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Abstract

We develop a new and uniform approach to the three families of simple
groups of Lie type discovered by Suzuki and Ree, without using Lie alge-
bras. A novel type of algebraic structure is defined, whose automorphism
groups are the groups in question. This leads to elementary proofs of
the group orders and simplicity, as well as much information on subgroup
structure and geometry.

1 Introduction

Around 1960 the last three infinite families of finite simple groups were discov-
ered. These were the Suzuki groups, and two families of Ree groups. Suzuki [12]
constructed his groups as groups of 4× 4 matrices, over a field of characteristic 2
and odd degree. Ree’s approach [10, 11] was more abstract, and he constructed
his groups as centralizers of certain outer automorphisms in Chevalley groups of
type G2 (in characteristic 3) and F4 (in characteristic 2). The latter approach
also yields the Suzuki groups when applied to Chevalley groups of type B2. It
also generalizes to infinite fields with a so-called Tits endomorphism, that is, one
which squares to the Frobenius endomorphism x 7→ xp, where p is the character-
istic. Nevertheless, the machinery behind these constructions is formidable, as it
involves first constructing the Lie algebras, then the Chevalley groups as groups
of automorphisms of the algebras, and using much detailed structural information
in order to construct the automorphisms and their centralizers. This ‘standard
approach’ is well exposed in Carter’s book [2].

Tits made some simplifications to the constructions by interpreting all these
groups as groups of automorphisms of certain geometries. In the case of the
Suzuki groups, the resulting ‘ovoid’ of q2 + 1 points (where q is the order of
the underlying field) was already implicit in Suzuki’s work, and the group acts
2-transitively on the points of the ovoid. In the G2 case, the so-called Ree–Tits
unital has q3 + 1 points, on which again the group acts doubly-transitively. In
the F4 case, the result is a so-called ‘generalized octagon’, containing (q +1)(q3 +
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1)(q6 + 1) points and (q2 + 1)(q3 + 1)(q6 + 1) lines. Each line contains q + 1
points, and each point lies on q2 + 1 lines. Nevertheless, the geometries could
not really be constructed without at least some motivation from the Suzuki–Ree
constructions, and the calculations required were still formidable.

More recently, other approaches have been tried in order to simplify the con-
structions of these groups further. This is not really necessary in the case of
the Suzuki groups, which are small enough that any number of elementary ap-
proaches will work. There are constructions for example in the books of Huppert
and Blackburn [8], Taylor [13], and Geck [7] as well as Lüneburg [9] and van
Maldeghem [16]. In the case of the ‘small’ Ree groups (those of type G2), there
is a recent paper by de Medts and Weiss [6] which fills in the details of the Tits
construction, which was never published in full.

The large Ree groups (those of type F4) are however very much harder to
construct. Tits [14] published a construction in 1983, and there is another in the
book of Tits and Weiss [15] from 2002. Nevertheless, when I came to write about
these groups for my book [17], I did not find anything at a suitably elementary
level anywhere in the literature, so I set about re-constructing the groups for
myself. The result of this work [21] appeared in 2010, and gives arguably the first
genuinely elementary proof of existence of the large Ree groups. Remarkably,
most of the geometrical part of this work had already been done, in a rather
different way, by Coolsaet [3, 4, 5], although I was not aware of it at the time,
and he was not trying to re-construct the groups, but rather to understand the
generalized octagon.

In the course of this work, I explored a number of different approaches to
the Suzuki groups [18] and small Ree groups [19, 20] as well. By considering all
three cases in parallel, I am now able to make significant further simplifications.
In particular, the definitions of the bullet product (which I now rename the star
product), the Weyl group and the root groups are better motivated and no longer
appear so arbitrary, and most of the substantial calculation which was suppressed
in my earlier paper is now unnecessary. Moreover, the algebraic structure of the
root lattices as rings of integral complex numbers or quaternions also plays a role.

