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Introduction

Finite-dimensional real reflection groups were classified by Coxeter [2]. In two
dimensions, they are the dihedral groups, and in higher dimensions there are three
infinite series, An, Bn and Dn in n dimensions (for each n > 2, although in fact
A3 = D3), and six exceptional cases, H3, H4, F4, E6, E7, E8, where in each case
the subscript indicates the dimension.

It is significant (I think) that the various finite series of reflection groups stop in
dimensions 2, 4, and 8, precisely the dimensions of the complex numbers, quater-
nions, and octonions (Cayley numbers). Thus the ‘end of the road’ is reached for
dihedral groups of order at least 12 in two dimensions, F4 and H4 in four dimensions,
and E8 in eight dimensions.

This significance perhaps lies in the fact that reflections are not just geometric
concepts, but (at least in 2, 4 or 8 dimensions) inescapably algebraic concepts.
It is a well-known fact, which we teach to undergraduates, that reflections in 2
dimensions can be expressed in terms of complex numbers. Similarly, reflections
in 4 dimensions can be expressed in terms of quaternions, and in 8 dimensions in
terms of octonions. In each case the reflection which negates the unit vector r and
fixes everything perpendicular to r is given by the rule

x 7→ −rxr.

This map is usually called reflection in r.
The aim of this expository note is to bring many of these ideas together and to see

how E8 may be reached by many different paths. In Section n we consider the case
of dimension 2n. Thus we begin in Section 1 with a reminder of the description
of dihedral groups in terms of complex numbers. Then in Section 2 we describe
the 4-dimensional cases, first in terms of a real Euclidean space, then in terms of
quaternions. Then in Section 3 we move on to E8, in various manifestations as (a)
8-dimensional over R, (b) 4-dimensional over C, (c) 2-dimensional over H, and (d)
1-dimensional over octonions.

1 Two dimensions

The 2-dimensional reflection groups are just the dihedral groups of order 2k, consist-
ing of k rotations about the origin, and k reflections in axes through the origin. Of
particular interest are the cases k = 2 and k = 3, which are treated in Subsections
1.k below.

1.1 Complex numbers

Since the map z 7→ z maps i to −i while fixing 1, it is the map ‘reflect in the
direction of ±i’. Similarly, ‘reflect in the direction of ±1’ is expressed as z 7→ −z.
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Moreover, if r is any complex number with |r| = 1 (that is rr = 1), then the map
z 7→ rz is rotation about the origin, such that 1 maps to r. Therefore we can obtain
the map ‘reflect in the direction of ±r’ as the composite of

1. rotate r to 1, by z 7→ rz;

2. reflect in 1, by rz 7→ rz = zr;

3. rotate 1 back to r, by zr 7→ rzr.

Thus it is the map

z 7→ −rzr. (1)

Since the complex numbers are commutative, this can be simplified to z 7→ −r2z,
but I prefer not to do this, because then the above calculation goes through un-
changed in the quaternions and even in the octonions.

More generally, for any non-zero complex number r, reflection in the direction
of ±r can be expressed as the composite map

z 7→ r−1z
7→ r−1z = zr−1 = zr/(rr)
7→ rzr/(rr). (2)

Now the product of any two reflections is a rotation, since

−s(−rzr)s = srzrs = (rs)2z.

Moreover, the group structure on these rotations is given by multiplication in the
complex numbers, since the composite of z 7→ az with z 7→ bz is z 7→ (ab)z.

1.2 The dihedral group of order 8

In the general classification of reflection groups, the dihedral group of order 8 is
denoted B2. This is because it is the symmetry group of a square, which is the
beginning of a series which includes the cube, hypercube and so on, whose reflection
groups are B3, B4 and so on.

The four rotations of this dihedral group are given by multiplying by ±1 or ±i.
Since reflection in −r is the same as reflection in r, reflecting in ±1 or ±i gives us
only two reflections, and the other two are given by reflection in the two directions
given by the unit vectors (±1 ± i)/

√
2. It is often convenient to avoid the factor

of
√

2 by using ±1 ± i instead (see picture). Indeed, one could equally well use
(±1± i)/2, in which case the picture would look slightly different.
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The reflecting vectors ±1,±i,±1 ± i are known as roots. For obvious reasons,
the vectors ±1 and ±i are called short roots and ±1± i are long roots. Notice that
these roots lie in the ring of Gaussian integers, Z[i]. Moreover, the long roots can
be obtained from the short roots by multiplying by 1 + i.

