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A CORRECTION TO THE 41-STRUCTURE OF THE MONSTER, A
CONSTRUCTION OF A NEW MAXIMAL SUBGROUP L2(41), AND A

NEW MOONSHINE PHENOMENON

SIMON P. NORTON AND ROBERT A. WILSON

Abstract

We correct the result of a previous paper which purported to show that L2(41) was not a subgroup of M. Our
main result is that there is exactly one conjugacy class of subgroups L2(41) in the Monster. Such subgroups
are self-normalizing and maximal. This leads to a new unexplained Moonshine phenomenon.

1. Introduction

In [2, 10, 12] it was stated that L2(41) is not a subgroup of the Fischer–Griess Monster M.
The following argument, due to the first author, was given in [10] and [12] (with Atlas [2]
notation used throughout):

(1) The 5-elements of any L2(41) < M must have class 5B (stated without proof in Section
6 of [10], Theorem 20 of [12]).

(2) If L2(41) < M, then any 8-element t of the (unique up to conjugation) subgroup 41.8
of M must have class 8D. (This can be seen from step 1 above, using the subgroup
41.40 < M and the fact that any 8-element centralizing a 5B-element has class 8D.)

(3) Between 41.8 and M lies the group G = 38.O−
8 (3).2, a known maximal subgroup of M,

which is a non-split extension of O = O−
8 (3).23 acting on its natural representation over

GF(3). As t permutes the eigenspaces of a 41-element which it normalizes, it must act
regularly on O3(G) ∼= 38, and therefore it inverts a unique subgroup of order 3 inside
this group.

(4) This subgroup must correspond to a non-isotropic vector under the orthogonal form, as
any eigenspace of an element that preserves the orthogonal form must be an orthogonal
direct summand of the 8-space. The elements of O3(G) corresponding to non-isotropic
vectors have class 3A.

(5) However it can be seen from the fusion map of NM(3A) = 3.Fi24 in M that no 8D-element
can invert a 3A-element. This completes the proof.

However, it was recently pointed out to the authors by Andrei Zavarnitsine [15] that the
argument of step (4) is invalid, because the outer elements of G, such as t, do not preserve the
orthogonal form but negate it. Indeed no outer element of G can invert (or fix) a 3A-element
in O3(G) because it takes non-isotropic vectors of norm 1 to non-isotropic vectors of norm 2
and vice versa. So the 3-elements centralized and inverted by t must have class 3B.

In this paper we resolve the re-opened question of whether L2(41) is a subgroup of the
Monster, by explicit computations. Moreover, we completely determine the conjugacy classes
of subgroups isomorphsic to L2(41). These computations were carried out by the second author.
We use the computer construction described in [5], in which the Monster is generated by a
subgroup 〈a, b〉 ∼= 21+24.Co1, together with a ‘triality element’ T which centralizes a subgroup
211.M24 of 〈a, b〉.
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One possible strategy is to use the methods of [7], and try to generate L2(41) by two copies
of A5 intersecting in D10. However, the records we kept of these calculations are inadequate
to allow us to repeat them easily. Thus we decided instead to adopt a different strategy. The
‘obvious’ way to generate L2(41) is with a Borel subgroup, of shape 41:20, and the normaliser
D40 of a torus of order 20 inside this Borel subgroup.

In order to find a copy of 41:20 inside the Monster, we have to take a somewhat circuitous
route, since the only maximal subgroup containing it (apart from a putative L2(41)) is 41:40.
First we find a subgroup 38.O−

8 (3).2, and then find 41:8 inside that. Next we find the centralizer
in the Monster of an element of order 8 inside 41:8, and search through this centralizer to find
an element of order 5 extending 41:8 to 41:40.

After this, it is relatively easy to find the normaliser of the element of order 20, and to run
through the involutions which invert it, to see whether any of them extends 41:20 to L2(41).
It turns out that there are just 12 ways of extending this C20 to a D40, interchanged in pairs
by the element of order 40, making just six cases to check.

Our main theorem is as follows:

Theorem 1. There is exactly one conjugacy class of subgroups L2(41) in the Monster.
Each such subgroup is self-normalizing, and maximal.

For the record, we note that the remaining cases of simple groups which might possibly be
normal in still unknown almost simple maximal subgroups of the Monster are: L2(13), U3(4),
U3(8), and Sz(8). We hope to address these questions in forthcoming work.

The existence of maximal subgroups isomorphic to L2(41) shows that the maximal 41-local
subgroup 41:40 contains elements of classes 40C and 40D, a fact we first prove theoretically.
This in turn leads to uniform statements about pure Fricke elements of prime order, as in
Theorem 4 below. A conceptual rather than case-by-case proof of these results would be of
great interest in Monstrous Moonshine [3].

The paper is organised as follows. Sections 2 and 3 determine the class fusion in M from the
subgroup 41.40, and from any L2(41). Section 4 gives an overview of computational techniques,
including some improvements to earlier methods of working in the Monster. Sections 5, 6 and
7 describe the calculations in enough detail for anyone with the requisite software to check
the results in full. Finally, in Sections 8 and 9 we prove the new Moonshine observations and
discuss their implications.

2. The 41-local subgroup of M

Theorem 2. The 40-elements normalizing a 41-element s have class 40C or 40D.

Remark 1. Note that classes 40C and 40D belong to the same class of cyclic subgroups.
The 8-elements in these subgroups have class 8D, so it is possible that M does after all contain
a subgroup of type L2(41).

Proof. We start by arguing, as in step (3) above, that as t permutes the eigenspaces of s it
must act regularly on the 8-space on which O acts.

We next show that the “direct summand” argument is valid for the 2-space containing the
vectors fixed and inverted by t, as follows. Let us extend the ground field for our 8-space so
that it splits completely into eigenspaces under the action of t. Then, because t negates the
orthogonal form, the space with eigenvalue 1 is orthogonal to all the eigenspaces (including
itself) except that with eigenvalue −1, and vice versa; so the sum of the spaces with eigenvalues
1 and −1 is orthogonal to the sum of the spaces with the other six eigenvalues.
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It therefore follows that the sum and difference of non-zero vectors fixed and negated by
t (in the original 8-space over GF(3)) must be non-isotropic. In other words, in O3(G), the
corresponding 32 has two cyclic subgroups generated by 3B-elements (those corresponding to
the vectors fixed and negated by t) and two generated by 3A-elements (corresponding to their
sum and difference).