In this paper I present this new theory of the Suzuki and Ree groups, proving
everything from first principles. The groups are defined as automorphism groups
of a new kind of algebraic structure, with three different products defined on it.
This structure is defined in Section 2, using the rings of Gaussian, Eisenstein, and
Hurwitz integers as motivation. In Section 3 I construct some automorphisms,
which in the Lie theory are known as the Weyl group, the maximal split torus, and
the root groups, but whose definitions come entirely from the algebraic structure
defined in Section 2. In Section 4 I construct the Tits geometries and derive the
group orders. Finally in Section 5 I describe much of the subgroup structure, and
prove simplicity. I also describe the exceptional behaviour of the first group in
each series.
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2 Algebraic beginnings

2.1 The Gaussian integers, the Eisenstein integers, and
the Hurwitz integral quaternions

The Gaussian integers are the elements of the ring G = Z[i] of complex numbers,
where i2 = −1. The Eisenstein integers are the elements of E = Z[ω], where
ω2 + ω + 1 = 0. The Hurwitz ring of integral quaternions is H = Z[i, ω], where
ω = 1

2
(−1+ i+ j + k). From these three rings we shall construct respectively the

Suzuki groups 2B2(2
2n+1), the small Ree groups 2G2(3

2n+1), and the large Ree
groups 2F4(2

2n+1).
The unit groups of these three rings are respectively

U(G) = {±1,±i} ∼= C4,
U(E) = {±1,±ω,±ω} ∼= C6,
U(H) = {±1,±i,±j,±k, 1

2
(±1± i± j ± k)} ∼= SL2(3), (1)

where i2 = j2 = k2 = −1, ij = −ji = k, iω = j, jω = k and kω = i. To facilitate
calculations in this last case it is useful to note the following identities:

ωi = jω = ωk = 1
2
(−1 + i− j − k)

ωj = kω = ωi = 1
2
(−1− i + j − k)

ωk = iω = ωj = 1
2
(−1− i− j + k)

−ωi = ωj = kω = 1
2
(1 + i− j − k)

−ωj = ωk = iω = 1
2
(1− i + j − k)

−ωk = ωi = jω = 1
2
(1− i− j + k) (2)

In each case denote the set of units by U . Geometrically, these units form the
short roots of a root system of type B2, G2, or F4 respectively (i.e. a root system
of type A1A1, A2 or D4, respectively). Then the set of long roots is the set of
non-units of smallest norm, which is (1 + i)U in the cases G and H, and is θU ,
where θ = ω − ω =

√
−3, in the case E . Denote this set by L in each case.

We choose once and for all a linear map φ from U to L, which squares to a
scalar p (where p = 2 in the cases G and H, and p = 3 in the case E), as follows.

φ : z 7→ (1 + i)z in the case G
φ : z 7→ (1− ω)z in the case E
φ : z 7→ (1 + i)zj in the case H (3)

Since φ2 = p, the eigenvalues of φ are ±√p. In the cases G and E , both
eigenspaces are 1-dimensional, while in the case H they are 2-dimensional. Ex-
plicit calculation shows that the short roots r are of two or three types, according
to the inner product of r with φ(r). We shall call a root r inner if r.φ(r) = −p/2,
middle if r.φ(r) = 0, and outer if r.φ(r) = p/2.

In the case G we have
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1. r.φ(r) = 1, so r is outer, if r ∈ {±1}; and

2. r.φ(r) = −1, so r is inner, if r ∈ {±i}.

There are no middle roots in this case. In the case E the three types are given by

1. r.φ(r) = 3/2, so r is outer, if r ∈ {±1};

2. r.φ(r) = −3/2, so r is inner, if r ∈ {±ω}; and

3. r.φ(r) = 0, so r is middle, if r ∈ {±ω}.

Finally in the case H we have

1. r.φ(r) = 1, so r is outer, if r ∈ {±1,±j,±ω,±ωi};

2. r.φ(r) = −1, so r is inner, if r ∈ {±i,±k,±ωj,±ωk}; and

3. r.φ(r) = 0, so r is middle, if r ∈ {±ω,±ωi,±ωj ± ωk}.

We choose an ordering of the roots compatible with the map φ, ordering by
the inner product with a suitable vector v0. If r.v0 > 0 we call the root positive
and if r.v0 < 0 the root is negative. In the case B2 we may take v0 = 2+ i so that
the short roots are put in the order −1,−i, i, 1. In the case G2 the ordering of
short roots together with 0 is −1, ω, ω, 0,−ω,−ω, 1, given by the vector 4− ω.

