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Abstract

We describe explicit calculations to find generators a and b for
the Monster sporadic simple group, satisfying the relations a? = b =
(ab)" = 1.

MSC: 20D08, 20F05

1 Introduction

The Monster group M is the largest of the 26 sporadic simple groups, and
has order

808017424794 512875 886 459904 961 710 757 005 754 368 000 000 000

— 246 320 59 76 112 .133.17.19.23.29.31.41.47.59.71.

Its existence was conjectured by Fischer and Griess independently in 1973,
and proved by Griess [3] in 1980. The smallest dimension of a faithful repre-
sentation over any field is 196882, and is realized over fields of characteristics
2 and 3 only (see [4]). In [6] the author, with Walsh, Parker and Linton,
assuming existence of the group, constructed (and proved uniqueness of) the
196882-dimensional irreducible representation over 5. In the present paper



we present the first substantial result proved using this computer representa-
tion. This demonstrates that, against all reasonable expectations, it is now
possible to do practical calculations in this enormous group.

A finite group is called a Hurwitz group if it is nontrivial and can be
generated by elements g and h satisfying the relations

g =10 =(gh)" =1.

In this case we call the triple (g, h, (gh)™!) a (2,3,7) generating triple for the
group. Thus the Hurwitz groups are precisely the nontrivial finite quotients
of the triangle group

A=A2,37)=(g,h| g =h>=(gh)" =1).

Note also that a Hurwitz group is necessarily perfect.

The motivation for the definition comes from the study of groups acting
on Riemann surfaces as groups of conformal automorphisms. For a given
group G, the genus g of such a surface is given by the Riemann-Hurwitz

formula
n
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where the group is generated by elements g1, ..., g, of orders ly,...,[, re-
spectively, with ¢g1gs--- g, = 1. If the group has no action on a surface of
genus 0, then necessarily

n

1
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and the minimal possible genus, relative to the order of the group, is attained
by the Hurwitz groups. In these cases, the group order is 84(¢g — 1), where
¢ is this minimal genus, also called the strong symmetric genus of GG. For
further background we refer the reader to the excellent survey article by
G. A. Jones [5].

Whilst the classification of Hurwitz groups is little more than a curiosity,
without great mathematical significance, it has attracted quite an interest
over the years. In the 1960s Macbeath [9] initiated a study of finite simple
Hurwitz groups by showing that the simple groups PSLs(¢q) are Hurwitz
groups just when ¢ = 7, ¢ is a prime with ¢ = +1 (mod 7), or ¢ = p?
with p prime and p # +£1 (mod 7). Graham Higman (unpublished) showed



that all alternating groups A, are Hurwitz groups for sufficiently large n,
and Conder [1] determined exactly which of the smaller alternating groups
are Hurwitz groups. Much more recently, work of Lucchini, Tamburini and
J. S. Wilson [7], [8] has revealed that most finite simple classical groups of
sufficiently large dimension are Hurwitz groups.

The sporadic groups have been treated in a series of papers by Woldar
and others (see [2] for a survey and references, and [13], [12] for updates).
To date all but the Monster have been dealt with. All the large cases have
required significant amounts of electronic computation, for although it is easy
to count the (2,3,7) triples in a group by calculating the structure constants
from the character table, it is often extremely hard to decide whether or not
all these triples generate proper subgroups. Often the only practical way to
show that a given group is a Hurwitz group is to conduct a search (random
or exhaustive) of pairs of elements of orders 2 and 3 until a pair is found
which both generates the group and has product of order 7. In the case
of the Monster, there is insufficient knowledge of the maximal subgroups to
decide the question theoretically. However, the structure constants are very
far from being accounted for by the presently known maximal subgroups,
which suggests that it is overwhelmingly probable that the group is in fact a
Hurwitz group.

2 Results

In the present paper, we describe how we used our explicit representation
[6] to compute explicitly a (2,3,7) generating triple for the Monster, and
hence verify that it is indeed a Hurwitz group. The strategy was exactly
the same as for smaller groups, namely conducting a random search in the
haystack of (2,3) element pairs, for a needle of (2,3, 7)-generators. Only the
implementation is different, as the huge size of the Monster means that a
simple-minded approach might take billions of years on presently available
computers. (A matrix multiplication for the Monster in dimension 196882
would take some 90000 times as long as a matrix multiplication for the Baby
Monster in dimension 4370. Thus a calculation which takes hours in the
Baby Monster would take decades in the Monster.)

We began with the generators A, B, E, and T for the Monster, defined
in [6]. These generators have the property that A, B and E generate a
subgroup 3'*12:2-Suz, in which A and B generate a subgroup 6°Suz, and F is



a noncentral element of the normal subgroup 3712, These three elements can
be easily multiplied together to produce any desired element of the subgroup
3'112:2-Suz. The element T acts as an outer automorphism of order 2 of
a certain subgroup 32710 M;,, whose generators are given by words in A,
B and E. It is not practically possible to multiply 7" by any of the other
generators.