Now it is known that the M-normalizer of any such 32 is a group of shape 32.36.2U4(3).D8

(which is in fact a subgroup of G). The action of t on the 32 shows that it belongs to the outer
half of a subgroup U = 33.2U4(3).23, and the fact that t is regular on O3(G) implies that it
has class 8G in the quotient group U4(3).23, so that t2 has class 4A in this group. This in turn
means that the value of a 6-character of 32.2U4(3) on t2 is ±2; therefore the 12-character of
6.Suz, which is the sum of two 6-characters of its subgroup 32.2U4(3), which must have the
same sign on t2, has value ±4. It then follows that t2 has 6.Suz-class 4A, so t has 6.Suz-class
8A. Finally, the product of t with the central 3 of 6.Suz has M-class 24H, so t has M-class 8D
and the 40-elements normalizing s have M-class 40C or 40D.

3. Is L2(41) a subgroup of M?

We start by noting that although the above question is now still open, we can prove quite
easily that PGL2(41) ∼= L2(41).2 is not a subgroup, which implies that 41.40 is maximal. For
PGL2(41) contains a dihedral group of order 80, whereas the 40-elements of 41.40 belong to
classes 40C and 40D, and are not inverted by any element of M. It follows at once that any
L2(41) in M is necessarily maximal.

Theorem 3. In any L2(41) inside M, all elements belong to one of the classes (1A, 2B, 3B, 4C, 5B, 7B, 10E, 20F, 21D, 41A).

Proof. For elements of order dividing 20, this follows from Theorem 2. For elements of order
3 this follows from Theorem 20 of [12]. As there is a unique class of elements of order 21 whose
3-part is 3B, the theorem is true for elements of orders 21 and 7. Finally, there is a unique
class of elements of order 41.

We also note that structure constant calculations show that any element of class 20F is
contained in exactly 12 dihedral groups of order 40. This means that there are at most 12
possibilities for building a group L2(41) by starting with a group 41.20 and extending the 20 to
a dihedral group of order 40. Moreover, the elements of order 40 which normalize our group of
order 41 cannot normalize any of these dihedral groups, so fuse the 12 cases into six conjugate
pairs.

4. Computational techniques

We turn now to the computational techniques which we used to resolve the question posed in
the title of the previous section. In carrying out these computations, some small improvements
to the methods of [7] have been obtained. These will be described in this section.

4.1. Navigating around 21+24

Part of the construction of the Monster in [5] involved making the natural representation of
21+24 of dimension 212, by taking 24 generators which were tensor products of 2×2 permutation
or diagonal matrices. In order that we can use this information to translate from the Monster
to the 24-dimensional representation of Co1, we begin by reconstructing these 24 generators
as words in the generators a and b of 21+24.Co1.
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First we made an involution j0 = a2 inside 21+24, and then made ji = (j0)(ab)i

for i ≤ 22.
These turned out to be independent, and are completed to a basis {j0, j1, . . . , j23} by adjoining
j23 = (j1)b.

Now for each generator ji (0 ≤ i ≤ 23), we can determine which element of 21+24 it is by
inspecting the top row of the 212 × 212 matrix (in order to read off the permutation) and 12
more rows (in order to read off the 12 signs). This expresses our generators in terms of the
standard basis of permutations and diagonal matrices, so by inverting the resulting 24 × 24
matrix, we express the standard basis in terms of the above generators. The results are given
in Table 1.

This gives us an explicit map from 21+24 to GF(2)24 which enables us to translate problems
about conjugacy in the group to (much easier) problems of linear algebra.

Moreover, since the 212-dimensional representation tensored with a 24-dimensional repre-
sentation of 2.Co1 is a constituent of the 196882-dimensional representation, we can read off
the required information about the former by calculating in the latter: again, we only need
to compute the images of 13 carefully selected basis vectors in order to do this. With the
numbering of coordinates as in [5] these were coordinates 298 + 98280 + 2i, for 0 ≤ i ≤ 12.

4.2. Obtaining the quotient Co1 of the involution centralizer

Given any element g of the centralizer 21+24Co1 of the involution z, we can now compute
its action on GF(2)24 as follows. For each of the 24 generators p1, . . . , p12, d1, . . . , d12 of 21+24,
compute its image under conjugation by g, and read off the resulting element of 21+24/2 as
described in Sectionnavextra. Then we can write down a 24×24 matrix representing the image
of g in Co1.

This can even be done for elements of the Monster which centralize z, but which are only
given as a word w in a, b, T : for each generator di or pi of 21+24 we apply the word w−1diw

Table 1. The standard generators of 21+24.

p1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1
p2 0 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1
p3 0 0 1 1 1 0 1 1 1 0 0 0 1 0 1 1 1 0 1 1 0 0 1 1
p4 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1
p5 0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1
p6 1 0 1 1 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1
p7 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
p8 1 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 0 1 0 0 1 0 1 0
p9 0 1 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 1 1 1 1 1 1
p10 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0
p11 1 1 1 1 0 0 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0 0
p12 1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0
d1 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 1
d2 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 0 0 1 0 1 0 0 1 0
d3 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 1 0
d4 0 1 1 0 1 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0
d5 1 0 0 0 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0
d6 1 1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0
d7 1 1 1 0 1 1 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0
d8 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1
d9 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1
d10 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 0
d11 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 0 1 1 1
d12 1 1 0 0 1 0 1 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0

The rows of this table correspond in order to the generators p1 . . . , p12, d1, . . . , d12 of 21+24. (Mnemonic: p for
permutation, d for diagonal.) The columns correspond to the generators j0, . . . , j23, and each row expresses

one of the new generators as a product of the original generators (modulo the central involution).
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or w−1piw to the 13 carefully selected basis vectors of 196882-space, and read off the result as
above.