In the case F4 we take the inner product with v0 = 8 + 3i + 2j + k, and in
cases where two short roots have the same inner product with v0, we order them
according to the order of the corresponding long roots. In cases where this does
not discriminate, we make an arbitrary choice. Our ordering on the negative
roots is

−1, ω, ωk, ωj, ωi, ωi,−i, ωj,−j, ωk,−k, ω,

and on the positive roots

−ω, k,−ωk, j,−ωj, i,−ωi,−ωi,−ωj,−ωk,−ω, 1.

These orderings have been chosen so that in every case the mapping φ pre-
serves the order. In particular, φ maps the positive short roots to the positive
long roots.

We end this section with some pictures. First we exhibit the cases G and
E in full detail, in Fig. 1 and Fig. 2 respectively. Then we give the case H in
its projection onto the

√
2-eigenspace of φ. This last is given in two versions.

The first version, in Fig. 3 includes only the short roots, for clarity, while the
second, in Fig. 4, includes also the long roots, for completeness. To construct
these pictures of H, we start by putting the eight inner short roots on the vertices
of two superimposed squares. The relative position of these two squares can be
determined by a small calculation. Then the positions of the middle roots are
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−1 + i = φ(−i)

−1− i = φ(−1)

Figure 1: The root system of type B2

determined as they are sums of adjacent inner roots, and similarly the outer roots
are the sums of three consecutive inner roots. The long roots are similarly the
sums of pairs of perpendicular short roots. (It is perhaps worth remarking that
if we project instead onto the −

√
2-eigenspace of φ, then we obtain a similar

picture, but with the positions of the inner and outer roots interchanged.)
For convenience in performing these calculations, we list here the triples of

short roots with r + s + t = 0 (up to an overall sign).

1 + ω + ω = 1 + ωi + ωi = 1 + ωj + ωj = 1 + ωk + ωk = 0
i− ω + ωi = i− ωi + ω = i + ωj − ωk = i + ωk − ωj = 0

j − ω + ωj = j − ωj + ω = j + ωk − ωi = j + ωi − ωk = 0
k − ω + ωk = k − ωk + ω = k + ωi − ωj = k + ωi − ωk = 0 (4)

Notice that in each picture the ordering of the roots is from left to right, and
from bottom to top. In the case H, the inner, outer and middle roots lie on three
regular octagons, which are respectively inner, outer and middle in the picture.

2.2 The vector space W

We use U as an indexing set, augmented by a set Z of ‘zero’ elements defined by

Z = {0} in the case G
Z = {0,−0} in the case E
Z = {0, ω0, ω0} in the case H (5)

Write I = U ∪ Z. Let F be a field of characteristic p (where, as above, p = 2, 3,
or 2 respectively).

Let W be the vector space over F spanned by vectors et, for t ∈ I, subject
to the relation

∑
t∈Z et = 0. Then W has dimension 4, 7 or 26 respectively. We

shall specify the dimension by writing W4, W7 or W26 for W when necessary. To
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−1 1

Figure 2: The root system of type G2

prevent the notation becoming unreadable, we shall when necessary write e(r)
for er, and E(r, s, . . . , ) for 〈er, es, . . .〉.

Using the ordering on the roots defined above, we may talk about the leading
term of a vector in W (with a slight ambiguity, which will not be important, in
the case of W26 if the leading term is one of the ‘zero’ terms e0, eω0, eω0).

Roughly speaking, we shall put three products onto W , one an ‘inner’ or ‘dot’
product defined by pairs of short roots which sum to zero, the second an ‘outer’
or ‘cross’ product defined by pairs of short roots which sum to another short root,
and the third a ‘middle’ or ‘star’ product defined by pairs of short roots which
sum to a long root.

