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Abstract

We study the 14-dimensional real representation of the finite simple
group G(3) and relate it to the smallest Ree group and representations in
characteristic 3. In particular, we give a set of generators which leads to a
new and easy proof that the group is indeed G(3).

1 Introduction

The 14-dimensional real representation of the simple group Gs(3) is a small ex-
ample of a phenomenon studied in depth by Kostrkin and Tiep [3], whereby the
compact real form of a simple Lie algebra gives rise to an interesting lattice, whose
automorphism group is larger than one has a right to expect. This example was
worked out in detail by Kostrikin, Kostrikin and Ufnarovskii [2], who began with
the group 23-PSL3(2), preserving the compact real form of the Lie algebra of
type Go. After classifying all the lattices preserved by this group, they used a
computer to find an automorphism of order 13 of one of the lattices, which they
then used to show that the full automorphism group of the lattice is 2 x G2(3).
In [3, Chapter 8] some variants of this approach are given. One approach uses
detailed knowledge of the group G5(3) (including information from the character
table and the maximal subgroups) to observe that G5(3) must preserve one of
the given lattices. Another constructs explicitly by hand a lattice automorphism
of order 3 outside the group 2%-PSL3(2). In either case, intrinsic properties of the
lattice are used to show that the automorphism group is no bigger than 2 x G(3).
It is the aim of this note to provide some simplifications to these proofs, all of
which are quite long and involved. The key observation is that G(3) is generated
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by two subgroups, of shapes 23 PSL3(2) and ?Go(3) = PSLy(8):3, intersecting in
23:7:3. Explicit generators for the former, acting on the compact real form of
the Lie agebra of type Go, in 14 real dimensions, are given in [2, 3] and also in
[6]. Explicit generators for the latter, in 7 dimensions over F3, are given in [4, 5],
and in 7 real dimensions in [7, Section 4.5.4]. Now it turns out that, with small
modifications, these two constructions can be combined to give a construction of
the 14-dimensional real representation of G(3).

The proof that the group we construct is indeed isomorphic to Gs(3) proceeds
by constructing an invariant lattice spanned by an orbit of 2 x 378 vectors +v, so
that the group is finite, and then finding a map onto the standard copy of G2(3)
as automorphisms of the octonion algebra, such that the kernel is trivial.

It is worth noting that this lattice is also described in the Atlas [1, p. 60],
with respect to a completely different basis, so that a subgroup PSL3(3) fixes one
coordinate, and acts monomially on the other 13.

2 The action of 2°-PSL3(2) on the Lie algebra

We begin by summarising the results of [6]. There the compact real form of
the Lie algebra of type G was constructed in such a way that an irreducible
subgroup 23-PSL3(2) of the automorphism group was visible. Indeed, this is
really an integral form of the Lie algebra whose automorphism group is exactly
23-PSL3(2).

The underlying real vector space is written as a direct sum of seven 2-spaces,
labelled by the elements t € F;, each spanned by three vectors u;, vy, w; such
that u; +v; +w; = 0. First, let us change the notation by replacing u, v, w by the
complex numbers 1,w,w, where w is a primitive cube root of unity, so that the
real 2-spaces are identified with complex 1-spaces, and the 14-dimensional real
vector space is written as a 7-dimensional complex space. It is straightforward
to check that the following elements a, 3,~,d generate a group 2% PSL3(2).

x; — +x;, minus sign just if ¢ € {0,3,5,6}

Ty = T

Ty — WTog

T1 > =X, T > —To, Ty — Wy,

To < T3, Ts < WT. (1)

=2 @R

The main result of [6] is that there is a unique (up to real scalar multiplication)
14-dimensional Lie algebra invariant under this group. The product is given by
[11,ws] = @y, and images under the group. Notice that the argument given in
[6] actually works in every characteristic except 3. In characteristic 3 there is
exactly one other solution (in the notation of [6], we can have A = p = 3), in
which [117(,02] = W4q.



3 Representations of the Ree group %G5 (3)

In [4] the subgroup 23:7:3 was used to construct the Ree groups 2Go(3*"*1) in their
natural 7-dimensional representations in characteristic 3. Now in the case n = 0,
this representation actually lifts to characteristic 0. An explicit proof of this is
given for example in [7, p. 139], where the well-known isomorphism 2G5(3) =
PSL,(8):3 is also proved. In fact there are three 7-dimensional representations of
this group, obtained from each other by tensoring with a linear character of the
quotient of order 3.

These representations are given by generators «, 3,7, € of the group acting as

follows:

a x— —xy if t €{0,3,5,6}

ﬁ Ty — xt+1

Y Ty ATy

€ Ty — —5(—95—t + X1+ Ty + Tyy) (2)

where A = 1, w, @ in the three cases. Reducing these matrices modulo § = w — w
(so that —3 =1 and A = 1) gives the matrices over F3 as in [4].

In the sequel, we shall not use the facts quoted without proof in this section.
We merely use them as motivation for the definition of ¢.