4.3. Obtaining 2.Co1

A similar process can be used to obtain elements of 2.Co1 as 24 × 24 matrices over F3,
corresponding in pairs (modulo sign) to elements of the quotient of 21+24.Co1 by the normal
2-subgroup. To do this, we select 24 suitable rows of the tensor product space and extract the
24× 24 matrix from them.

As in the previous case, this process can be carried out for any element of the Monster which
commutes with the central element z of 21+24Co1, even if it is only given as a word in the
generators of the Monster.

4.4. Changing post

In our computations we are often ‘tied to the post’, in the sense that we can really only
compute elements in the subgroup

CM(z) ∼= 21+24.Co1.

However, a method was given in [6] for ‘changing post’, specifically, finding a word in the
generators of the Monster which conjugates any given 2B-element in 21+24.Co1 to the central
involution. In principle, we pre-compute some representatives for the conjugacy classes of 2B-
elements in this group, as words in the generators. Then we conjugate our arbitrary 2B-element
to one of these by the usual dihedral group method. In practice, however, it turns out not to
be too hard to deal with each case as it arises.

In fact, there are just five conjugacy classes of 2B-involutions in 21+24.Co1, as follows:
(1) the central involution z,
(2) the conjugates of T−1zT , which lie in the normal 21+24,
(3) two classes mapping to Co1-class 2A,
(4) one class mapping to Co1-class 2C.

Given any 2B-element x of type (2), we can convert both x and T−1zT to vectors v1, v2 in
GF(2)24, as described in Section 4.1. There are 8292375 vectors in this orbit under Co1, so if
we make a few thousand images of each vector under known elements of Co1, the chances are
we will find elements g1, g2 ∈ Co1 such that v1g1 = v2g2, so that v1g1g

−1
2 = v2. (Sorting the

vectors makes it easy to find such coincidences.) Lifting back to 21+24Co1 we have that g1g
−1
2

conjugates x to T−1zT or TzT−1, and we have found an element conjugating x to z.
Working inside 21+24.211M24 we can find elements y1, y2, y3 in the other three 2B-classes,

such that T or T−1 conjugates yi into the 21+24. Thus each yi can be conjugated to z by the
above method. Now any involution y conjugate to one of the yi can be so conjugated by finding
g such that yiy

g has odd order, say 2k + 1, as then y(yiy
g)k

= yi. (If this proves too difficult,
one can do the conjugation in the quotient Co1 first, and then lift to 21+24Co1.)

4.5. Applying the formula

Observe that if x, y are two conjugate elements of order 3 in A4, then xyx = y. Hence the
same is true in any group which has an abelian normal 2-subgroup of index 3. By iterating this
procedure, one can obtain a conjugating element in the non-abelian case also. Moreover, if g
is any element of any group G which commutes with x of order 3 modulo an abelian normal
2-subgroup, then xxg conjgates xg to x, so gxxg centralizes x. Similarly, if g inverts x modulo
the 2-group, then x−1xg conjugates xg to x−1, so gx−1xg conjugates x to x−1. Again these
procedures can be iterated in the non-abelian case.
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These formulas can be easily generalised to elements of order p, where p is any odd prime:
in this case we have

x(yx)(p−1)/2
= y.

5. Finding the maximal subgroup 38.O−
8 (3).2

We turn now to the actual computations, and for clarity we divide these into three main
phases. In the first phase (Section 5) we find a copy of the maximal subgroup 38.O−

8 (3).2 of
M. In the second phase (Section 6) we find a subgroup 41:8 of this, and extend to a maximal
subgroup 41:40 of M. In the third phase (Section 7) we find the normalizer of the element of
order 20 and complete the determination of the subgroups isomorphic to L2(41).

Since the only subgroup of the Monster in which we can easily work is the subgroup
21+24.Co1, that is, the centralizer of a 2B-involution z, we aim to generate other subgroups
by involution centralizers wherever possible. Now O−

8 (3) has just three conjugacy classes of
involutions, whose fixed spaces on the 38 are non-singular subspaces of dimensions 2, 4 or 6,
and of type +, −, + respectively. Their centralizers are respectively of shapes

32.2.U4(3).D8

(34 × 21+4.32).A6.D8

36(2× L4(3)).D8

and from this it is clear that they fuse to classes 2B, 2B and 2A respectively in the Monster.
Now to generate this subgroup in the most effective manner we may consider two commuting

involutions x, z whose fixed spaces are disjoint 2-spaces. Then their centralizers have shape
(32 × 2).U4(3).D8 and together generate the group.

5.1. Finding the first involution centralizer

We begin therefore by locating a group of this shape inside 21+24.Co1. In fact, for simplicity,
we just took the words from [13] for the maximal subgroup 3.Suz:2 of Co1, and then for the
maximal subgroup U4(3).22 in Suz:2. This gives a subgroup of index 2 in the desired involution
centralizer, which turns out to be sufficient for our purposes.

Specifically, in the generators a, b of the involution centralizer we make the elements

c = (ab)38a(ab)2

d = (ab2)38((ababab2)2ab)8(ab2)2

e = d(cd2)4(cd)3

f = ((ce)2(cece2)2)14

and then, modulo the 2-group,

〈c, d〉 → 3.Suz:2
〈c, e〉 → 32.U4(3).22.

In order to get subgroups 6.Suz:2 and (2× 32).U4(3).22 when we lift to 21+24.Co1, we ‘apply
the formula’, using the element f , which lies in the centre of 3.Suz, so is in class 3A in the
Conway group. This means replacing c and d by

c′ = cf−1c−1fc = cf2c3fc
d′ = dfd−1fd = dfd5fd

respectively. (These two formulae are different, because c inverts f modulo the 2-group, whereas
d centralizes f modulo the 2-group.) We now calculate

e′ = d′(c′d′2)4(c′d′)3,

that is, using the same formula as for e, but using c′, d′ in place of c, d.
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5.2. Finding the centralizer of 22

Having obtained the group

〈c′, e′〉 ∼= (2× 32).U4(3).22

which has index 2 in our desired centralizer of z, we need to pick a suitable involution for x
in 〈c′, e′〉. One slight problem here is that we cannot distinguish x from y = xz abstractly,
although they are completely different in the Monster. Thus we were forced to try both cases
to find out which was the right one. The two cases may be taken as e′5 and e′5z. The former
turns out to be the correct one. In the sequel, we work with y = e′5z rather than x.