2.3 The inner or dot product

The inner product is a symmetric bilinear form B : W ×W → F , where we also
write v.w for B(v, w). It is defined by B(et, e−t) = 1 for t ∈ U , and in the case
W7 also B(e0, e0) = 1, and in the case W26 also B(et, eωt) = 1 for t ∈ Z, and in all
cases B(es, et) = 0 otherwise. In the characteristic 2 cases, namely W4 and W26,
the form B is also alternating, that is B(v, v) = 0. In the characteristic 3 case,
namely W7, the symmetric bilinear form is equivalent to a quadratic form. On
W26 it is the bilinear form associated to a quadratic form Q, defined by its values
on a basis by Q(et) = 0 for t ∈ U and Q(et) = 1 for t ∈ Z. It turns out that any
linear map which preserves both the inner and outer products also preserves this
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Figure 3: The D4 root system projected onto the
√

2-eigenspace of φ
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responding Hurwitz integer. The long roots are marked with white circles, and
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the fact that φ is multiplication by

√
2 in the picture, and (b) as r + s where r

and s are perpendicular short roots, by using the rectangular grid.

Figure 4: The F4 root system projected onto the
√

2-eigenspace of φ
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quadratic form. However, this is not necessary for our theory, and so we shall
not use the quadratic form in this case.

2.4 The outer or cross product

The outer product is an alternating (and therefore also skew-symmetric) bilinear
product M : W × W → W . We shall write v × w for M(v, w). This product
has the property that E(r) × E(s) = E(r + s) whenever r, s, r + s ∈ U , and
E(r)× E(s) = 0 if r, s ∈ U but r + s 6∈ U .

In the case W4, there is no pair of short roots whose sum is a short root, so
the outer product is identically zero.

In the case W7, all such sums derive from the equation 1 + ω + ω = 0 by
taking one or two terms across to the right-hand side. As the characteristic is 3
there is a delicate question about the signs. We define the outer product by

e1 × eω = e−ω

e−1 × e−ω = eω

e−1 × e1 = e0

e1 × e0 = e1, (6)

and images under multiplication of the subscripts by ω and ω. This product may
be identified with the usual octonion product (modulo the centre) on the 7-space
of pure imaginary octonions in characteristic 3. See for example Section 4.5.2 of
[17].

In the case W26, the outer product is equivalent to the product on the trace
0 part of the exceptional Jordan algebra. The products which do not involve any
zero subscripts are of the form er × es = er+s, which may be more symmetrically
written er × es = e−t whenever r, s, t ∈ U satisfy r + s + t = 0. The triples which
occur have already been listed in (4) and can also be read off from Fig. 3.

In the case when one of r, s, t is zero we have to distinguish carefully between
the three different zeroes, 0, ω0 and ω0. The short roots fall into three cosets
Q8, ωQ8 and ωQ8 of the quaternion group Q8 = {±1,±i,±j,±k}. We adopt
the convention that for r in one of these three cosets, r + (−r) = 0 or ω0 or
ω0 respectively. The rest of the values of the outer product are now given by
e0 × eω0 = 0, and er × e−r = e0, eω0, eω0 according as r ∈ Q8, ωQ8, ωQ8, and
e0× er = er when r ∈ ωQ8∪ωQ8, eω0× er = er when r ∈ Q8∪ωQ8, eω0× er = er

when r ∈ Q8 ∪ ωQ8.

2.5 The trilinear form

The inner and outer products together give rise to a skew-symmetric trilinear form
T defined by T (u, v, w) = (u × v).w. It is easy to check that this is cyclically
symmetric on the basis vectors. Indeed, the non-zero values at basis vectors occur
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for T (er, es, et) where r + s+ t = 0. In the case W4, of course, T is the zero form,
as the outer product is zero.

In the case W7, either r, s, t are all non-zero, and we have T (er, eωr, eωr) = 1,
or one of them is zero, and we have T (er, e−r, e0) = 1 for r = 1, ω, ω. (For these
values of r, we adopt the convention that r + (−r) = 0 while (−r) + r = −0.)

In the case W26, because the characteristic is 2, we have T (er, es, et) = 1
whenever r, s, t are non-zero and r + s + t = 0. In the case when t ∈ Z we have
T (er, e−r, e0) = 1 for r ∈ ωQ8 ∪ ωQ8, and T (er, e−r, eω0) = 1 for r ∈ Q8 ∪ ωQ8,
and T (er, e−r, eω0) = 1 for r ∈ Q8 ∪ωQ8. Finally, T (e0, eω0, eω0) = 1. In all other
cases, T (er, es, et) = 0.

