
The 2-modular characters of Conway’s third group
Co3

Ibrahim A. I. Suleiman
Department of Mathematics and Statistics,

Mu’tah University,
Al-Karak, P.O. Box 7

Jordan

and
Robert A. Wilson

School of Mathematics and Statistics,
The University of Birmingham,

Edgbaston,
Birmingham B15 2TT, U.K.

email: R.A.Wilson@bham.ac.uk

published in J. Symbolic Comput. 24 (1997), 493–506

Abstract

We determine the 2-modular character table of the third sporadic simple group
of Conway, up to two ambiguities. In each of these cases we give the smallest
possibility for the character, which is also very likely to be the correct answer.

1 Introduction

The sporadic simple group Co3 of order 495, 766, 656, 000 = 210.37.53.7.11.23 was discov-
ered by J. H. Conway (see [2]). This group can be obtained as a subgroup of the double
cover 2.Co1 of Conway’s first group Co1, which may be defined as the automorphism
group of the 24-dimensional Leech lattice (see [3]). In [5] Curtis has classified certain
sublattices (which he called S-lattices) of the Leech lattice and found corresponding sub-
groups of 2.Co1 preserving these sublattices. Conway’s third group Co3 is the stabilizer
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of a type 3 vector in the Leech lattice (see [5]). The fourteen conjugacy classes of maximal
subgroups of Co3 were determined by Finkelstein (see [7]).

The p-modular character tables for Co3 for the primes p = 7, 11, and 23 have been
determined (see [10]). In this paper we find the 2-modular character table of Co3. There
are two characters which we were unable to prove correct, although we have very strong
evidence for them.

Our methods are computational, making use mainly of the ‘Meat-axe’ written by R.
A. Parker [8]. We also used GAP [13] for a few character calculations, as well as some
extensions to the ‘Meat-axe’ written by M. Ringe of RWTH, Aachen. The calculations
were performed partly on the IBM3090 in the Birmingham University Computer Centre,
and partly on a SUN SPARCstation ELC provided by the School of Mathematics and
Statistics in the University of Birmingham, with financial assistance from the Science
and Engineering Research Council.

2 The blocks

Using the ordinary character table of Co3 (see [4]), we calculate the 2-modular cen-
tral characters. These central characters give the block distribution of characters. The
ordinary characters are distributed in the following three blocks:

1. Block B1 = {129536a, 129536b} is of defect 1.

2. Block B2 = {896a, 896b, 20608a, 20608b, 73600, 93312, 226688, 246400} is of defect
3. The defect group is elementary abelian and of inertial index 21.

3. The principal block B0 contains the remaining thirty two ordinary characters.

The theory of blocks of cyclic defect (see for example [1]) implies that the two ordinary
representations 129536a, 129536b which are in block B1, have equal character values on
the 2-regular classes, and that 129536 (the reduction modulo 2 of either one of them) is
a 2-modular irreducible representation of Co3.

3 Elementary use of the Meat-axe

To determine the decomposition matrices of the other two blocks, we use the Meat-axe,
especially the method of condensation (see [12], and Section 4 below). We started with
some 24× 24 matrices over GF (3) generating Co3, as a subgroup of 2.Co1. Then using
the Meat-axe program ‘VP’ (‘vector permute’—see [14]) to find the action of Co3 on a
suitable orbit of vectors, we obtained permutations on 276 points also generating Co3.
Then we reduced the corresponding permutation representation modulo 2 and chopped
this up with the Meat-axe to get 276 = 1 + 1 + 22 + 22 + 230. In particular, we obtained
two generators for Co3 in GL22(2), as in Table 1.
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Table 1: Generators for Co3 in GL22(2)

1101110001000001010000 0101000010111010111111

1111010111110100001011 0110010100011110110000

0000001000000100010101 0011010000111111010111

1111100110110001001110 0001101110001011010011

0101010000000010011101 1010010000100001011110

0000010000000100010101 1101000000001010100011

0010000000000100010101 1100101010001111010101

0001000011000000111111 1000110100110101010101

1110100100110100010011 0100110001010000000111

0000000000000110010101 1100000010100101010010

0000000000100100010101 0101110110011100000101

0110111111010011101111 0101111101010011111001

0000000000001100010101 1000010101010101010001

0000000000000100000101 0001010000111100100111

0000000001000100010101 0011010010111011001111

0000000000000100011101 0100110010110011111010

0001000110000010011010 1101011001111101100011

0000000000000000010101 0100101001001000100001

0000000000000101010101 1100101100001001110011

0000000000000100010100 0101110110010100000001

0000000000000100010111 0000001101111000101110

0000000000000100010001 1101101010101110000101

a b
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Table 2: Words for classes in Co3