In any case, both these elements have the same centralizer in C(z), and we easily find
generators e′ and

g = (e′5(e′c
′
)5)2 = (e′5c′3e′5c′)2

for this common centralizer.

5.3. Conjugating the second involution to the first

The next step is to ‘change post’, that is to conjugate the new involution y = e′5z to z so
that we can work in its centralizer to find the elements we need. (We describe the calculations
that we actually did. They could be simplified slightly by using the pre-computation described
in Section 4.4.) The first step is to work in the quotient Co1 to conjugate y into the normal
211 of the standard copy of 211:M24. Now this standard copy is generated by h and i where

h = (ab)34(abab2)3(ab)6

i = (ab2)35((ababab2)2ab)4(ab2)5

Now if we let

k1 = hihi2

k2 = hihihi2

k = (k1k2)3k2k1k2

then k has order 22 in the quotient Co1, so we know it powers up to an element which is
conjugated by T or T−1 into the normal 2-subgroup. We now find that (kh)11y has order 15
modulo the central involution, and therefore

l0 = ((kh)11y)7

conjugates y into the desired place. (In fact, since we had first done the calculation with
x instead of y, we actually used l1 = zl0 instead. This makes no difference to any of the
subsequent calculations.) A simple trial and error then gives us that T−1 conjugates this into
the normal 2-group.

The second stage of the process of ‘changing post’ is to conjugate our element y′ = yl1T−1

to zT modulo 〈z〉. To do this we translate these elements of 21+24 into vectors of the standard
module for Co1, as described in Section 4.1. Then we make a few thousand images of each under
elements of Co1, and sort the results in order to find coincidences. Any coincidence between
the two lists of images gives us an element of Co1 to map one to the other. We find that the
element

l2 = (ababab2)10(ababab2ab)3(ab2)4

conjugates y′ to zzT , and therefore

l = l1T
−1l2T

conjugates y to z.
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5.4. Finding the centralizer of an element of order 10

We may also conjugate e′ and g by l to obtain a subgroup of C(z) containing A6. We need
to extend this to a group of shape roughly

34.(O+
4 (3)×O−

4 (3)).

The first step is to find the centralizer of the element e′′ = e′l, which has order 10. To do
this, we first work in the quotient Co1, and conduct a random search for 3A-elements which
commute with e′′ in this quotient. They will generate a normal subgroup A5×A5 of the desired
centralizer.

Specifically, we take the 3A-element

m0 = (ab(abab2)2)28

and conjugate by the elements
cαβγδ = cα

1 cβ
2 cγ

3cδ
4,

where

c1 = ab
c2 = ab2

c3 = ab(abab2)2

c4 = ababab2ab

and

(α, β, γ, δ) = (10, 8, 27, 9),
(0, 21, 19, 6),
(36, 35, 36, 5),
(16, 10, 13, 5).

In fact the conjugation was only done correctly modulo the 2-group, and the actual elements
we made were

m1 = (c10,8,27,9)13m0c10,8,27,9

m2 = (c0,21,19,6)38m0c0,21,19,6

m3 = (c36,35,36,5)21m0c36,35,36,5

m4 = (c16.10.13.5)21m0c16,10,13,5

whereas the orders of the conjugating elements are respectively 28, 39, 44, 44. We have that
〈m1,m2〉 is one of the A5 factors, and 〈m3,m4〉 is the other.

In each of these A5s there are just two cyclic groups of order 3 which extend our A6 to a
group of shape 35A6. In the first group they happen to be generated by m1 and m2, while in
the second they are generated by

m5 = mm4m3
3 = (m4m3)4m3m4m3

m6 = m
m2

4
3 = m4m3m

2
4.

It will turn out later that the ones we need are m1 and m5.

5.5. Shortening the words for the conjugates of e′ and g

Recall that e′ has order 10 and its fifth power is z. Since z commutes with y, it follows that
zl commutes with yl = z, so we want to find a word in a and b which gives the element zl.
We start by identifying it in the quotient group Co1, where we know it lies in the A5 × A5

generated by the mi: we find that, modulo the 2-group, it is

m = (m2m6)2m1m5m2m6(m1m5)2(m2m6)2m1m5.
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We next find the centralizer of this involution in the Conway group: this has shape

211M12.2

and it, or a subgroup of index 2, is generated by the elements

n = (mab2m(ab2)−1)7

o = ab(m(ab)−1mab)17.

This group is now small enough that we can conduct a random search for elements of order
5 which are equal to (powers of) e′2 and (e′2)g. We find that the conjugates of (no)2 by

dα,β,γ,δ,ε,ζ = oα(no)β(no2)γdδ
4d

ε
5d

ζ
5

do this job, where

d4 = (no)2(nono2)2no2

d5 = (no)2(nono2)2

d6 = no(nono2)2

and

(α, β, γ, δ, ε, ζ) = (6, 2, 10, 5, 7, 9),
(3, 2, 9, 3, 0, 5)

respectively. Again, this conjugation is only done correctly modulo the 2-group, and the actual
elements we make are

q1 = (d6,2,10,5,7,9)5(no)2d6,2,10,5,7,9

q2 = (d3,2,9,3,0,5)3(no)2d3,2,9,3,0,5

Next we lift these elements to 21+24.Co1. In order to find out which element of 21+24 to multiply
qi by, in order to get the actual element we want, we calculate the action of its quotient on the
13 basis vectors described in the previous section, and thereby read off a word for this quotient
in terms of the standard generators for 21+24. We find that q1 and q2 need to be replaced by

q′1 = p1p3p5p6p7p9p11p12d1d2d3d4d7d8d9d10d11(q1)4z
q′2 = p2p7p9p10p11d4d5d8d9d10q2z

respectively. We then have q′1 = (e′2)l and q′2 = (e′2)gl.