2.6 The middle or star product

When r and s are two short roots whose sum is a long root, we have that t =
φ−1(r + s) = φ(r + s)/p is a short root, and we define er ? es = et (with the
condition r = 1, ω, ω in the case W7). We also define er ? e−r + es ? e−s = et+(−t),
with the same conventions as above for the different types of zeroes. For all other
pairs of basis vectors we define er ? es = 0.

Now we extend this product by the rules

u ? v = −v ? u
u ? (v + w) = u ? v + u ? w

u ? (λv) = λσ(u ? v) (7)

where σ−1 = τ is an automorphism of F which squares to the the Frobenius
automorphism λ 7→ λp. This last condition implies that the field F must have
order p2n+1, and then λσ = λpn

and λτ = λpn+1
.

For the purposes of defining the groups, however, we must restrict this product
to pairs of isotropic vectors u, v which satisfy u.v = 0 and u × v = 0. Observe
that since er ? er = 0, the anti-symmetry implies that v ? v = 0 for all isotropic
v. A more formal way to define this product, which perhaps makes it clearer
that it is really well-defined, is to first interpret the dot and cross products as
linear maps π1 : W ∧ W → F and π2 : W ∧ W → W , and then to define
π3 : (ker π1) ∩ (ker π2) → W by interpreting u ? v as π3(u ∧ v) and u ? v + w ? x
as π3(u ∧ v + w ∧ x).

It may be useful to list here the non-trivial star products in each case. In W4

we have

e1 ? ei = e1

e1 ? e−i = ei (8)

and images under negating the subscripts. In W7 we have

e1 ? e−ω = e1

10



eω ? e−1 = eω

eω ? e−ω = eω

e1 ? e−1 + e−ω ? eω = e0

eω ? e−ω + e−1 ? e1 = e0 (9)

In this case when we negate the subscripts we also negate e0, since e−0 = −e0.
In the case of W26 we may use Fig. 4 to read off the products. We take two

short roots r, s, corresponding to black circles in the figure, with the property
that their sum is a long root, corresponding to a white circle. This white circle
is found by usual vector addition. Then we shrink the result by a factor of

√
2

until it becomes a short root t, say: we now have er ? es = et. For example, if
r = 1 and s = k then r + s shrinks down to t = −ωk and we have e1 ? ek = e−ωk .
We give these products here in a simplified notation, so that an entry t in row
r and column s denotes that er ? es = et. The products which are not explicitly
listed can be read off from the fact that if er ? es = et then e−r ? e−s = e−t.

−i −j −k k j i
−1 −1 ω ωk ωj ωi −i
−i ωi ωj ωk ω
−j −j −k

ωj ωi ω −ω −ωi −ωj

ωk −1 ω ωj ωi ωk −k
ωj ωk ωi ωj ω
ωi −i −j

ωi ωj ωk −ωk −ωj −ωi

ω −1 ω ωk ωi ωj −j
ωi ωj ωi ωk ω
ωj −i −k

3 Some automorphisms

3.1 Definitions of the groups

In each case let us define W to be the vector space W endowed with the three
products just defined. As before, we add a subscript to indicate the dimension
when necessary. Then we define an automorphism of W to be a linear map g
which preserves the three products, in the sense that

1. ug.vg = u.v for all u, v ∈ W ;

2. ug × vg = (u× v)g for all u, v ∈ W ; and
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3. ug ? vg = (u ? v)g for all u, v ∈ W which satisfy u.u = u.v = v.v = 0 and
u× v = 0.

We may now define the Suzuki groups to be the automorphism groups of W4,
the small Ree groups to be the automorphism groups of W7, and the large Ree
groups to be the automorphism groups of W26. These definitions work not just
for finite fields, but for any perfect field which has a Tits automorphism.

In this section we shall exhibit some elements of these groups, which will
eventually turn out to be sufficient to generate them. In increasing order of dif-
ficulty these are generators for the Weyl group (that is, the group of coordinate
permutations), the maximal torus (that is, the group of diagonal matrices), and
the root groups (that is, certain groups of lower triangular matrices). The for-
mulae for these matrices also make sense even if F is not perfect, and thereby
give us definitions for Suzuki and Ree groups over arbitrary fields with a Tits
endomorphism.