4 An orbit of 2 x 378 vectors

If we now put A = w so that the two definitions of v agree, then all the maps
a, 3,7,0,¢ act semilinearly on the 7-dimensional complex space. Let G be the
group generated by a, 3,7, 0,e. We shall show that G = G(3). This is perhaps
not completely obvious from what we have done already, but can be proved easily
once we have constructed the lattice.

We show first that the vector (2w,2,0,0,0,0,0) lies in an orbit of just 2 x
378 vectors under the action of GG. To see this we first calculate the image
(wh,w, —w, —1,—w,0,1) of this vector under e, where § = w — @ = /=3, and
then use elements of the monomial group («, 3,7,d) = 23-PSL3(2) to map this
to (0, —0,w,w,®,1,w). Now we observe that the orbit contains at least

e the 2 x 42 images under the monomial group of (2w,2,0,0,0,0,0), and
e the 2 x 336 images under the monomial group of +(0, —0,w,w, @, 1,®).

Conversely, we must show that this set of 2 x 378 vectors is invariant under .
It is easy to check that e has order 2, and normalizes the subgroup (3, ) = 7:3,
extending it to a group 7:6. Therefore we only need to calculate the images under



e of representatives of each of the 18 orbits of (3,~) on the vectors (up to sign).
Indeed, since € has order 2, the calculation reduces to the following 12 cases.

wh, w, —w,—1,—w,0,1)

w, wQ —w, 1, w,O,—l)

1, —w 0,1, —w,wl, —w)

wh,w,—1,—w,0,1, —w)
w,—1,— 0, 1w, —wb)

(20,2,0,0,0,0,0 (
0,0 (—
(
(
(—
(1, —w, — -1,0,0)
(—
(
(
(—
(—
(

)
(20, -2,0,0,0,0,0)
0,1, —wb,w,w, 1, w)
(07_17(-‘-)97 _wa(Dal?_ )
0, -1, —wb,w, —w, 1, —w)
0,1, —wb, —w,w, —1, —©)
0,-1,—wl, —w, —w, —1,®) w O,l,wQ w,w, 1)
(0 ) O,l,wQ —w, w,l,w)
(0, ) wh,w,0,—1,0,0,—1)
(O,l,w wl, —w, 1, )
0,1, —w, —wb,w, 1, )
0,1 w)

(7 y W, weuwul)

@, —w, —wh, w, —1)
w, wH w,l,w 0,1)
lLw, —wh, @, 1, —w) (3)
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5 Reduction modulo 6

Let A be the Z-lattice spanned by the 2 x 378 vectors listed above (but not their
multiples by w or ). First note that A C A, since by transitivity we need only
check one vector, and we have

0(2w,2,0,0,0,0,0) = (2w,2,0,0,0,0,0)+
(2,0,0,0,0,0,20) + (2,0,0,0,0,0, —2w)+
(0, 2w,0,0,0, 2w, 0) + (0, 2w, 0,0,0, =2, 0) € A

The semilinear maps «, (3,7, 9, € all preserve A and #A, so induce linear maps
on A/OA. (The only case in which this is not completely obvious is the element 0:
in this case, multiplying the coordinates by 6 has the effect of changing the sign
in the definition of 9 for all those coordinates which involve complex conjugation,
namely coordinates 0, 2, 3, 4; since this sign-change is effected by o', the result
follows.)

Now (4,0,0,0,0,0,0) € A, so (46,0,0,0,0,0,0) € #A, and similarly for all
seven coordinates. But multiplication by 4 induces the identity map on A/A, so
we may obtain coordinates for A/OA by reducing the coordinates for A modulo
0.

We obtain in this way 2 x 378 vectors in A/0A = F5. These fall into two
orbits under the monomial group 23-PSL3(2), as follows.

e 2 x 42 vectors of shape (+1,41,0,0,0,0,0), and

e 2 x 336 vectors of shape (0,0,£1,£1,+£1,+1,+1).



Moreover, the natural Hermitian form on A, suitably scaled, induces the natural
quadratic form on A/fA, that is the form given by the sum of the squares of the
coordinates. Our 2 x 378 vectors are then exactly the vectors of norm 2 with
respect to this quadratic form.

In this way, we obtain an action of G on a 7-dimensional orthogonal space
over [F3. Since the 2 x 378 given vectors in A span A, which is an irreducible
lattice, the kernel of the permutation action of G on these 2 x 378 vectors is
trivial. Since these vectors remain distinct on reduction modulo @, the kernel of
the action of G on A/fA is also trivial.

6 Preserving the octonion algebra

Finally, we observe that the induced actions of «a, 3,7, d, € are exactly the gener-
ators for Go(3) given in [7]: indeed, «, 3,7, 5" are given on page 120, while ¢ is
in (4.56) on page 139. For the sake of completeness we include the proof here.