5.6. Generators for 38.O−
8 (3).2

Now we are in a position to complete the computation of the centralizer in the Monster of the
element of order 10. This element is the product of z with q′1, and we have already calculated
the elements m1,m2,m5,m6 which centralize it modulo the 2-group. So we only need to ‘apply
the formula’. Multiplying by z where necessary to get elements of order 3 we have

m′
1 = q′1m1(q′1q

′m1
1 )2z

m′
2 = q′1m2(q′1q

′m2
1 )2

m′
5 = q′1m5(q′1q

′m5
1 )2

m′
6 = q′1m6(q′1q

′m6
1 )2z

These elements together generate a group of shape 21+8(A5 ×A5) which centralizes q′1.
In order to refine this picture further, we next need to make generators for the normal

subgroup 21+8. Let

r1 = (m′
2m

′
6)

3

r5 = (r1)m′
5m′

6
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ri+1 = (ri)m′
1m′

2 for i = 1, 2, 3, 5, 6, 7.

We then look for conjugates of (m′
1m

′
5)

4 and (m′
2m

′
6)

4 which could extend the 〈c′l, e′l〉 to
38.O−

8 (3).2, by eliminating all cases in which we can find an element of an incompatible order.
This leaves us with just the one case

s1 = ((m′
1m

′
5)

4)r7 .

At this stage we have generators c′l, e′l, s1 for the maximal subgroup 38.O−
8 (3).2 of the Monster.

6. Finding the maximal subgroup 41:40

6.1. Finding a dihedral group of order 82

We look at the commutators of z with ‘random’ short words in the generators of 38.O−
8 (3).2,

in order to find a commutator of order 41. After a few attempts we find that the element s4

works, where

s2 = (c′e′)2(c′e′3)2

s3 = c′e′c′e′3

s4 = (s2)ls1q
′
2(s3)l

Thus z and zs4 are involutions generating a dihedral group of order 82. Note that the word for
s4 involves four instances of l or l−1, each of which involves two instances of T or T−1. Thus
the element zzs4 of order 41 is given as a word involving 16 instances of T or T−1.

6.2. Extending to 41:4

Next we look for elements of order 4 which lie in 38.O−
8 (3) and which square to z, with the

property that they conjugate this element of order 41 to a power of itself. This latter property
is equivalent to the property that the conjugate commutes with the original. This is an easier
property to check. Indeed, a quicker test is to pre-compute a vector fixed by the element of
order 41, and test whether the image of this vector under the element to be tested is again
fixed by the element of order 41.

It turns out that there are just 2430 such cyclic groups of order 4 to test, and each test took
approximately 15 seconds. Thus we were able to run the whole test in about ten hours, and
find the one case which works. The element of order 4 which normalizes the given element of
order 41 turns out to be

s = r1r3r5(q′1q
′
2)

s2
1s2

5q′1
4q′2q′1

4
,

where
s5 = ((m′

1m
′2
5 )2)r6 .

We also make the following elements which will be useful later: let

s6 = s1(m′
2m

′
6)

4s1(m′
2m

′
6)

2s2
1(m

′
2m

′
6)

4

and
s7 = (s6s

2
5s6s5s6)q′1

4q′2q′1
4
.

6.3. Finding the 10-normalizer

Before extending 41:4 to 41:8, we need to make the outer halves of the various groups which
we have neglected to make so far. We begin with

〈q′1,m′
1,m

′
2,m

′
5,m

′
6〉 ∼= 5× 21+8(A5 ×A5),
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which has index 8 in the full 10-normalizer, and work first in the quotient Co1. To find an
element swapping the two A5 factors we can work in

〈n, o〉 → 211M12,

and first find the centralizer of q′1 in 〈n, o〉 as

〈q′1, n1, n2, n3〉 → 5× 23,

modulo the 21+24, where

n1 = ((no2)8)o2
q′1)

5,
n2 = ((nonono2)8q′1)

5,
n3 = (((nonono2)8)oq′1)

5.

Then we find that the last generator works, so we put

t1 = (o10(nonono2)8oq′1)
5

and apply the formula to get

t2 = q′1t1(q
′
1t

3
1q

′
1t1)

2,

which extends the group to 5× 21+8(A5 ×A5).2 as required.
Next we find that, modulo the 2-group,

〈no5
, q′1〉 → S6,

in which

t3 = ((q′1o
6no5)2q′41 o6no5)2(q′21 (q′1o

6no5)2q′41 o6no5)

conjugates q′1 to its square. So we apply the formula (where t3 has order 8) to get

t4 = t3((q′1)
2t73q

′
1t3)

2,

which extends our group to the full 10-normalizer

(5× 21+8(A5 ×A5).2).4.

6.4. Outer halves of (21+4 × 34)(32 ×A6).D8

We need to adjust t3 and t4 so that they normalise 〈q′1, q′2〉. First we use the formula to
adjust them so that they normalize the 32 generated by s1 and s5. We put

t′2 = t2s
2
5t

3
2s5t2

t′4 = s1s5t4s1s5t
3
4s1s5t4

t′′4 = t′4s
2
1s5(t′4)

3s1s
2
5t
′
4.

Then t′2 and t′′4 normalise 〈s1, s5〉, but t′2 still does not normalise 〈q′1, q′2〉. Indeed, only half of
the normaliser of 32 × 5 normalizes this group, so we make another element which normalizes
the former but not the latter. Let

t6 = m′2
2 m′

1m
′
2m

′2
1 m′2

2 m′
1

and then apply the formula twice to get

t′6 = s1s5t6s1s5(s1s5)t6

t′′6 = t′6(s
2
1s5)(s1s

2
5)

t′6 .

Finally we find that t′′4 and t′′2 = t′2t
′′
6 extend our group to (21+4× 34)(32×A6).D8 as required.
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6.5. The 4-centralizer

Next we construct the centralizer in 〈q′1, q′2〉 of the element s of order 4. We already have the
centralizer of s2, namely the group

(21+4 × 34)(32 ×A6).D8

just constructed. The centralizer of s is a subgroup of order 29.32, and structure which may be
roughly described as

(4 ◦Q8 × 32).(3×D8).22,

where the individual terms correspond to those given for the centralizer of s2. We work our
way up from the bottom, constructing a composition series as we go. The group 4 ◦Q8 may be
generated by

u3 = r1r3r5

u4 = r1r6

u5 = r2r3r5r7r8.