Class Word
9A (ab2)2

9B ab
11A bab(abab2)2

15A abab2

15B (ab)2(abab2)2(ab2)2

21A ab2ab(abab2)2

23A (ab)2(abab2)2ab2

Then these two 2-modular irreducible representations (namely 22 and 230) can be
used to produce some more irreducibles in the usual way with the Meat-axe. We find
that

Λ2(22) = 1 + 230
Λ3(22) = 22 + 22 + 1496

22⊗ 230 = 22 + 22 + 1496 + 3520.

On restriction to the maximal subgroup McL:2, the ordinary characters 896a, 896b
remain irreducible. Using the 2-modular character table of McL:2 (see [9]) we can see
that the latter remain irreducible on reduction modulo 2. It follows that 896a and 896b
are two 2-modular irreducible representations of Co3. Thus we have shown that 1, 22,
230, 896a, 896b, 1496, 3520 and 129536 are eight of the sixteen 2-modular irreducible
representations of Co3.

Before we look for the remaining irreducibles, we calculate the character values of
the irreducibles obtained so far. To do this, we find representatives for all the 2-regular
classes of Co3 as words in a, b. The words for some classes are given in Table 2. The
other 2-regular classes are powers of these. We then work out the character values on
these classes using the program ‘EV’ of the Meat-axe which works out the eigenvalues of
a matrix. The results are given in Table 3.

4 The method of condensation

The main method used in the following was condensation of permutation modules. Some-
times we also constructed the invariant subspaces which contain the required represen-
tations, by spinning up the corresponding subspaces in the condensed module under the
group generators. This can be done using the uncondense program ‘UK’ of the Meat-axe.
These methods have been explained in detail in [14] (see also [12] and [20]). We give here
a brief summary.

Let G be a group, and V be a kG-module, where k is a finite field of characteristic p.
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Table 3: The characters of some 2-modular irreducibles of Co3

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @

4 349 29 4 1

95766656000 920 160 536 500 300 42 162 81 22 22 30 15 21 23 23

p power A A A A A A A A A A AA BB AC A A

p’ part A A A A A A A A A A AA BB AC A A

1A 3A 3B 3C 5A 5B 7A 9A 9B 11A B** 15A 15B 21A 23A B**

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

22 -5 4 -2 -3 2 1 -2 1 0 0 0 -1 -2 -1 -1

230 14 5 2 5 0 -1 2 -1 -1 -1 -1 0 2 0 0

896 32 -4 -7 -4 1 0 2 -1 b11 ** 2 1 0 -1 -1

896 32 -4 -7 -4 1 0 2 -1 ** b11 2 1 0 -1 -1

1496 -16 2 8 -4 -4 -2 -1 -4 0 0 -1 2 1 1 1

3520 -44 10 -8 -5 0 -1 1 1 0 0 1 0 -1 1 1

129536 -64 44 8 -14 -4 1 -1 -1 0 0 1 -1 1 0 0

5



Let H be a subgroup of G such that p does not divide |H|. Define the idempotent

e =
1

|H|
∑
h∈H

h ∈ kG.

Then e.kG.e is a sub-algebra of kG known as a Hecke algebra.
From any kG-module V , we obtain an e.kG.e-module V e. We say that V e is condensed

from V since V e consists of the fixed points of the action of H on V . We call H the
condensation subgroup. In this way we get a condensed module V e such that dim(V e) ≈
dim(V )
|H| . Accordingly, it should be much easier to apply the ‘Meat-axe’ to V e rather

than to V . Moreover, any information about V e which we obtain with the ‘Meat-axe’
gives rise to information about V . This can be seen using the following well-known result
(see [12]).

Proposition 1 Let χ1, χ2, . . . , χr be the irreducible constituents of the module V , then
the irreducible constituents of V e are the non-zero members of the set {χ1e, χ2e, . . . , χre}.