First we define the octonion algebra over F3 by identifying the 7 coordinates
of A/OA with square roots of —1, labelled i; for ¢t € F7, and defining the other
products by igt; = —i1i9 = 73, and images under the action of 3 and ~. Then
the defining products are all of the form i,i; = i;, where {r,s,t} is one of the 7
triples {z,x 4+ 1,z 4+ 3}. Since these are the lines which define the Fano plane,
and a negates the coordinates corresponding to the complement of a line, we see
that a negates exactly two of the three terms i,, 1, 4;, S0 preserves the octonion
product.

Checking that 0 preserves the product is a little more tedious, but since the
permutation part is an automorphism of the Fano plane, it is ony the signs which
need checking. Finally, € normalizes the group generated by ( and -, so it suffices
to check that € maps the equation i3i; = i3 to a true statement. In other words
we need to check that

(—io + i1 + ig +iq).(—lg + 1o + 11 + i3) = —ig + i5 + ig + i1-

This shows that our five generators all preserve the octonion algebra, so lie
in G5(3). Since 23-PSL3(2) is maximal in G3(3), they generate Go(3). (This can
also be shown by explicit computations.) This completes the proof that the given
matrices in real 14-space do indeed generate a group isomorphic to Ga(3).

7 The minimal vectors of the lattice

We have not however proved that the full automorphism group of the lattice A
is 2 X G3(3), since it is not obvious that the full automorphism group preserves
gA, let alone the octonion product on A/#A. The method used in [2, 3] is to



show that the minimal vectors of A are precisely the 2 x 378 vectors listed above,
although the proof of this is omitted in [3].

Our ‘complex’ notation permits a relatively straightforward proof of the salient
facts.

Lemma 1 Ifv,w € A, then R(v.w) € 27Z, where v.w denotes the usual Hermitian
mner product.

Proof. By transitivity it is sufficient to check the inner products of (2w, +2,0, 0,0, 0, 0)
with the spanning vectors. The result is clear for all vectors in the 84-orbit of the
monomial group, so it is sufficient to check all rotations of (0, —0,w,w,w, 1,w),
0,1, —wb,w,w,1,w), (0,1, w,w, —wl,1,w). But the difference of any two of these
three vectors is in the 84-orbit, so we only need to check rotations of one of them.
This is an easy exercise. O

As an immediate corollary, we have that the norm of every vector in A is a
multiple of 4.

Lemma 2 There is no vector of norm 4 in A.

Proof. Suppose that v € A has norm 4. If v has a single non-zero coordinate,
then we can find a vector of shape (22,05) in A, whose inner product with v is 2w,
which is a contradiction. Otherwise, v has at least three zero coordinates, and we
may assume two of these are consecutive, so that v = (,0,0,...) with x ¢ 2Z[w].
Then taking inner products with (2w,2,0,0,0,0,0) and (2,0, 2w, 0,0,0,0) yields
that both R(x) and R(wz) are integers. This is a contradiction. O

Lemma 3 There are exactly 756 vectors of norm 8 in A.

Proof. The same argument shows that if v is any vector of norm 8 which has at
least two zero coordinates, then the coordinates immediately before and after a
string of zeroes are both divisible by 2. Therefore the only possible distributions
of the norm among the coordinates are (42,05) or (3,15,0).

In the first case, we may assume v = 2(a, b, 0,0,0,0,0), where a, b are units in
Z|w]. Taking inner products with (0, 1, —wf,w,®,1,®) and (©,0, 1, —wh, w, @, 1),
shows that b = £1 and a = +w.

In the second case, a similar argument taking inner products with vectors of
shape (22, 05) shows that the powers of w in the coordinates of v are the same as in
the known spanning vectors of A. Now if we could change sign in one coordinate,
we would have a vector of norm 4 in A, so this does not happen. Moreover,
changing sign in two coordinates can only happen if the powers of w agree with
those in one of the vectors of the 84-orbit. This restriction means that the group
of allowable sign-changes to v has order at most 16. But we already have 16 sign
combinations for the listed spanning vectors of this type. Thus there can be no
more. O



8 The automorphism group of the lattice

Now to complete the proof that the automorphism group of the lattice is no
bigger than 2 x G5(3), we first compute the real parts of the inner products of
a selection of minimal vectors, and find some values +8, +4, +2, and 0 for this
quantity. Hence the rank of the action of the automorphism group on the 378
pairs of opposite vectors is at least 4. (In fact the distribution of these values for
one minimal vector with all the minimal vectors is —8' — 452 — 2208()2349208452g1
but we shall not need this.)

We have already shown that AutA has a subgroup Gs(3), acting on an or-
thogonal 7-space over F3 in such a way that the minimal vectors of the lattice
correspond to vectors of norm 2 in this orthogonal space. Moreover, it is known,
or can be readily calculated, that the suborbits of G5(3) on the 378 pairs of vec-
tors of norm 2 are 1 + 52 + 117 4+ 208. Therefore AutA also has suborbits of
these sizes. Since the suborbit of size 117 consists exactly of those vectors which
are perpendicular to the fixed vector, the projective geometry for the orthogonal
group PO7(3) can be re-constructed from the suborbits. This puts Aut(A) inside
the automorphism group of the orthogonal group, and maximality of G5(3) in
PQ7(3) finishes the argument.
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