The central involution of the D8 may be taken as s, and the remaining four composition factors
of order 2 are u6, u7, u8, u9 constructed as follows:

u8 = [s, q′2]
2 = (s3(q′2)

2sq′2)
2

u11 = t′′4 t′′2 [s, t′′4 t′′2 ] = t′′4 t′′2s3(t′′4 t′′2)3st′′4 t′′2
u12 = r3r4r6r7s

2
5s7s5[s, r3r4r6r7s

2
5s7s5]

u7 = [u8, u11] = u8u
7
11u8u11

u6 = (u7u12)3

u9 = (u11u6)3.

The normal 32 may be generated by

u14 = (q′1[s, q
′
1]

2)2 = (q′1(s
3(q′1)

4sq1)2)2,
u15 = (u14)u11 .

The other factor of 3 turned out not to be required.

6.6. Extending to 41:8

In the Sylow 2-subgroup of the 4-centralizer we carried out an exhaustive search for all the
elements of order 8 which square to s. Modulo s, there were just 20 such elements, in two
conjugacy classes of size 4 and 16. Each one had just three conjugates under the 3-part of the
group, giving us 60 cases to check in total. We rapidly found the required element of order 8
to be

u = u2
14u5u7u8u9u14.

Thus
〈u, zs4〉 ∼= 41:8.

6.7. The full 4-centralizer

From this point on, we have to leave the safety of the subgroup 38.O−
8 (3).2, and venture

out into the Monster. In order to find an element of order 5 which extends 41:8 to 41:40, we
need to find the centralizer in the Monster of our element of order 8. First we find the full
centralizer in the Monster of its square, s. Since s2 = z, the central involution of 21+24.Co1,
we work throughout in the latter group.

In effect we are looking for the centralizer of an involution in the quotient 224.Co1. The
structure of this involution centralizer is 216.21+8.S6(2). Given the part of the centralizer we
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already have, it should be sufficient to find one more generator. Unfortunately, the presence of
a large normal 2-subgroup means that Bray’s algorithm [1] is not effective, since the elements
it produces are overwhelmingly likely to lie in the normal 2-group. Thus we need more subtle
techniques.

We first calculate that [s, b] has order 10, but only order 5 in the quotient Co1. Therefore
the element

v1 = b[s, b]2

commutes with s modulo the 2-group. Together with the part of the centralizer we already
have, it generates a group of shape

21+24.21+8.O+
8 (2).

Since the normalizer of s has index 28.120 = 30720 in this group, a random search for elements
of the normalizer is just about feasible, but we would prefer something quicker if possible.

Now it is easy to calculate from the centralizer orders given in the Atlas [2] that a 3E-
element in O+

8 (2) has a 1 in 20 chance of lying in a particular subgroup S6(2). Moreover, such
an element acts with a fixed 4-space on the chief factor 28 which we lose in going down to N(s).
In other words a random conjugate of such an element of order 3 in 21+24.21+8.O+

8 (2) has a
probability of 1 in 16.20 = 320 of centralizing s. In fact we decided to be more systematic,
and first make the 16 conjugates under the 28 factor, so that the probability of success at each
stage is increased to 1 in 20.

Now it turns out that u14 is a 3-element in the right conjugacy class, so we first find a
suitable set of 16 conjugates of it. We tried conjugating by vα

2 vβ
3 vγ

4 vδ
5, where

v2 = a2,
v3 = (a2)(v1u15)

8
,

v4 = (a2)(v1u15)
16

,

v5 = (a2)(v1u15)
24

,

and α, β, γ, δ ∈ {0, 1}, and found by brute force that these 16 conjugates lie in different cosets
of the 4-normalizer. Then conjugating these 16 elements of order 3 by elements of the form

v1(v1u14)ε(v1u15)8ζ

we found that one case which works is

v6 = (u14)v2v5v1(v1u14)
4(v1u15)

32
.

Moreover, the full centralizer of s is generated by v6u14 and u15, and has shape

C(s) ∼= 4.28.28.2.26S6(2).

6.8. The 8-centralizer

We now make (most of) the centralizer of the element u of order 8 by a similar method. This
centralizer has order 219.33.5 and shape

C(u) ∼= 8.24.24.24.A6.2.

First we get two generators for the centralizer modulo the 2-group. We make

w1 = u15[u, u15] = u15u
7u2

15uu15

which does in fact centralize u, and

w2 = (v6u14u15)3[u, (v6u14u15)3],
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which only centralizes u modulo 21+24 (which is actually better than we could a priori have
hoped for). Now we investigate the 2-group. First

w3 = (w6
2(v6u14u

2
15)

2)7

is an involution in the bottom 28 chief factor of C(s), and we make

w4 = (w3)(w1w2)
2
,

w5 = (w4)(w1w2)
2
,

w6 = (w5)(w1w2)
2
.

Next we find that
w7 = w4w5w6w

v6u14u15
3

centralizes u, and we make the bottom 24 chief factor of C(u) by

w8 = (w7)(w1w2)
2
,

w9 = (w8)(w1w2)
2
,

w10 = (w9)(w1w2)
2
.

Now u4 already centralizes u, so we make another 24 chief factor by

w12 = (u4)(w1w2)
2
,

w13 = (w12)(w1w2)
2
,

w14 = (w13)(w1w2)
2
.

The next non-trivial chief factor can be made as follows:

w15 = w3(v6u14u
2
15)

7(v6u14u15),

w16 = w5w
(w1w2)

2

15 ,

w17 = w3w5(w15)(w1w2)
4
,

w18 = w3w4w5w6(w15)(w1w2)
6
.

The last non-trivial chief factor A6 proved more elusive. Let

w19 = ((v6u14u15)3u15v6u14u15)2v6u14u
2
15

w20 = w8
19[u, w8

19].