The problem in practice is to prove that we have generators for the Hecke algebra. If
g1, . . . , gr generate G, it does not necessarily follow that eg1e, . . . , egre generate e.kG.e.
We choose our group generators in such a way that we believe that 〈eg1e, . . . , egre〉
(which we call the condensation algebra) is the whole of the Hecke algebra e.kG.e, but it
could conceivably be smaller. Thus we could have ‘mirages’—subspaces of V e invariant
under the condensation algebra but not under the whole of the Hecke algebra. For this
reason, condensation in general only provides lower bounds for the degrees of irreducible
representations.

Sometimes we need more information about the constituents of V than straightfor-
ward condensation can provide. One method is to use the ‘uncondense’ program UK of
the Meat-axe to calculate constituents of the permutation representation explicitly. Given
an invariant subspace We of a condensed module V e we can construct the corresponding
invariant subspace W of the permutation module V as follows:

1. Use UK to express the basis vectors for We in terms of the basis vectors for V.
Each basis vector for V e is the sum of basis vectors in V over an orbit of H.

2. Spin up We under the group generators. That is, find the invariant subspace of
V generated by We. In practice, we multiply the vectors we have so far by one of
the generating permutations (using a version of ‘MU’ capable of multiplying non-
square matrices by permutations), and use the Gaussian elimination programs ‘EF’
(echelon form), ‘CL’ (clean) and ‘CE’ (clean and extend) to put the whole collection
of vectors into echelon form. Eventually, we obtain the required subspace that is
invariant under the group generators. In particular, this gives us the degree of the
representation, namely dim(W ).

3. If we want to construct the matrices for G in this representation, we can apply the
generators to our invariant subspace (using ‘MU’) and use ‘CL’ to write the images
of the basis vectors as linear combinations of the basis vectors.
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5 Condensation of some permutation modules

In this section we describe the application of the condensation method. The primitive
permutation representations of Co3 on 276, 11178, 37950, 48600, 128800, 170775 and
655776 points were found by using the Meat-axe program ‘VP’ as described above. Now
they can be condensed using a suitable condensation subgroup. The permutation char-
acters are found by inducing up the trivial character of the relevant maximal subgroups.
These permutation characters are shown in Table 4, together with the permutation char-
acter of degree 1536975 which is used in the next section.

Using the ordinary character table of Co3 (see [4]) we can see that these characters
decompose as sums of the ordinary irreducible characters of Co3 as follows.

Pm1 = 276 = 1 + 275
Pm2 = 11178 = 1 + 23 + 275 + 2024 + 8855
Pm3 = 37950 = 1 + 275 + 275 + 5544 + 8855 + 23000
Pm4 = 48600 = 1 + 23 + 253b+ 275 + 2024 + 5544 + 8855 + 31625c
Pm5 = 128800 = 1 + 275 + 5544 + 8855 + 23000 + 91125
Pm6 = 170775 = 1 + 275 + 7084 + 8855 + 23000 + 57960 + 73600
Pm7 = 655776 = 1 + 275 + 2024 + 8855 + 23000 + 23000 + 57960

+ 73600 + 91125 + 129536b+ 246400
Pm8 = 1536975 = 1 + 23 + 253b+ 2(275) + 2(2024) + 4025 + 2(5544) + 3(8855) +

+ 2(23000) + 31625a+ 3(31625c) + 31878 + 57960 + 73600 +
+ 91125 + 2(125936b) + 177100 + 184437 + 2(221375)

The permutation representation on 276 points is the only one that we can chop up
directly using the Meat-axe, as the others are too big. Therefore we use the method of
‘condensation’ to find some more 2-modular irreducible representations.

We take our two generators a and b for Co3, and find words to get a suitable conden-
sation subgroup K such that the order of K is not divisible by 2. In this section we use
a Sylow 5-subgroup K of order 125.

5.1 The permutation representation on 276 points

We first condense the first permutation module Pm1 over the subgroup K of order 125 to
get a condensed module M1 of dimension 8. Although we do not need to condense Pm1 to
find new irreducibles, yet we did so to identify the condensed irreducibles corresponding
to the 2-modular irreducibles. M1 is chopped up using the Meat-axe as follows

M1 = 8 = 1 + 1 + 2a+ 2a+ 2b

and therefore we have the following correspondence.

