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1. Introduction

A standard result in undergraduate algebra courses is that every Euclidean do-
main (ED) is a principal ideal domain (PID). It is routinely stated, but rarely
proved, that the converse is false. The ring R = Z[θ], where θ = (1 +

√
−19)/2, so

that θ2 = θ− 5, is sometimes mentioned as a counterexample. The proof that R is
indeed a counterexample is due to Motzkin [1] in 1948, as a special case of much
more general results. A more elementary proof, accessible to advanced undergrad-
uates, is given by Cámpoli [2] in 1988, though with a more restricted definition of
Euclidean norm than Motzkin uses.

The first part of this proof, that R is not a Euclidean domain, Cámpoli attributes
to the referee of his paper. It is worth remarking, however, that that proof, with very
little modification, actually proves Motzkin’s slightly more general result, namely
that R is not a Euclidean domain under the following definition.

Definition 1. A Euclidean function on an integral domain A is a function d :
A \ {0} → N ∪ {0} with the property that, for all a, b ∈ A, with b 6= 0, there exist
q, r ∈ A such that a = bq + r and either d(r) < d(b) or r = 0. In this situation, A
is called a Euclidean domain.

Notice this does not include the property, usually included in the definition of
Euclidean function, that if a|b then d(a) ≤ d(b).

At the same time, it is possible to simplify the second part of Cámpoli’s proof,
that R is a PID, reducing his seven (or nine, depending on how you count them)
cases to three (or four). This simplification comes from treating the problem as a
geometric problem in the Argand diagram, rather than an arithmetic problem in
the divisors of the coefficients x, y of elements x+ yθ of R.

2. Basic properties of R

As above, let θ = (1 +
√
−19)/2, and R = Z[θ]. Since θ2 = θ − 5, we have that

R = {a + bθ | a, b ∈ Z}. Since it is a subring of the complex numbers, it is an
integral domain, that is, a commutative ring in which αβ = 0 implies α = 0 or
β = 0. Since θ̄ = 1 − θ, the ring R is invariant under complex conjugation. The
ring R inherits from C the norm N(α) = αᾱ = |α|2, which is multiplicative in the
sense that N(αβ) = N(α)N(β).

Next we show that the only units (that is, divisors of 1) in R are 1,−1. For if
a+ bθ (with a, b ∈ Z) is a divisor of 1 in R, then N(a+ bθ) = (a+ bθ)(a+ bθ̄) is a
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Figure 1. The proof that N is not a Euclidean function for R

divisor of 1 in Z. Since (a + bθ)(a + bθ̄) = a2 + ab + 5b2 = (a + 1
2b)

2 + 19
4 b

2, this
implies that b = 0, and therefore a = ±1.

A similar argument shows that the elements 2, 3 are irreducible in R, that is,
their only factors are unit multiples of themselves and 1. For, if a+ bθ is a proper
divisor of 2 or 3 in R, then (a+ 1

2b)
2 + 19

4 b
2 is a proper divisor of 4 or 9 in Z, so is

equal to 2 or 3. But then b = 0 so a2 = 2 or 3, which is impossible.

3. R is not a Euclidean domain

It is easy to see that N is not a Euclidean function for R. Motzkin [1] attributes
this observation to Dedekind in 1894, but the reference is missing from [1]. We
give a proof here, as it will provide useful context for the proof below that R is
a principal ideal domain. The property that a = bq + r with either N(r) < N(b)
or r = 0 translates to saying that |a/b − q| < 1, that is, every fraction a/b is at a
distance strictly less than 1 from some element q of the ring. In Figure 1 we have
drawn some circles of radius 1 centred on the elements of R to show that they do
not cover the whole plane. Algebraically, we see that, for example, if a =

√
−19

and b = 4, then a/b has distance
√

19/4 > 1 from the nearest lattice point.
It is slightly more difficult to show that there is no Euclidean function at all on

R. In fact Motzkin proves that Z[(1 +
√

1− 4n)/2] is not a Euclidean domain for
any n ≥ 5. The proof we now give also generalises easily to this situation.

Theorem 1. The ring R = Z[θ], where θ = 1 +
√
−19)/2, is not a Euclidean

domain.

Proof. Assume that d is any Euclidean function on R. Choose m ∈ A \ {0,±1}
with d(m) as small as possible. Then there exist q, r ∈ A such that 2 = mq + r,
with either d(r) < d(m) or r = 0. The minimality of d(m) implies r = 0, 1,−1.
Hence mq = 2, 1, 3. Then irreducibility of 2, 3 implies that m = ±2,±3.