Converting from C to R2 in the usual way, we can write the short roots as the
vectors (±1, 0), (0,±1) and the long roots as (±1,±1). In the alternative picture, we
can write the short roots as ±1± i = (±1,±1), and the long roots as ±2 = (±2, 0)
and ±2i = (0,±2).

1.3 The dihedral group of order 12

The dihedral group of order 12 also occupies a special place in the world of reflec-
tion groups. It is the symmetry group of a regular hexagon, and like squares and
equilateral triangles, but unlike any other regular polygons, regular hexagons can
tile the plane. This group is therefore give a special name, G2.

Let ω = (−1 +
√
−3)/2 be a primitive cube root of 1 in the complex numbers.

Then the rotations of G2 are given by the powers of ±ω. Three of the six reflections
are given by the same vectors, and the other three are given by ±ωa

√
−1. As in

the case of B2, it is convenient to scale these to ±ωa(ω − ω) = ±ω
√
−3, or to

±ωa(ω − ω)/3 = ±ω
√
−1/3. (See the picture.)
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For completeness, let us note that there is a subgroup consisting of the three
rotations by 1, ω, ω and the three reflections in ±1,±ω,±ω. This is a dihedral group
of order 6, and is known as A2. In both cases A2 and G2, the corresponding ring
of complex integers is Z[ω], often called the ring of Eisenstein integers.

2 Four dimensions

Even in three dimensions the situation is radically different from two dimensions.
Instead of there being an infinite number of indecomposable reflection groups, there
are only three, namely A3 (the group of the regular tetrahedron), B3 (the group of
the cube or regular octahedron), and H3 (the group of the regular dodecahedron or
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icosahedron). All three can be described in terms of quaternions, as subgroups of
4-dimensional groups A4, B4 and H4 respectively.

Altogether there are five indecomposable reflection groups in four dimensions,
namely A4, B4, D4, F4, and H4. We shall see that F4 contains both B4 and D4,
while H4 contains A4 and D4.

2.1 Quaternions

The non-commutative ring of (real) quaternions is H = R[i, j, k] where

i2 = j2 = k2 = −1,
ij = −ji = k,
jk = −kj = i,
ki = −ik = j. (3)

If q = a+ bi+ cj + dk then we write

q = a− bi− cj − dk,

and then it is straightforward to compute that qq is equal to the square of the
Euclidean length of q. In particular, if q 6= 0 then q−1 = q/(qq). Moreover, since
(qr)−1 = r−1q−1, we also have qr = r.q.

Reflections in 4-dimensional Euclidean space can be expressed in terms of quater-
nion notation in just the same way as in the complex numbers, though taking extra
care because of the non-commutativity. That is, reflection in 1 is the map

q 7→ −q

So if rr = 1 then reflection in r is the map

q 7→ −rrq = −rqr.

In the 4-dimensional cases F4 and H4 suitable sets of reflecting vectors (not
necessarily of norm 1) can be found inside respectively the Hurwitz integers and
the icosians, which are well-known rings of quaternions that we describe below.

These 4-dimensional reflection groups may again be described by root systems,
in which each root is one of the reflecting vectors, scaled appropriately.

2.2 Complex reflection groups

We shall also describe these root systems in terms of C2, a kind of ‘halfway house’
between the real and quaternionic descriptions. The real reflections then need a
new interpretation in this context. Recall that reflection in the real vector r is the
map

v 7→ v − 2
(v, r)

(r, r)
r,

where (v, r) denotes the inner product
∑
viri of the vectors v = (vi) and r = (ri).

(This map is linear, and fixes v if (v, r) = 0, and maps r to −r, so must be the
required reflection.) Similarly if v and r are complex vectors, with inner product
(v, r) =

∑
i viri, then the map

v 7→ v − 2
(v, r)

(r, r)
r

again fixes v if (v, r) = 0, and maps r to r. But this map is linear over C, so negates
a complex 1-space, that is a real 2-space, so is not a reflection in the real sense.
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To recover the real reflection, we have to make the inner products real. We
define a real inner product to be any convenient real multiple of the real part of the
complex inner product. Thus

v 7→ v − 2
<(v, r)

(r, r)
r

= v − (v, r) + (v, r)

(r, r)
r (4)

This map still takes r to −r, but now takes ir to itself.