Constituent of Pm1: 1 22 230
Constituent of M1: 1 2a 2b
Multiplicity: 2 2 1
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Table 4: Permutation characters of Co3

1A 2A 2B 3A 3B 3C 4A 4B 5A 5B 6A 6B 6C 6D 6E 7A
276 36 12 6 15 0 16 8 1 6 6 0 3 3 0 3

11178 378 66 0 81 0 6 30 3 13 0 0 9 3 0 6
37950 750 198 15 105 0 130 42 0 15 15 3 9 9 0 3
48600 1080 0 0 162 0 0 48 0 20 0 0 18 0 0 6

128800 1120 232 10 91 28 160 32 0 10 10 4 7 7 4 0
170775 631 495 351 135 0 31 15 25 0 31 19 7 9 0 3
655776 2016 792 486 135 72 96 32 1 6 6 36 3 9 0 2

1536975 7695 495 0 567 0 15 111 0 20 0 0 27 9 0 6

8A 8B 8C 9A 9B 10A 10B 11A 11B 12A 12B 12C 14A 15A 15B
2 6 2 0 3 1 2 1 1 4 2 1 1 1 0

12 0 4 0 0 3 1 2 2 0 0 3 0 0 1
4 16 4 0 3 0 3 0 0 7 3 1 1 0 0
0 0 4 0 0 0 0 2 2 0 0 0 2 0 2
0 8 4 1 1 0 2 1 1 4 2 1 0 0 1
7 7 3 9 0 1 0 0 0 7 3 1 1 1 0
8 0 4 0 0 1 2 0 0 0 2 3 0 1 0
3 3 3 0 0 0 0 0 0 0 0 3 2 0 2

18A 20A 20B 21A 22A 22B 23A 23B 24A 24B 30A
0 1 1 0 1 1 0 0 2 0 1
0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0 0 2 0
1 1 1 0 0 0 0 0 1 1 1
0 1 1 2 0 0 0 0 2 0 1
0 0 0 0 0 0 0 0 0 0 0
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Table 5: Condensation of Pm2

Constituent of Pm2: 1 22 230 1496 7084
Constituent of M2: 1 2a 2b 8a 56
Multiplicity: 6 8 4 2 1

Of course, 1, 2a, 2b are the fixed spaces of K in the 2-modular irreducibles 1, 22 and
230 respectively. We distinguish 2a from 2b by using a nullity fingerprint as described in
[8].

5.2 The permutation representation on 11178 points

Now we take the permutation module Pm2 on 11178 points. We condense Pm2 over
the same Sylow 5-subgroup K to get a condensed module M2 of dimension 102. M2 is
chopped up as follows:

M2 = 102 = 6(1) + 8(2a) + 4(2b) + 2(8) + 56.

Now the permutation character 11178 decomposes as a sum of the ordinary characters
as follows:

Pm2 = 11178 = 1 + 23 + 275 + 2024 + 8855.

Using the known character values (Table 3) we see that the following relations hold on
the 2-regular classes:

2024 = 2(1) + 3(22) + 2(230) + 1496
8855 = 1 + 2(22) + 230 + 1496 + 7084

where 7084 denotes the ordinary irreducible of degree 7084 for Co3. By calculating the
fixed spaces of K on the known representations, we find the correspondence between the
constituents of the condensed module M2 and the irreducibles of the original module
Pm2. This correspondence is given in Table 5.

We have proved already that 1496 is a 2-modular irreducible representation in Co3.
Moreover, 7084 lifts to characteristic 0, so is a 2-modular irreducible representation and
the character values can be read off from the ordinary character table.

5.3 The permutation representation on 37950 points

Next we take the permutation representation on 37950 points and condense it over the
same Sylow 5-subgroup K of order 125. The resulting condensed module M3 has dimen-
sion 318 and is chopped up to irreducibles as follows:

M3 = 318 = 8(1) + 11(2a) + 8(2b) + 2(8) + 2(28) + 56 + 72a+ 72b
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Table 6: Condensation of Pm3

Constituent of Pm3: 1 22 230 1496 3520 7084 9372a 9372b
Constituent of M3: 1 2a 2b 8a 28 56 72a 72b
Multiplicity: 8 11 8 2 2 1 1 1

Now using ‘UK’ as described in Section 4 we prove that the two new 2-modular irre-
ducible characters of Co3 corresponding to the condensed modules 72a and 72b each
have dimension 9372. Table 6 gives the correspondence between the irreducibles of the
condensed module M3 and the irreducibles of the permutation module Pm3.

The permutation character 37950 can be written as a sum of ordinary irreducibles as
indicated below:

Pm3 = 37950 = 1 + 2(275) + 5544 + 8855 + 23000.