3.2 The Weyl group

The Weyl group of our root system, of type B2, G2 or F4, is by definition the
group generated by the reflections in the roots. If r is a short root, so that rr = 1,
then reflection in r is the map z 7→ −rzr, while if r is a long root, so that rr = p,
it is the map z 7→ −rzr/p. The twisted Weyl group is the subgroup of the Weyl
group which commutes with φ.

It is easy to see that in the case of B2 the Weyl group is the dihedral group
D8 of order 8, and in the case of G2 it is D12

∼= 2 × S3. In these two cases it is
obvious that the part of the Weyl group which commutes with φ is just the group
of order 2 generated by t 7→ −t. This now acts on W by et 7→ e−t (including
e0 7→ e−0 = −e0 in the case W7), and clearly preserves the forms B and T , as
well as the partial product ?. In both cases this group C2 is transitive on roots
r with a given value of r.φ(r).

In the case F4 the full (untwisted) Weyl group is in fact a group of order
27.32 = 1152 and shape 21+4.(S3 × S3), and the subgroup which commutes with
φ is a dihedral group D16, although we shall not need any of these facts. All we
need is that φ commutes with the dihedral group D16 generated by the maps

ρ1 : z 7→ zi

ρ2 : z 7→ (1 + i)zk(1 + j)/2. (10)

These maps extend to W by defining ρ1 to fix the vectors et with t ∈ Z, while ρ2

swaps e0 with eω0. More explicitly, ρ2 acts by permuting the coordinates as

ρ2 = (0, ω0)(1,−ω)(i,−ωj)(j,−ωi)(k,−ωk)
(−1, ω)(−i, ωj)(−j, ωi)(−k, ωk)
(ωi, ωj)(−ωi,−ωj)(ω,−ω). (11)
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Note: the axes of the fundamental reflections ρ1 and ρ2 of the Weyl group are
marked on the picture, as is a line separating positive and negative roots, and
the direction along which the ordering of the roots is measured.

Figure 5: The F4 root system showing the octagonal symmetry
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Again, it is easy to see that these maps preserve all the forms and products. And
again, the twisted Weyl group is transitive on roots r with a fixed value of r.φ(r).
In Fig. 5 we show the root system with the full octagonal symmetry under the
action of the Weyl group.

3.3 The maximal torus

Consider a diagonal symmetry d : et 7→ λtet. Since this preserves the bilinear form
B it must satisfy λtλ−t = 1 which implies that λ−t = λt

−1 for all short roots t.
Since it preserves the trilinear form T , which has non-zero terms T (er, e−r, er+(−r))
we also get λt = 1 for t ∈ Z. Also T (er, es, et) is non-zero whenever r, s, t are
short roots with r + s + t = 0, so we obtain corresponding equations λrλsλt = 1.
Since the equations r + s + t = 0 are sufficient to define the ambient 2- or 4-
dimensional space in which the root system lies, the corresponding equations are
sufficient to reduce the number of free parameters λr to 2 (in the cases W4 and
W7) or 4 (in the case W26). For example we may take free parameters λr as r
runs over a system of fundamental roots for the system of short roots, say {1, i}
for the system of type A1A1 in the first case, or {1, ω} for the system of type A2

in the second, or {1, i, j, ω} for the system of type D4 in the third.
Finally, to preserve the product ? where er ? es = eφ−1(r+s) it must satisfy the

condition (λrλs)
σ = λφ−1(r+s), that is λrλs = (λφ−1(r+s))

τ . We shall show that this
gives one condition on the two free parameters in the first two cases, and two
conditions on the four free parameters in the last case.

To see that the many different equations given here are consistent, we need
to use the fact that τ 2 = p, that τ 2 is the Frobenius automorphism. Explicitly,
in the case W4 we have λ1λi = λ1

τ , which we can write as λi = λ1
τ−1, which is

equivalent to λ1 = (λi)
τ+1 since (τ −1)(τ +1) = τ 2−1 = 1. Thus it is equivalent

to the other equation λ1λ−i = (λi)
τ .