2.3 Integer quaternions, B4 and C4

The ‘obvious’ analogue in the quaternions of the Gaussian integers is the ring

Z[i, j, k] = {a+ bi+ cj + dk | a, b, c, d ∈ Z}.

The units of this ring are just the elements ±1,±i,±j,±k, which form the well-
known quaternion group Q8. This ring is invariant not only under reflections in
these units (‘short roots’), but also under reflections in vectors of norm (i.e. squared
length) 2, such as 1 + i. In total there are 24 such ‘long roots’ (6 choices for which
two of 1, i, j, k to take, and 4 choices of signs). Together these 8 short roots and 24
long roots form the ‘root system’ of type B4.

Converting to R4 in the obvious way, these roots become vectors of shape
(±1, 0, 0, 0) and (±1,±1, 0, 0), up to permutations of the coordinates. The cor-
responding reflection group is generated by the corresponding 4 reflections in short
roots and 12 reflections in long roots. Reflection in a short root just changes the sign
of one of the four coordinates, while reflection in a long root swaps two coordinates
(with or without changing their signs), so the full group has shape 24.S4.

Just as in the case B2, we can interchange the roles of long and short roots,
by multiplying the short roots by 2. This time, however, the numbers of long and
short roots are different, so we obtain a different sort of root system, even though
the reflection group is still the same. This new root system is called C4, and has 12
short roots of the shape (±1,±1, 0, 0) and 8 long roots of the shape (±2, 0, 0, 0).

Cutting down to three dimensions (the 3-space of pure imaginary quaternions
is the most convenient one to take), we obtain a root system of type B3 in which
the roots are 6 of shape (±1, 0, 0) and 12 of shape (±1,±1, 0). With respect to a
natural coordinate system for the cube, the short roots are the midpoints of the
six faces, and the long roots are the midpoints of the edges. Similarly the C3 root
system can be described by saying that the long roots are the vertices of a regular
octahedron, and the short roots are the midpoints of the edges.

2.4 Hurwitz quaternions, D4 and F4

If we multiply the short roots of B4 by 1 + i (on either the left or the right) we get
8 of the 24 long roots, namely ±1± i and ±j± k. To get short roots corresponding
to the other long roots of B4, we would have to multiply by (1− i)/2, and then we
would obtain 16 roots such as

(1 + j)(1− i)/2 = (1− i+ j + k)/2.

Indeed it does not matter whether we multiply on the left or the right, in either
case we end up with all 16 roots (±1± i± j± k)/2. It is a remarkable fact that the
resulting set of 24 short roots is closed under quaternion multiplication, and hence
spans a ring known as the Hurwitz quaternions, which is still ‘integral’ in the sense
that the norms of the elements are integers.
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This ring may be obtained by adjoining a single element such as

ω =
1

2
(−1 + i+ j + k).

Since ω is of the form 1
2 (−1 +

√
−3), we have ω2 = ω = −1− ω and ω3 = 1, and is

easy to see that the product of ω with any of i, j, k is another element with ± 1
2 in

each of the four coordinates. Hence the ring consists of all elements a+ bi+ cj+ dk
where either a, b, c, d ∈ Z or

a− 1

2
, b− 1

2
, c− 1

2
, d− 1

2
∈ Z.

Thus in particular the unit elements (that is the elements with norm 1) are now
±1,±i,±j,±k together with 1

2 (±1± i± j ± k), making 24 in all. These units form
a group variously known as 2.A4 or SL2(3) or the binary tetrahedral group.

It follows that the set of 48 roots we have constructed forms a root system, in
the sense that it is closed under reflection in any one of the roots. It is called the
root system of type F4. The short roots are the 24 units just listed, and the 24
long roots are their multiples by 1 + i, and are identical to the long roots of B4.
The 24 short roots on their own form what is known as the root system of type D4.
Similarly, the 24 long roots also form a root system of type D4.

