,4}-transposition groups, unpublished.
D. C. Hunt, The character table of the Baby Monster, unpublished.

J. S. Leon and C. C. Sims, The existence and uniqueness of a simple
group generated by {3,4}-transpositions, Buil. Amer. Math. Soc. 83
(1977), 1039-1040.

S. A. Linton, R. A. Parker, P. G. Walsh and R. A. Wilson, Computer
construction of the Monster, J. Group Theory 1 (1998), 307-337.

R. A. Parker, The computer calculation of modular characters (The
‘Meat-axe’), in Computational Group Theory (ed. M. D. Atkinson), Aca-
demic Press, 1984, pp. 267-274.

R. A. Parker and R. A. Wilson, Computer construction of matrix rep-
resentations of finite groups over finite fields, J. Symbolic Comput. 9

(1990), 583-590.
M. Ringe, The C' Meat-axe 2.3, documentation, RWTH Aachen, 1995.

R. A. Wilson, A new construction of the Baby Monster, and its appli-
cations, Bull. London Math. Soc. 25 (1993), 431-437.

R. A. Wilson, Standard generators for sporadic simple groups, J. Algebra
184 (1996), 505-515.

R. A. Wilson et al., A world-wide-web Atlas of Group Representations,
http://www.mat.bham.ac.uk/atlas/

10