Similarly, there exist q′, r′ ∈ A such that θ = mq′+r′, with either d(r′) < d(m) or
r′ = 0. Again, it follows that r′ = 0, 1,−1, and therefore mq′ = θ, θ−1, θ+1. Now it
is easy to see that none of θ, θ±1 is divisible by 2 or 3, so this is a contradiction. �

4. Quasi-Euclidean domains

The proof given below that R is a PID is a slight generalisation of one of the
standard proofs that every Euclidean domain is a PID. Recall that an ideal I of a
commutative ring A is a nonempty subset with the property that for every a, b ∈ I
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and r ∈ A, both a − b and ar lie in I. The set bA of all multiples of b is easily
seen to be an ideal, and is called the principal ideal generated by b. If every ideal
is principal, then A is called a principal ideal domain.

Given any non-zero ideal I in a Euclidean domain A, we must find an element
b ∈ I such that I = bA. So, pick b ∈ I such that b 6= 0 and d(b) is as small as
possible, and assume, for a contradiction, that a ∈ I \ bA. Then by the Euclidean
property, there exist q, r ∈ A with r = a − bq ∈ I and either d(r) < d(b) or
r = 0. The former contradicts the minimality of d(b), while the latter contradicts
the assumption that a is not in bA.

Notice that the argument almost works more generally if we allow r = ap − bq
and not insisting that p = 1. However, if p 6= 1 then the case when r = 0 does not
immediately lead to a contradiction, and an alternative argument is required. Our
method is to exclude the case r = 0 completely, except in the case p = 1, when we
cannot avoid it.

This suggests the following definition of a quasi-Euclidean domain (QED). (Note
that this is not a standard definition, and there are other definitions of quasi-
Euclidean domains in the literature, not necessarily equivalent to this one.)

Definition 2. A quasi-Euclidean function (or Motzkin function) on an integral
domain A is a function d : A \ {0} → N ∪ {0} with the property that, for all
a, b ∈ A, with b 6= 0, there exist p, q, r ∈ A, with p 6= 0, such that ap = bq + r and
either

• d(r) < d(b); or
• p = 1 and r = 0.

In this situation, A is called a quasi-Euclidean domain (or Motzkin domain).

The above proof then generalizes immediately to a proof that every QED is a
PID. However, it is not obvious that we have gained anything, as it is not obvious
that there exist quasi-Euclidean domains that are not Euclidean. We shall resolve
this by showing that R is indeed a QED.

5. R is a principal ideal domain

In the light of the previous section, it suffices to show that R is a QED in the
sense defined above. Working in the field of fractions Q(

√
−19), we can divide by

b, and use the fact that N(a)/N(b) = |a/b|2, so that the property d(r) < d(b)
translates to

0 <
∣∣∣a
b
p− q

∣∣∣ < 1.

After some initial reductions, the proof divides into three cases, in which we
shall take p = 1, p = 2, and p = θ or θ̄ respectively. Figure 2 illustrates these
three cases. The large dots represent the elements of R in the Argand diagram.
The interiors (excluding the centres) of the large circles represent points a/b with
0 < |a/b − q| < 1, for some q ∈ R, and the small circles similarly represent points
with 0 < |2a/b − q| < 1, or equivalently 0 < |a/b − q/2| < 1/2. The small dots
represent all the remaining values of a/b, that is a/b = q/2. The horizontal line

represents points with imaginary part
√

3/2, which we may take as the boundary
betweeen the cases p = 1 and p = 2.

The picture tells us what we have to do, and it only remains to fill in the algebraic
details. The required result is the following.
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Figure 2. A graphical illustration of the proof that R is a PID

Lemma 1. For every a, b ∈ R, with b 6= 0, and b not an exact divisor of a, there
exist p, q ∈ R such that

0 <
∣∣∣a
b
p− q

∣∣∣ < 1.

Proof. Since we may replace a by a′ = a + bt, for any t ∈ R, we may add any
desired element of R to a/b, and in particular assume that the imaginary part y of

a/b = x + iy lies (weakly) between ±
√

19/4. By symmetry it suffices to consider

the case 0 ≤ y ≤
√

19/4.

Now if 0 ≤ y <
√

3/2, then p = 1 will suffice, as then a/b is at distance less

than 1 from an ordinary integer. Otherwise,
√

3/2 ≤ y ≤
√

19/4, and we try p = 2.

Writing y′ for the imaginary part of 2a/b − θ we calculate y′ = 2y −
√

19/2 and

then
√

3 −
√

19/2 ≤ y′ ≤ 0. In order to show that the distance from 2a/b to the

nearest element of R is strictly less than 1, it suffices to show that y′ > −
√

3/2.

But
√

19 <
√

27 = 3
√

3, so −
√

3/2 <
√

3−
√

19/2 < 0, as required. The result now

follows unless 2a/b ∈ R, which can only happen when y =
√

19/4.
In this special case, adding ordinary integers to a/b as necessary, we may assume

that a/b = (±1 +
√

19)/4, and by symmetry these two cases are essentially the

same. We now choose p = (∓1 +
√

19)/2, so that ap/b = 5/2 and if q = 2 then
|ap/b− q| = 1/4. �
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