Converting to R4 as before, the roots of D4 may be taken as all 24 vectors of
shape (±1,±1, 0, 0). Or, on a different scale, the 8 vectors of shape (±2, 0, 0, 0)
together with the 16 of shape (±1,±1,±1,±1). The roots of F4 are of two different
lengths, and consist of the two copies of D4 just mentioned. They can be scaled so
that either of them gives the short roots and the other one gives the long roots. In
terms of quaternions, multiplication by 1+ i converts from one version to the other.
To obtain B4, take all of the long roots (±1,±1, 0, 0) of F4 and the eight short roots
of shape (±1, 0, 0, 0). Similarly, C4 may be obtained from all the short roots of F4

and a suitable set of 8 long roots. For example in the other description of F4, we
may take the short roots to be of shape (±1,±1, 0, 0), and the 8 long roots of C4 to
be of shape (±2, 0, 0, 0). Multiplication by 1 + i gives different descriptions of the
root systems B4 and C4.

The full reflection group of F4 has shape 2.(A4 ×A4).2.2 in which the central 2
is negation of the whole 4-space, modulo which the two copies of A4 are left- and
right-multiplication by the units. Then the maps q 7→ 1

2 (1 + i)q(1 + i) and q 7→ q
extend this to the whole group.

There are also descriptions of all these roots systems in terms of 2-dimensional
complex spaces. The system of type F4 can be described by taking the short roots
to be 8 of shape (±1± i, 0) and 16 of shape (ia, ib), and the long roots to be their
multiples by 1 + i. Similar descriptions of the other systems can be obtained from
their embeddings in F4.

Indeed, D4 and F4 also have nice descriptions over the Eisenstein integers. We
take 6 roots ±ωa(ω − ω, 0) and 18 roots ±(ωa, ωb

√
2) to be the roots of D4, that

is the short roots of F4. Then the long roots of F4 are the sums of pairs of short
roots which are perpendicular in the real sense. These can be calculated to be the
vectors obtained from the short roots by multiplying by

√
2 and swapping the two

coordinates, thus ±(2ωa, ωb
√

2), and
√

2(0, ωa − ωb) with a 6= b. Then B4 may be
obtained from F4 by taking all the long roots but only the 8 short roots ±(ω−ω, 0)
and ±(1, ωa

√
2). Similarly C4 is obtained by taking all the short roots but only the

8 long roots ±
√

2(0, ω − ω) and ±(2ωa,
√

2).

2.5 Icosians, A4 and H4

There is a similar description of the reflection group of type H4, obtained by ex-
tending D4 in a different way. We can imagine the D4 root system by looking at
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the quaternions (±i ± j ± k)/2 which are added to ±1/2 as the vertices of a unit
cube. Since a cube can be inscribed in a regular dodecahedron, one might wonder
what would happen if one used the extra vertices of the dodecahedron in the same
way as those of the cube. Indeed, there are two such dodecahedra, and in one case
the extra 12 vertices are (±σi± τj)/2 and its images under i 7→ j 7→ k 7→ i, where
σ = 1

2 (
√

5− 1) and τ = 1
2 (1 +

√
5). In the other case, which we shall use, σ and τ

are interchanged.
Closing under reflections in the roots we quickly see that there are 120 roots,

which are the 24 roots of D4 together with the images of (±1 ± τi ± σj)/2 under
even permutations of {1, i, j, k}. Again we find the remarkable fact that these 120
roots are closed under quaternion multiplication. They form the group of units of
the so-called icosian ring

Z[i, j, k,
1

2
(1 + i+ j + k),

1

2
(1 + τi+ σj)].

This group of order 120 is a double cover of A5, also known as SL2(5) or the binary
icosahedral group.

The full reflection group of type H4 has shape 2.(A5 × A5).2 in which we see
left- and right-multiplications by this group of units, together with the map q 7→ q
again.

Translating back to R4, we see that the roots of H4 are the even permutations
of (±2, 0, 0, 0), (±1,±1,±1,±1), and (0,±1,±σ,±τ). Inside H4 there is a copy of
A4 consisting of 20 roots

(±2, 0, 0, 0), (0,±2, 0, 0),±(±1,±1, 1, 1),±(±1, 0, τ, σ),±(0,±1, σ, τ).

3 Eight dimensions

There are innumerable ways to make E8. The rest of this note is devoted to de-
scribing a few of these constructions in some detail.

In the 8-dimensional case E8, we can similarly obtain a complete set of reflecting
vectors inside the Dickson–Coxeter integral octonions inside O.

3.1 Real E8

Probably the most common description of E8 is to take first the D8 roots which
are all permutations of (±1,±1, 0, 0, 0, 0, 0, 0), so there are 112 of them, and then
adjoin 128 roots of the form 1

2 (±1,±1,±1,±1,±1,±1,±1,±1). According to taste,
one can either take the sign combinations in which there are an even number of −
signs, or those with an odd number.