To define the (2, 3, 7)-generators which we eventually found, we let
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It is straightforward to verify that A has order 4, and that (ABABAB?AB)
has order 21, and therefore g has order 2 and h has order 3. To calculate
the orders of elements given by words essentially involving 7', we use the
method described in [6]. There we found two vectors v; and vy in 196882-
space over [Fo, whose joint stabilizer is trivial. Thus the order of a word W
is the minimum positive value of n such that v;WW"™ = v; for each 7. Since
this can be checked with 2nl vector-matrix multiplications, where [ is the
length of the word W, it is relatively quick to compute. (As an aside, it
is worth remarking that a single vector-matrix multiplication of this size
would take around 8 x 10'° field operations if done in a naive manner. Our
program, while not easily analysed in this way, performs the same operation
with a group generator in not much more than the equivalent of 10® field
operations.) In particular, we show that gh has order 7. Similarly, defining

= ghgh®
ghghgh®

= ghgh*gh?

= ghghgh*gh®

n 3IQ3

we verified that ppgsrpsrqsq has order 94, and ppgsrqqrprq has order 41.
Since all proper subgroups containing elements of order 94 are contained in
the double cover 2'B of the Baby Monster, which contains no elements of
order 41, it follows that g and h generate the Monster.



3 The search

The (2, 3, 7)-structure constants in M are given in [10], and show that (2, 3, 7)-
generators of Ml must be of type (2B,3B,7B) or (2B,3C,7B). The search
for such generators was performed by first picking a 2-element a = (Az)E2
and a 3-element b = (ABABAB?AB)". Now A? is the central involution of
a subgroup 6°Suz, so is a 2B-element, while easy calculations in 6°Suz show
that ABABAB?AB is an element of order 21 whose 7th power is in class
+3A in 6 Suz. The latter class fuses to M-class 3B, as it is conjugate in M
to the central 3-element in 6°Suz. Now we look at pseudorandom elements
of the form ab” = ay~ by, where v is an element of the Monster, to see if this
product of conjugates of a and b could have order 7. If v were a truly random
element of the group, then the probability of ab” being of order 7 would be
less than 1 in 64 000 000, so it is important to dispose of the unwanted cases
very rapidly.

By passing a suitable vector through the word for ab” seven times, and
comparing the resulting vector with the original, we can eliminate one case
quickly. If there are k occurrences of T" in the word +, it turns out that we can
eliminate one case in about k seconds of CPU time on a Pentium II 450MHz
processor. Our C code (written in collaboration with Richard Parker) was
carefully written to optimize the performance, and compiled with options -03
-funroll-loops to gcc, both of which had dramatic effects on the runtime.
(There are more improvements available, at the cost of extensive rewriting
of the code, which seem to offer a further 10% or 20% speed-up.) Thus the
total expected CPU time until finding a (2,3,7) triple, using words with
three occurrences of T, is something over 5 years. In fact, since not all of
these triples will generate the Monster, the expected time to find a (2,3,7)
generating triple will be greater than this, perhaps 7 to 10 years (estimates
vary according to your guess as to what undiscovered maximal subgroups
there are of the Monster).

By using around 40 processors from a cluster of 64 in the University
of St. Andrews, we were able to use this amount of CPU time in four
months. As it turned out, the number of cases we had to consider was
around 120 000 000, which is rather more than the expected number, but
not unreasonably so (since this number follows a Poisson distribution, which
has a very long tail). The search was parallelized by letting v be of the form
(AB?)'Tad TS*T(AB)!, and giving each process a different pair of elements
&y, and f3,, given as pseudorandom words in A and B (or more particularly,



in z and y), to run through all possibilities for the integers i, j, k, . Depend-
ing on the orders of «, and 3, this could take anything from a few hours (if
the product of the orders is around 10) to several weeks (if the product of
the orders is over 1000).

In fact, we started our search with ‘shorter’ words for ~, involving only
two occurrences of T' rather than three. But we felt that these elements were
insufficiently ‘random’; as we obtained a much larger than expected number
of small groups among the subgroups generated by a and §”. (Here we made
no serious attempt to prove that the groups were small, but the orders of
elements suggested they were Lo(8), L2(13), etc.) Therefore we continued
the search with these ‘longer’ words.

4 The proof

Once we found a case in which ab” appeared to have order 7, we then proved
it by applying the word to two vectors whose joint stabilizer is known to be
trivial, as described above (see also [6]). We next calculated the orders of
over fifty words in a and 6”7, in order to be reasonably confident of being able
to prove that the given elements generate the whole group. We did this both
systematically, by looking at all words in p, ¢, r and s of length at most 4,
and randomly, by looking at two words of length 11 written down at random.
The orders of these elements are given in Table 1.