Then put

w21 = ((w1w
2
2)

2w2
1w

2
2w20)4,

w22 = (w21)(w1w2)
2
,

w23 = (w22)(w1w2)
2
,

w24 = (w23)(w1w2)
2

to get a 24 which commutes with u modulo the 21+24. We then find that

w25 = (w1w2)2(w3w4w6w21w23w24)

is an element of order 5 which commutes with u. This completes our construction of the non-
trivial composition factors of C(u).

6.9. Extending to 41:40

We now need to check through all the 5-cycles in the 8-centralizer to find the one which
normalizes our element of order 41. The number of cases to consider is 212.36 = 147456. The
212 conjugates by the normal 2-group are obtained by conjugating by combinations of wi for
7 ≤ i ≤ 18. The 36 conjugates in S6 (modulo the 2-group) may be made as follows: let

w26 = w2
1w

3
25
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and then make a 32 generated modulo the 2-group by w1 and

w27 = ((w3
25w1w

3
25)

4w26w
3
25w1w

3
25)

4.

Let

w28 = (w25w26)2w1w25w26

w29 = w2
25w26w1w25,

(although these elements were not in the end required). Then the 36 conjugates of w25 by

wα
28w

β
29w

γ
27w

δ
1 for 0 ≤ α, β ≤ 1 and 0 ≤ γ, δ ≤ 2

will do the job. The element of order 5 which normalizes our element of order 41 turns out to
be

w = (w25)
w30 ,

where
w30 = w27w1w16w17w10u4.

Thus
〈zs4 , u, w〉 ∼= 41:40.

7. Generating L2(41)

7.1. Normalizing the element of order 20

To save time, we analysed the normalizer of x0 = sw25 rather than sw, and conjugated by
w30 afterwards. First note that C(x0)/〈x0〉 has order 48. We found the following elements in
the centralizer:

x1 = (u3w25)5

x2 = (u4w25)5.

Now in the quotient S6(2) of the 4-centralizer, the centralizer of the element of order 5 is 5×S3.
We already have a transposition of this S3, namely u. To find another transposition, we first
see that

x3 = u(v6u14u15)
3

maps to a transposition which together with u generates an S3 in the quotient S6(2). Now we
conjugate this by combinations of w21, w22, w23, w24 to find the transposition

x4 = xw21w23w24
3

commutes with w25 modulo the 2-group. So we apply the formula twice, getting

x5 = w25x4(w25w25
x4)2

x6 = w25x5(w25w25
x5)2.

Writing

x7 = (ux6)4

x8 = (x2)x7

gives a composition series for C(x0)/〈x0〉 of order 48 by adjoining successively x1, x2, x8, x7, u.
Now to make an element which inverts x0 we first apply the formula to the element

x9 = r3r4r6r7
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of order 4, which, modulo the 2-group, inverts s and centralizes (w1w2)2. This gives

x10 = w25x9(w25w25
x9)2.

Then we look in S6 for an element which inverts the 5-element: modulo the 2-group, we find

x11 = (w25w1w
3
25w

2
1w

3
25)

2.

This time we have to apply the formula twice:

x12 = x11((w25)4w25
x11)2

x13 = x12((w25)4w25
x12)2.

Combining these two elements gives an element x14 = x10x13 which inverts x0. Finally we have
that

〈u, x0, x1, x2, x8, x7, x14〉

is the group of all elements centralizing or inverting the element sw25 of order 20.

7.2. Testing the six cases

We now run through this group to find the involutions inverting the element of order 20.
They turn out to be the conjugates of ux14. There are exactly 12 ways of extending the cyclic
group of order 20 to D40, falling into six orbits of size 2 under the action of the element u of
order 8.

Finally we conjugate by w30 and test the resulting six cases. The group generated by 41:20
and D40 is isomorphic to L2(41) just if one of the 20 reflections in the dihedral group has
product of order 3 with the element of order 41.

It turned out that exactly one of the six cases generates L2(41). This is given by the involution

y0 = (sw)2(x1x2ux14)x7w30 .

7.3. Proving the main theorem

In fact, many of the calculations described above were done without proof, and therefore
we must check certain key facts in order to prove our main results. The three elements which
we showed generate L2(41) are α = zs4z, β = sw, and γ = y0. These elements satisfy the
presentation

〈α, β, γ | α41 = β20 = γ2 = (βγ)2 = (αγ)3, αβ = α2〉.

To prove this, we first showed that zs4z had order divisible by 41, by showing that it brings
a ‘random’ vector back after 41 steps. Hence it has order exactly 41. All the relations which
do not involve α can be calculated inside the subgroup 21+24Co1. The remaining relations can
be checked by verifying them on two vectors carefully chosen so that the intersection of their
stabilizers is trivial. This proves existence of the subgroup L2(41).

The elements centralizing or inverting sw all lie inside 21+24Co1, where we can easily check
all required relations, and verify that we have indeed considered all the involutions which invert
sw. This proves uniqueness.

8. A new Moonshine phenomenon

The discovery of Theorem 2 removes what previously appeared to be an exception to the
following theorem, which may have significance in Moonshine theory. (All Moonshine related
notation and terminology is as in [3, 4, 11].)
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Definition 1. An element of M with order n > 1 is said to be a pure Fricke element of
order n if the fixing group of its corresponding Classical Moonshine function, as in [3], can be
obtained from Γ0(n) by adjoining the Fricke involution z 7→ −1/(nz).

It can be seen from [3] that the pure Fricke classes of M are 2A, 3A, 4A, 5A, 6B, 7A, 8A,
9A, 10D, 11A, 12H, 13A, 14C, 15C, 16C, 17A, 18E, 19A, 20F , 21D, 23AB, 24I, 25A, 26B,
27A, 27B, 29A, 31AB, 32A, 35B, 36D, 39CD, 41A, 47AB, 59AB and 71AB.