The ordinary irreducibles reduced modulo 2 break up as follows:

1 = 1
23 = 1 + 22

275 = 1 + 22 + 22 + 230
5544 = 1 + 1 + 3(22) + 2(230) + 1496 + 3520
8855 = 1 + 2(22) + 230 + 1496 + 7084

Hence 23000 contains all the remaining constituents, so from the condensation we obtain

23000 = 2(1) + 2(22) + 3(230) + 3520 + 9372a+ 9372b.

Using the following relation between ordinary characters on the 2-regular classes of Co3,

23000 + 23 = 253 + 3520 + 9625a+ 9625b,

we obtain (without loss of generality)

9625a = 9372a+ 23 + 230

and
9625b = 9372b+ 23 + 230,

so we can work out the character values for the 2-modular irreducibles 9372a and 9372b.

5.4 The permutation representation on 48600 points

The character of the permutation module Pm4 on 48600 points can be written as

Pm4 = 48600 = 1 + 23 + 253b+ 275 + 2024 + 5544 + 8855 + 31625c.

Also the following relation holds on the 2-regular classes:

31625c = 1771 + 3520 + 7084 + 9625a+ 9625b.

Therefore, we can assume that condensation of this module will yield no new information.
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Table 7: Condensation of Pm5

Constituent of Pm5: 1 22 230 1496 3520 7084 9372a 9372b 38456
Constituent of M5: 1 2a 2b 8a 28 56 72a 72b 304
Multiplicity: 14 18 13 4 3 2 3 3 1

5.5 The permutation representation on 128800 points

The permutation module Pm5 on 128800 points can be written as

Pm5 = 128800 = 1 + 275 + 5544 + 8855 + 23000 + 91125.

We have the following relation on the 2-regular classes:

91125 = 1771 + 3520 + 7084 + 2(9625a) + 2(9625b) + 40250.

We condense this permutation module Pm5 over the same Sylow 5-subgroup K to get a
1040-dimensional condensed module M5 which is chopped up as follows:

1040 = 14(1) + 18(2a) + 13(2b) + 4(8) + 3(28) + 2(56) + 3(72a) + 3(72b) + 304.

The above decomposition gives an indication that there is a new 2-modular irreducible
representation of degree at least 38456, corresponding to the condensed module of di-
mension 304. The correspondence between the different constituents is given in Table 7.

Unfortunately, we were unable to prove, as we did before, that 38456 is the exact
dimension for the new 2-modular irreducible representation. Nevertheless, the evidence
of the condensation is very strong, and we have a lower bound of 38456 and an upper
bound of 40250 for the dimension.

5.6 The permutation representation on 170775 points

The permutation character 170775 decomposes as the sum of the following ordinary
irreducibles:

Pm6 = 170775 = 1 + 275 + 7084 + 8855 + 23000 + 57960 + 73600.

The ordinary irreducible character 73600 is in the block B2 of defect 3, while the rest of
the ordinary irreducibles are in the principal block B0. The following relation holds on
the 2-regular classes

57960 = 1 + 1771 + 3520 + 2(7084) + 2(9625a) + 2(9625b).

This relation shows that the only possible new 2-modular irreducibles are in 73600. In
fact, it turns out that 73600 remains irreducible mod 2. Rather than prove this here, we
will use the permutation representation of degree 655776, in the next section.
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Table 8: Condensation of Pm7

Constituent of Pm7: 1 22 230 1496 3520 7084 9372a 9372b
Constituent of M7: 1 2a 2b 8a 28 56 72a 72b
Multiplicity: 22 26 21 5 4 4 6 6

38456 19712 73600 896a 896b 131584 129536
304 160 584 8b 8c 1056 1032

1 2 2 1 1 1 1

5.7 The permutation representation on 655776 points

The permutation character 655776 decomposes as

Pm7 = 655776 = 1 + 275 + 2024 + 8855 + 23000 + 23000 + 57960+
+73600 + 91125 + 129536b+ 246400.

Hence 73600 is one of the ordinary irreducibles of this permutation character as well.
The ordinary irreducible 129536b was proved in Section 2 to be a 2-modular irreducible
in Co3. Restricting 129536 to the condensation subgroup K (the Sylow 5-subgroup) and
calculating the fixed space in 129536 gives a dimension 1032. The condensation of all the
ordinary irreducibles in the above permutation module Pm7 is already known except for
73600 and 246400. Also, the characters 73600 and 246400 are in the block B2 of defect 3.
We condense the permutation module Pm7 on 655776 over the same Sylow 5-subgroup
K to get a condensed module M7 of dimension 5252. This condensed module M7 is
chopped up as follows.