Similarly, in the case W7, the three equations are

1. λ1λ−ω = λ1
τ , so λω = λ1

1−τ , and using λ1λωλω also λω = λ1
−2+τ ;

2. λωλ−1 = λω
τ , which also implies λω = λ1

−2+τ , and hence λω = λ1
1−τ ; and

3. λωλ−ω = λω
τ , which, again using λ1λωλω = 1, is the inverse of the product

of the first two equations.

Finally in the case W26 we have

λ1λi = λ1
τ

λ1λj = λω
−τ (12)

so we can take the two free parameters to be λ1 and λω, and express all the other
parameters in terms of them. Now every root can be expressed as a.1 + b.φ(1) +
c.ω + d.φ(ω), where a, b, c, d are integers, and the corresponding eigenvalue is
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(λ1)
a+bτ (λω)c+dτ . In Fig. 5 this root is drawn at position (a+ b

√
2)+ (c+d

√
2)ω.

Moreover, adding exponents corresponds to adding vectors in Fig. 5, and and
multiplying exponents by τ corresponds to multiplying vectors by

√
2. Hence the

geometry of the figure makes clear that the eigenvalues are well-defined by this
procedure.

In conclusion, we have

Theorem 1 The group of diagonal automorphisms is a cyclic group of order q−1
in the cases W4 and W7, and the direct product of two such in the case W26.

3.4 A stabilizer theorem

In order to motivate the construction of the root groups, and ultimately to cal-
culate the orders of the automorphism groups, we show that certain subgroups
of the stabilizer of E(−1) are diagonal.

Theorem 2 1. Any automorphism of W4 which fixes E(−1) and E(i) lies in
the diagonal subgroup, which is cyclic of order q − 1.

2. Any automorphism of W7 which fixes E(−1) and E(0) lies in the diagonal
subgroup, which is cyclic of order q − 1.

3. The subgroup of the automorphism group of W26 which fixes E(−1), E(0)
and E(ω0) has order 2(q − 1)2 and is generated by the diagonal elements
and ρ1.

Proof.

1. Any such automorphism must fix E(−i) = E(−1)?E(i) and E(1) = (E(i)?
W )∩E(i)⊥. We have just shown that the group of diagonal automorphisms
is isomorphic to the multiplicative group of the field, so is cyclic of order
q − 1.

2. To prove this, first note that the map x 7→ e0 × x has eigenvalues −1, 0, 1
with multiplicities 3, 1, 3 respectively, and eigenspaces

W− = E(−1,−ω,−ω)
W0 = E(0)
W+ = E(1, ω, ω) (13)

Now we have E(−1) ? W = E(−1, ω), whose intersection with W+ deter-
mines E(ω). Then E(ω) ? W = E(−1, ω), whose intersection with W+

determines E(ω). Next, E(ω) ? W = E(ω,−ω), whose intersection with
W− determines E(−ω); then we have E(−ω) ? W = E(−ω, ω) whose inter-
section with W− determines E(−ω); and finally, E(−ω) ? W = E(1,−ω),
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whose intersection with W+ determines E(1). Therefore all the coordi-
nate 1-spaces are determined, which means that the given automorphism
is diagonal. In this case also we have shown that the group of diagonal
automorphisms is cyclic of order q − 1.

3. Suppose that g is an automorphism of W26 which fixes E(−1), E(0) and
E(ω0). The space E(0, ω0)⊥ is fixed, and is the space spanned by all
e(r) for r ∈ U . On this 24-space, the map v 7→ v × e(0) has kernel
E(±1,±i,±j,±k), which is therefore fixed. Similarly the kernel of the map
v 7→ v× e(ω0) is E(±ω,±ωi,±ωj,±ωk) and the kernel of v 7→ v× e(ω0) is
E(±ω,±ωi,±ωj,±ωk), so both are fixed. For the rest of the proof it will be
useful to refer to Fig. 4 (or Fig. 5) for the calculation of the various spaces
E(r) ? W .