3.2 A Gaussian version of E8

One of the simplest constructions of E8 starts from the B2 root system, consisting
of four long roots which are the corners of a square, and four short roots which
are the mid-points of the edges. We take 16 roots (2r, 0, 0, 0) where r is a short
root of B2, and 6.4.4 = 96 roots (r1, r2, 0, 0) where ri are long roots of B2, and
128 roots (r1, r2, r3, r4) where the ri are short roots of B2 and their sum lies in the
lattice spanned by the long roots. (Alternatively, this construction can be twisted
by taking the sum not to lie in this lattice).

The B2 lattice may be embedded in the complex numbers as the so-called Gaus-
sian integers Z[i]. This makes E8 into a 4-dimensional lattice over the Gaussian
integers. It then consists of all vectors (x1, x2, x3, x4) ∈ Z[i]4 which satisfy
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• xs − xt ∈ (1 + i)Z[i];

•
∑4
t=1 xt ∈ 2Z[i].

The 240 roots are the minimal norm vectors of the lattice. There is a symmetry
group (2×43)S4 generated by the diagonal matrix diag(i, i, 1, 1) and the coordinate
permutations, under which the roots fall into three orbits, as follows:

• 16 roots of shape (2, 0, 0, 0);

• 96 roots of shape (1 + i, 1 + i, 0, 0);

• 128 roots of shape (1, 1, 1, 1).

To make this into E8, we simply define the Euclidean norm to be half of the Her-
mitian norm on the ambient complex vector space.

3.3 An Eisenstein version of E8

In the complex numbers, take ω = e2πi/3 and θ = ω − ω =
√
−3. Define a lattice

by the following conditions on vectors (x0, x1, x2, x3):

• xt ∈ Z[ω];

• x1 + x2 + x3 ∈ θZ[ω];

• x0 + x1 − x2 ∈ θZ[ω].

Then we see a symmetry cycling (x1, x2, x3), and another cycling (x0, x1,−x2),
which together generate a group 2.A4 acting monomially on the four coordinates.
Together with the diagonal element diag(ω, 1, 1, 1) this generates a symmetry group
34:2.A4. The roots (vectors of minimal norm in the lattice) fall into two orbits under
this monomial group, as follows:

• 24 roots of shape (θ, 0, 0, 0);

• 216 roots of shape (0, 1, 1, 1).

The Euclidean norm which makes this into E8 is 2/3 of the natural Hermitian norm.
The sublattice consisting of the vectors with x0 = 0 is a copy of the E6 lattice,

and the sublattice of that which consists of vectors with x2 = x3 is a copy of the
F4 lattice.

3.4 A Hurwitz version of E8

In this construction we take two copies of the F4 lattice (which is the same as the D4

lattice), identified with suitable scaled copies of the Hurwitz integral quaternions.
In the quaternions, take the additive group generated by the D4 lattice as described
above. This gives us the ring Z[i, ω] of Hurwitz integral quaternions. The units are
the roots ±1,±i,±j,±k, 12 (±1 ± i ± j ± k) of D4, and the elements of norm 2 are
(1 + i) times these, that is ±1 ± i, ±1 ± j, ±1 ± k, ±i ± j, ±i ± k, ±j ± k, which
can be thought of as the long roots of F4.

We now take 48 roots (2r, 0) where r is a short root of F4, together with 24×8 =
192 roots (r, qr) where r is a long root and q ∈ Q8. If F4 is labelled so that ±1± i
are short and ±2, etc, are long, this gives

(±2,±2, 0, 0 | 0, 0, 0, 0) 48
(±2, 0, 0, 0 | ±2, 0, 0, 0) 64

(±1,±1,±1,±1 | ±1,±1,±1,±1) 128
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where in the last case there must be an even number of minus signs. Clearly we
now see more symmetry, fusing the first two orbits of roots. We could also twist
this by changing sign on one coordinate, so that there is an odd number of minus
signs instead.