5252 = 22(1) + 26(2a) + 21(2b) + 5(8a) + 4(28) + 4(56) + 6(72a) + 6(72b)+
+2(160) + 304 + 1032 + 2(584) + 8b+ 8c+ 1056.

The correspondence between the irreducibles in the condensed module and the original
module is given in Table 8.

This shows that 73600 remains irreducible mod 2. In the next section we show that
the representations 19712 and 131584 both exist.

6 The Block B2 of defect 3

The ordinary characters in block B2, which is of defect 3, satisfy the following relations
on the 2-regular classes:

896a+ 20608b = 896b+ 20608a (1)
896a+ 93312 = 20608a+ 73600 (2)
896b+ 93312 = 20608b+ 73600 (3)

896a+ 246400 = 20608a+ 226688 (4)
896b+ 246400 = 20608b+ 226688 (5)

93312 + 226688 = 246400 + 73600 (6)
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Table 9: The decomposition matrix D2 of block B2

896a 896b 19712 73600 X ≥ 131584
896a 1 0 0 0 0
896b 0 1 0 0 0

20608a 1 0 1 0 0
20608b 0 1 1 0 0
73600 0 0 0 1 0
93312 0 0 1 1 0

226688 a ≤ 1 a ≤ 1 b ≤ 1 c ≤ 1 1
246400 a ≤ 1 a ≤ 1 1 + b ≤ 2 c ≤ 1 1

Using relation (1) we deduce that as 2-modular characters 896a < 20608a and 896b <
20608b, and therefore 20608a − 896a = 19712 is a 2-modular character. Using conden-
sation we have proved in Section 5.7 that 19712 is a lower bound for the degree of this
representation. Hence 19712 is a 2-modular irreducible representation in Co3.

Using the above relations between the ordinary characters in block B2 and the in-
formation we have got so far we can write down the decomposition matrix of this block
with some ambiguities on some entries. This is shown in Table 9.

The following relation holds for ordinary characters:

253⊗ 896a = 226688.

This implies that
(1 + 22 + 230)⊗ 896a = 226688

on the 2-regular classes. Moreover,

22⊗ 896a = 19712.

Therefore,
896a+ 19712 + 230⊗ 896a = 226688.

Hence,

896a < 226688, 19712 < 226688 and 896a = 896b < 226688.

The above results imply that 226688 − 896a − 896b − 19712 = 205184 is a 2-modular
character. Using relation (6) above we can deduce that 896a, 896b and 2(19712) are
contained in 246400. Thus we have a = 1 and b = 1 in Table 9.

To show that c = 1, we return to considering the permutation representation Pm7.
The part of Pm7 in the block B2 is just 73600+246400, and the corresponding condensed
module M7 has constituents 8b+8c+2(160)+2(584)+1056 in this block. Now we can show
with the Meat-axe that M7 has a unique submodule of dimension 584 (corresponding to
the ordinary irreducible 73600). Similarly there is a unique submodule of codimension
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584, which contains the submodule of dimension 584. Thus the image of 73600 in the 2-
modular permutation representation is contained in the image of 246400. In other words,
73600 is a constituent of the reduction modulo 2 of 246400.

Remark 1 An alternative method of showing that c ≥ 1 is as follows. The part of
22⊗ 73600 in B2 is 19712. Thus

Hom(22⊗ 19712, 73600) = Hom(19712, 22⊗ 73600) 6= 0.

But the constituents of 22⊗ 19712 in this block are

2(896a) + 2(896b) + 19712 + 2(205184),

and so 73600 < 205184.

7 The last irreducible

There remains one irreducible to be found, which is contained in the permutation module
of degree 1536975, on the cosets of the subgroup 24.A8. Using GAP [13] we see that the
character of this representation can be expressed in terms of the ordinary irreducibles as

Pm8 = 1 + 23 + 253b+ 2(275) + 2(2024) + 4025 + 2(5544) + 3(8855) +
+ 2(23000) + 31625a+ 3(31625c) + 31878 + 57960 + 73600 +
+ 91125 + 2(125936b) + 177100 + 184437 + 2(221375)

Using the relations which hold on the 2-regular classes, we obtain the following expression
in terms of the 2-modular irreducibles.