Theorem 4. Let p be a prime other than 2 or 3 dividing the order of M, and let g be a
pure Fricke element of order p. Then the following hold:

(i) The shape of NM(g) is either g.g′ ×H or (g.g′ ×H).2, where g′ is an element of order
(p− 1)/2, according as the class of g is irrational or rational. The Frobenius group g.g′

is uniquely defined by this condition.
(ii) There is a modular function of form 2p|2+, i.e. a square root of the Hauptmodul of

Γ0(p)+ (with z replaced by 2z), exactly when the class of g is rational.
(iii) Furthermore, in the rational case the outer half of H.2 = NM(g)/g.g′ has a unique

conjugacy class of involutions.
(iv) g′ is a pure Fricke element.

Of these (i) has long been known, and (ii) was stated in [9]. The first author had previously
noticed that (iv) was true except when p = 41 and possibly when p = 71. The case p = 71 was
settled when P. E. Holmes showed that L2(71) < M (see [7]; the result is also stated in [2] page
xl, though not in the original edition of the Atlas), and Theorem 2 settles the case p = 41.

All four parts may be proved by a case by case analysis. The shapes of the various groups
NM(g) are, respectively,

(D10 ×HN).2
(7.3×He).2
(11.5×M12).2
(13.6× L3(3)).2
(17.8× L2(7)).2
(19.9×A5).2
23.11× S4

(29.14× 3).2
31.15× S3

41.40
47.23× 2
59.29
71.35.

In accordance with Theorem 4 it can be seen from [4] that Moonshine type functions of type
2p|2+ exist when p = 5, 7, 11, 13, 17, 19, 29 or 41, but not when p = 23, 31, 47, 59 or 71.
In the former case the groups H.2 are, respectively, HN.2, He.2, M12.2, L3(3).2, L2(7).2, A5.2,
3.2 and 1.2, each of which does indeed have just one conjugacy class of involutions in its outer
half.

We now look at (iv), the new result. In many cases there is a unique class of element of
order (p − 1)/2 which has elements centralizing a particular element h′ of CM(g); for p = 5,
7, 11, 13, 17, 19, 23, 47 and 59 we may take h′ in class 19A, 17A, 11A, 13B, 7A, 5A, 1A,
1A and 1A respectively to show that g′ belongs to class 2A, 3A, 5A, 6B, 8A, 9A, 11A, 23AB
and 29A respectively. (Why does CM(13A.6) = L3(3) contain a 13B-element? Because as 13B
is 13-central in M and has centralizer 131+2.2A4, it follows that there is a 132 where 1 cyclic
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subgroup has 13B-elements and 13 cyclic subgroups have 13A-elements, and injecting this
group into 13A.6× L3(3) shows that the 13-elements of L3(3) must have class 13B.)

The remaining cases are dealt with as follows:
29: if we take h′ to have class 3A then we find that g′ must belong to either 14A or 14C.

However the former is impossible as 14A powers to 2A, which is a class of 6-transpositions,
so does not have two elements with product of order 29.

31: the normalizer of a 31-element has shape 31.15 × 3C.2A. The 3-part of the 15-element
cannot have class 3C (as elements of this class do not centralize 2A-elements), and the
5-part cannot have class 5A (as elements of this class do not centralize 3C-elements), so
the only possible class for the 15-element is 15C.

41: use Theorem 2.
71: as remarked above, Holmes has shown that 71.35 is contained in a subgroup L2(71), and

Theorem 20 of [12] shows that the 5-elements of any L2(71) have class 5B. It follows
immediately that the 35-elements have class 35B.

This completes the proof of the theorem. ut

We may also note that in all the irrational cases – p = 23, 31, 47, 59 and 71 – the order of g′

is odd. This follows from the well known observation that all the irrationalities in the character
table of the Monster are imaginary.

9. Normalizer Moonshine

The theme of Moonshine is the search for conceptual proofs and understanding of results
that had been discovered and proved by case by case analysis which, however, seem to be more
than coincidences. Is there a conceptual proof of Theorem 4?

One of the consequences of the discovery of Moonshine has been the study of Moonshine
type functions, i.e. modular functions that are Hauptmoduls of groups containing some Γ0(n)
and which are in standard form (where, in the Laurent series expansion in q = e2πiz, the only
term with a non-positive exponent is q−1). These functions are listed in [4, 11].

Most of these apppear to be simple transformations of the functions that appear in Gener-
alized Moonshine [8], which correspond to pairs (g, h) of commuting elements in M. But there
are some that cannot appear in Generalized Moonshine. Examples of these are 58a and 82a,
which are functions of type 58|2+ and 82|2+ in the sense described in Theorem 4.

The first author then wondered – see [9] – whether these functions could be made to
correspond to pairs (g, h) where h normalizes but does not centralize g. This might be called
“Normalizer Moonshine”, and would happen as follows.

Let g be a pure Fricke element of order p, and define an element g′ satisfying the condition
of Theorem 4. If h normalizes g, then whenever g is irrational, and half the time when g is
rational, there is an n such that h.g′n commutes with g. In this case the function we assign to
the pair (g, h) is the Generalized Moonshine function associated with (g, h.g′n).

If, however, there is no such n, then in the quotient group NM(g)/g.g′ ∼= H.2 h will correspond
to an element in the outer half of H.2. If this is an involution, we assign to the pair (g, h) a
modular function of type 2p|2+. (There may be more than one such function, but in such cases
there usually seems to be a “good” function to assign.)

We can then hope to assign to other pairs (g, h), where h corresponds to an element in the
outer half of H.2, other modular functions, in such a way that the coefficient of each qm is the
value of a character of H.2 on the relevant element.

Unfortunately this is not always possible: for example, if g has order 19 and h is an element
of order 6 which inverts g, we would expect to see a function which is congruent modulo 3 to
38a, the unique function of type 38|2+, but there is no such function of moonshine type other
than 38a itself.
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We also note that, as stated in [9], even for those pairs (g, h) for which a function can
be allocated, it won’t behave under combinations of the braiding operations (g, h) 7→ (g, gh),
(g, h) 7→ (gh, h) (and their inverses) in the manner which one might expect from Generalized
Moonshine.

Of course, when one tries to generalize a result one often has to sacrifice strength, so the
above is not necessarily fatal to the concept of Normalizer Moonshine.
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