If instead F4 is labelled so that ±1,±i etc are short, and ±1± i etc are long, we
get

(±2, 0, 0, 0 | 0, 0, 0, 0) 16
(±1,±1,±1,±1 | 0, 0, 0, 0) 32
(±1,±1, 0, 0 | ±1,±1, 0, 0) 6.4.2.4 = 192

where in the last case the right hand pair of 1s can either be in the same positions
as the left hand pair, or in the complementary positions. Labelling the coordinates
∞, 0, 1, 3, 2, 6, 4, 5 in that order enables us to describe the supports of the vectors
of shape (±14, 04): they are either ∞ with a line t, t + 1, t + 3 (mod 7) of the
projective plane of order 2, or the complement thereof.

Now this construction of E8 can be described as taking all vectors (x, y) with
x, y ∈ Z[i, ω] and x + y ∈ (1 + i)Z[i, ω]. In the left vector space H2 (with scalar
multiplication given by λ(x, y) = (λx, λy)) there is now a monomial group of sym-
metries generated by right-multiplication by the diagonal matrices diag(λ, µ) where
λ, µ ∈ Q8, together with diag(ω, ω), and the coordinate permutation of order 2.

The roots fall into two orbits under this group, as follows:

• 48 roots of shape (1 + i, 0);

• 192 roots of shape (1, 1).

Alternatively, we may multiply by the scalar 1+ i so that the roots become of shape
(2, 0) and (1 + i, 1 + i).

3.5 An octonion version of E8

We can identify the pairs of quaternions in the previous section with octonions in
various ways, to obtain various octonion constructions of E8. If we identify i, j, k
with the octonions i0, i1, i3 respectively, and then identify (1 + i, 0) with i∞ = 1
and (0, 1 + i) with i2 then we obtain

• 16 roots ±it coming from (±1± i, 0), (±j ± k, 0), (0,±1± i), (0,±j ± k);

• 32 roots 1
2 (±1± i0 ± i1 ± i3) and 1

2 (±i2 ± i4 ± i5 ± i6) coming from the other
roots which lie in just one coordinate;

• 64 similar roots with subscripts in one of the sets {∞, 0, 2, 6}, {1, 3, 4, 5},
{∞, 0, 4, 5}, {1, 2, 3, 6}, coming from the roots (x, y) with x, y ∈ Q8.

• 64 roots with subscripts in one of {∞, 1, 2, 4}, {∞, 1, 5, 6} or their comple-
ments, coming from ω(x, y);

• 64 roots with subscripts in one of {∞, 2, 3, 5}, {∞, 3, 4, 6} or the complement,
coming from ω(x, y).

Now (pace Kirmse) this set of roots r is not closed under octonion multiplication,
but it turns out that the set {(1 + i0)r(1 + i0)/2} is closed under multiplication. It
is known as the Dickson–Coxeter non-associative ring of integral octonions.

One way to obtain this multiplicatively closed version directly is to change the
roots of the Hurwitz version of E8, by replacing the diagonal symmetry diag(ω, ω)
by diag(ω, ω), so that the roots are the images under the new monomial group of
(1 + i, 0) and (1, 1). Or, in the scaled version, images of (2, 0) and (1 + i, 1 + i).
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3.6 An icosian construction of E8

From H4: define N : Q[
√

5]→ Q by N(a+ bσ) = a, and define a new norm N(qq)
on H4. Now the things of norm 1 are the original things of norm 1, together with
their multiples by σ. Thus we obtain 240 roots.

(If we apply this process to H2 we get A4, and if we apply it to H3 we get D6.)

3.7 Another complex version of E8

Consider the ring Z[α] of complex numbers, where α = 1
2 (−1 +

√
−7), so that

α2 + α + 2 = 0. Let β = α. We use a symmetry group 2.A4 acting on vectors
(x0, x1, x2, x3), generated by (x1, x2, x3) and (x0,−x1, x2). The 240 roots are then
the images under this group of the following, where x, y, z ∈ {α, β}:

• 8 roots of shape (α− β, 0, 0, 0);

• 24 roots of shape (−xy, 1, 1, 1);

• 64 roots of shape (1, x, y, z);

• 144 roots of shape (0, 1,−x, yz).

(Note that there is a sign error in the description of this lattice on page 10 of the
Atlas of Finite Groups [1].)

The automorphism group of this lattice is a double cover 2.A7 of the alternating
group A7. It may be generated by the monomial group 2.A4 together with the
matrix

1

α− β


β − α 0 0 0

0 −β β2 1
0 β2 1 −α
0 1 −α 2

 ,

which has order 7 and is normalized by the element of order 3 which cycles the last
three coordinates.
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