Pm8 = 57(1) + 77(22) + 56(230) + 17(1496) + 14(3520) + 12(7084) + 11(9372a)+
+11(9372b) + 3(38456) + 73600 + 2(129536) + 4(177100),

where the last character 177100 denotes the reduction modulo 2 of the ordinary repre-
sentation of that degree.

We cannot condense this representation with the Sylow 5-subgroup K, since it is
too big. Thus we need to condense with a larger subgroup. The problem then is that
some of the irreducibles condense to dimension 0. We overcome this by condensing
with two different subgroups. We took the groups K1

∼= 34:5 and K2
∼= 23:11. The class

distribution of the elements of K1 is (1A, 3A20, 3B60, 5B324), so the condensed dimensions
of the 2-modular irreducibles we have found so far are as in Table 10.

Now Pm8 condensed over K1 breaks up as

73(1)+101(2a)+72(2b)+18(8a)+16(20a)+19(20b)+19(20c)+7(80)+188+4(216)+2(320).

Similarly Pm8 condensed over K2 breaks up as

73(1) + 21(6) + 18(14) + 16(28) + 19(37a) + 19(37b) + 7(152) + 290 + 4(348) + 2(512).
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Table 10: Condensation over K1 and K2

Degree Dimension Dimension
over K1 over K2

1 1 1
22 2 0

230 2 0
896 4 3

1496 0 6
3520 8 14
7084 20 28
9372 20 37

19712 40 78
38456 80 152
73600 188 290

129536 320 512
131584 336 522

Therefore it is very likely that the last irreducible condenses to dimension 216 over K1

and 348 over K2. On this assumption we obtain the last 2-modular character as

177100− 4(1)− 6(22)− 4(230)− 1496− 3520− 7084− 2(9372a)− 2(9372b)− 38456

on the 2-regular classes. This has degree 88000.

8 The indicators

Every 2-modular self-dual irreducible module supports an invariant symplectic form.
Some will also support an invariant quadratic form. Following [9], we use the symbol
+ to denote that the 2-modular irreducible representation supports a non-zero invariant
quadratic form; if not, we use the symbol −. It is often very difficult to determine,
theoretically, whether a 2-modular representation supports an invariant quadratic form
or not, so we use computer calculations to solve this problem.

The representations 1, 7084, 73600 and 129536 lift to ordinary representations of the
same degree, which have Schur indicator +, so support invariant quadratic forms. Other
cases required computer calculations using the method which was explained in detail in
[14]. Here is a brief explanation of that method.

Using the programs of the Meat-axe, Standard-Base ‘SB’, Transpose ‘TR’ and Invert
‘IV’ (to get the dual representation) and Standard-Base again, we find a matrix P such
that

P−1giP = (gi
T )−1
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for each group generator gi. Hence giPgi
T = P and P is the matrix of a symplectic form

invariant under Co3.
Now a quadratic form q can be specified by giving the associated symplectic form,

together with the values of q on a basis. Since all the basis vectors produced by ‘SB’
are in the same orbit under the group, there is just one possible quadratic form for each
element of the field.

Each quadratic form may be represented by a matrix Q obtained by taking the
bottom-left of P (i.e the part below or on the main diagonal), and adding a scalar
matrix. We have to check whether the diagonal of giQgi

T is equal to the diagonal of
Q. If it is, for all the generators gi of G, then the quadratic form represented by Q is
invariant under G. Using the Meat-axe we proved that the representations 230, 1496 and
3520 have indicator +, while 22 has indicator −.

The remaining representations are too big to approach in this way, but those which
are not in the principal block yield to a theoretical approach. In fact we prove a slightly
more general result, which implies in particular that every self-dual irreducible outside
the principal block has indicator +. First we set up the usual machinery of reduction
modulo p. We have a group G, a field k of characteristic 0, a ring of integers R in k,
a prime ℘ in R dividing p, a kG-module V , and an RG-lattice Λ such that Λ/℘Λ is a
reduction modulo p of V . We use a theorem of Thompson which states that Λ can be
chosen in such a way that any desired constituent is the unique top composition factor
of V ′ = Λ/℘Λ.

Theorem 1 With the above notation, suppose p = 2 and V is irreducible, and V sup-
ports a non-degenerate G-invariant quadratic form q. Suppose that V ′ has no trivial
constituents, U is a self-dual 2-modular irreducible for G, and V ′ has exactly one compo-
sition factor isomorphic to U . Then U supports a non-degenerate G-invariant quadratic
form.