The reason for using just these words is that all conjugacy classes of cyclic
subgroups of a (2,3,7) group (apart possibly from the classes of g, h, and
gh) are represented by words in p,q,r,s. For every class, apart from these
three, has a representative as a word in gh and gh?, and we may cyclically
permute the word to put the longest string of consecutive terms gh at the
beginning. Now if there is a string of three consecutive terms gh, there is a
subword

2 _ 4y _ —3p _ 722 712 72
ghghghgh® = (gh)*h = (gh)™"h = h*gh“gh~gh

so we can replace the word by one with fewer occurrences of g. Similarly if
there is a string of three consecutive terms gh? we may reduce the number
of occurrences of g. Thus every class can be represented by a word in p, ¢,
r, and s, or the inverse of such a word. Moreover, by inverting the word if
necessary, we may suppose that there are at least as many terms gh as gh?,
and therefore at least as many occurrences of ¢ as of r. We reduce the list
further by taking the lexicographically first word in each cyclic ordering, and
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Table 1: Orders of specific elements of M

Element Order | Element Order | Element Order
P 42 | s 39 | pq 105
s 19| qr 19 | gs 30
Ppq 60 | pgq 60 | pgr 42
pqs 34 | pps 39 | prq 39
Psq 39 | pss 22 | qqr 34
qqs 39| qrs 22 | gsr 35
qss 60 | pppq 36 | ppps 56
PPaq 35 | ppqr 60 | ppgs 36
pprq 56 | ppsq 29 | ppss 55
pgpr 60 | pgps 46 | pqqq 36
paqr 60 | pgqs 46 | pgrq 46
pqrs 105 | pgsq 57 | pgsr o7
Pqss 110 | prqq 36 | prqs 84
prsq 99 | psqq 57 | psqs 60
PSSq 29 | psss 66 | qqqr 46
qqqs 29 | qqrr 57 | qqrs 110
qqsr 84 | qqss 66 | grss 66
qsrs 105 | gssr 105 | gsss 24
qrqs 60 | ppgsrpsrqsq 94 | ppgsrqqrprq 41




eliminating obvious inverses and proper powers. Finally, using also the less
obvious equivalence

q = ghghgh®
(gh)’h
(gh)~*h
h29h29h2gh2gh
= (gh*gh)""

~ p

where we write  ~ y to mean x is conjugate to y*', we obtain the list in
Table 1, apart from the last two entries.

[John Bray has pointed out to me that the above argument can be used to
prove many further equivalences. For example, he has proved the following
results:

n

pq" ~ p"qforalln
qqs ~ psq

ppgqq ~ gsr

bgqr ~ @gss

pgqs ~  pgps

qqqs ~ ppsq

qqqr ~ pgrq

Indeed, any word containing gqq or qgs can be reduced to a word containing
fewer occurrences of g, by the above method, although it may become longer
as a word in p, q,r, s.]

We have already seen that g is a 2B-element, and h is a 3B-element,
while the work of Norton [10] on (2, 3,7) structure constants in the Monster

shows immediately that gh is a 7B-element. Therefore our generating triple
is of type (2B,3B,7B).

5 Conclusion
This work now completes the determination of the symmetric genus of the

sporadic simple groups. The symmetric genus of a perfect group G is given
by the minimum value of the Riemann-Hurwitz formula. In the cases of the



Table 2: The symmetric genus of the sporadic groups

Group (I,m,n) 1—7—=L—2%11Group (ILm,n) 1—7—-+—2
My, (2,4,11) =z M (2,3,10) e
J1 (2,3,7) Vo) My, (2,5,7) u
Ja (2,3,7) = My (2,4,23) 1
HS (2,3,11) = J3 (2,4,5) =
Moy (3,3,4) L McL (2,5 8) =
He (2,3,7) = Ru (2,3,7) L
Suz (2,4,5) = O'N (273 8) L
Cos (2,3,7) = Coy,  (2,3,11) 3
Figo (2,3,7) é HN (2,3,7) é
Ly (2,3,7) L Th (2,3, 7) L
Figs (2,3,8) = Coy (2,3,8) =
T (2.3.7) & Fij,  (2,3,7) 5
B (2,3,8) = M (2,3,7) =

The integers [, m, n are such that the group in question is generated by
elements of order [ and m with product of order n, and that % + % + %
is maximal with this property. The symmetric genus of the group G is
LG (1—t- 11y

m n

sporadic simple groups, this is the minimum value of |G|(1—7 — & — 1) such
that G is a quotient of the triangle group

A(l,m,n) = {g,h | g = h™ = (gh)" = 1).
For ease of reference we include in Table 2 a complete table of results, mostly
taken from [2], with the results for Flio3 and B taken from [12], [13]. In

particular, we note that exactly 12 of the sporadic simple groups are Hurwitz
groups, namely Ji, Jo, He, Ru, Cogs, Fisy, HN, Ly, Th, J4, Fi}, and M.
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