Proof. We choose Λ so that Λ/℘Λ has U as unique top composition factor. By clearing
denominators we can ensure that q|Λ : Λ → R, and by dividing by a suitable power of
℘ we can ensure that q(Λ) is not contained in ℘R. Thus q induces a non-zero quadratic
form q′ : V ′ → F , where F = R/℘R is a field of characteristic 2. Since V has no trivial
constituents, the radical of q′ coincides with the radical of the associated bilinear form,
and q′ induces a non-degenerate quadratic form q′′ on V ′′ = V ′/rad(q′). Moreover, U is
the unique top composition factor of V ′′. Thus U∗ ∼= U is the unique bottom composition
factor of V ′′. But by assumption U occurs only once in V ′, so V ′′ ∼= U and the result
follows.

Corollary 2 Every 2-modular irreducible with indicator − is in the principal block.

Theorem 3 Table 11 represents the 2-modular character table of Co3, up to two ambi-
guities.
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Table 11: The 2-modular character table of Co3

; @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @

4 349 29 4 1

95766656000 920 160 536 500 300 42 162 81 22 22 30 15 21 23 23

p power A A A A A A A A A A AA BB AC A A

p’ part A A A A A A A A A A AA BB AC A A

ind 1A 3A 3B 3C 5A 5B 7A 9A 9B 11A B** 15A 15B 21A 23A B**

+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

- 22 -5 4 -2 -3 2 1 -2 1 0 0 0 -1 -2 -1 -1

+ 230 14 5 2 5 0 -1 2 -1 -1 -1 -1 0 2 0 0

o 896 32 -4 -7 -4 1 0 2 -1 b11 ** 2 1 0 -1 -1

o 896 32 -4 -7 -4 1 0 2 -1 ** b11 2 1 0 -1 -1

+ 1496 -16 2 8 -4 -4 -2 -1 -4 0 0 -1 2 1 1 1

+ 3520 -44 10 -8 -5 0 -1 1 1 0 0 1 0 -1 1 1

+ 7084 10 19 -14 9 -1 0 4 -2 0 0 0 -1 0 0 0

o 9372 30 -15 6 -3 -3 -1 -3 0 0 0 0 0 -1 b23 **

o 9372 30 -15 6 -3 -3 -1 -3 0 0 0 0 0 -1 ** b23

+ 19712-160 -16 14 12 2 0 -4 -1 0 0 0 -1 0 1 1

? 38456?-100 -46 8 6 -4 -2 8 -1 0 0 0 -1 1 0 0

+ 73600 160 16 13 0 -5 2 4 1 -1 -1 0 1 -1 0 0

? 88000? -20 -2 -32 0 0 3 -5 1 0 0 0 3 3 2 2

+ 129536 -64 44 8 -14 -4 1 -1 -1 0 0 1 -1 1 0 0

+ 131584 256 -32 -20 -16 4 -2 -2 1 2 2 -4 -2 1 1 1
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[13] M. SCHÖNERT et al., ‘GAP (Groups, Algorithms and Programming)’, RWTH
Aachen, 1992.

[14] I. A. SULEIMAN, Modular representations of finite simple groups, Ph. D. thesis,
University of Birmingham, 1990.

[15] I. A. SULEIMAN, The modular characters of the twisted Chevalley group 2D4(2)
and 2D4(2).2. Math. Japonica 39 (1994), 107–117.

[16] I. A. SULEIMAN and R. A. WILSON, The 3- and 5-modular characters of the
covering and the automorphism groups of the Higman–Sims group. J. Algebra 148
(1992), 225–242.

18



[17] I. A. SULEIMAN and R. A. WILSON, Computer construction of matrix represen-
tations of the covering group of the Higman–Sims group. J. Algebra 148 (1992),
219–224.

[18] I. A. SULEIMAN and R. A. WILSON, The 3-modular characters of McLaughlin’s
group and its automorphism group, in ‘Groups, Combinatorics and Geometry’ (ed.
M.W. Liebeck and J. Saxl), LMS Lecture Notes 165, pp. 422–437. Cambridge Uni-
versity Press, 1992.

[19] J. THACKRAY, Modular representations of some finite groups, Ph. D. Thesis, Uni-
versity of Cambridge, 1981.

[20] R. A. WILSON, The 2- and 3- modular characters of J3, its covering group and
automorphism group. J. Symbol. Comput. 10 (1990), 647–656.

19