(a) Now the space E(−1) ? W = E(−1,−i, ωj, ωk, ω, ωi) is fixed, and
therefore so are the intersections E(−1,−i), E(ωj, ωk) and E(ω, ωi)
with the spaces calculated above. Now it is easy to see from the
operation table for ? that if v ∈ E(ω, ωi) satisfies v = v ? w for some
w then either v ∈ E(ω) or v ∈ E(ωi). But ρ1 swaps E(ω) with E(ωi)
while fixing E(−1), E(0) and E(ω0), so we may assume that g fixes
E(ω) and E(ωi).

(b) Now calculate

E(ω) ? W = E(−1,−j, ωk, ωi, ω, ωj)
E(ωi) ? W = E(−1, j, ω, ωj, ωi, ωk),

and intersect with E(ωj, ωk) to see that E(ωk) and E(ωj) are fixed.

(c) Now calculate

E(ωk) ? W = E(−1,−k, ωi, ωj, ω, ωk)
E(ωj) ? W = E(−1, k, ω, ωk, ωi, ωj)

and intersect with the fixed spaces already calculated to see that g
fixes E(ωk) and E(ωj), and E(ω) and E(ωi). It then follows that
E(−i) = E(ωj) ? E(ωk) is also fixed.

(d) Now we can calculate

E(ωk) ? W = E(−i, k, ωk,−ωi, ωi,−ωk)
E(ωj) ? W = E(−i,−k,−ω, ωj, ω,−ωj)
E(ωi) ? W = E(−i,−j,−ω, ωk, ω,−ωk)
E(ω) ? W = E(−i, j,−ωi, ωj, ωi,−ωj)

E(−i) ? W = E(−1, i, ω, ωi, ωj, ωk)

and the various intersections give the fixed 1-spaces E(k), E(−j),
E(−ω), E(−ωi), E(−ωj) and E(−ωk).
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(e) All the remaining coordinates can be calculated with the outer and
star products, as follows:

E(j) = E(ωk)× E(−ωi)
E(−k) = E(ωi)× E(−ωj)

E(i) = E(−ωj) ? E(−ωk)
E(−ω) = E(i)× E(−ωi)

E(−ωk) = E(i)× E(−ωj)
E(−ωj) = E(i)× E(−ωk)
E(−ωi) = E(i)× E(−ω)

E(1) = E(−ωj)× E(−ωj)

Hence g is diagonal. We have already shown that the subgroup of diagonal
elements is the torus D ∼= Cq−1 × Cq−1, so this concludes the proof.

ut

3.5 Root elements on W4

The simplest non-monomial symmetries are the so-called ‘root elements’. There
is one type of root element for each orbit of the Weyl group on the roots. In
the case of W4, there are two types of roots, so two types of root elements. In
fact, the root elements corresponding to the roots ±i square to root elements
corresponding to roots ±1, and the corresponding ‘root subgroups’ are special
groups of order q2.

In order to construct such a root subgroup, we shall prove that for any α, β ∈
F there is a unique symmetry fα,β which fixes e−1 and maps ei 7→ ei + αe−i +
βe−1. Uniqueness follows immediately from the stabilizer theorem in the previous
section.

To prove existence, it is sufficient to consider the case α = 1, β = 0, since
the element f1,0 together with its conjugates by the maximal torus will then
generate the whole root subgroup. The proof of the stabilizer theorem gives us
an algorithm for constructing this element. Write e′t for the image of et under
f1,0. Thus e′i = ei + e−i, and therefore e′−i = e′−1 ? e′i = e−i + e−1. Then

e′i ? W = (ei + e−i) ? 〈e−1, e1〉
= 〈e1 + ei, e−i + e−1〉, (14)

and using e′1.e
′
−i = 0 we have e′1 = e1 + ei + e−i + e−1. In other words f1,0 is

represented with respect to the ordered basis {e−1, e−i, ei, e1} by the matrix
1 0 0 0
1 1 0 0
0 1 1 0
1 1 1 1

 .
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It is a triviality to check that this element preserves the inner product. We
have already checked the product e′−1 ? e′i, and the case e′−1 ? e′−i is trivial, which
leaves the three cases:

e′−i ? e′1 = (e−i + e−1) ? (e1 + ei + e−i + e−1)
= ei + e−1 + e−i + e−1 = e′i

e′1 ? e′i = (e1 + ei + e−i + e−1) ? (ei + e−i)
= e1 + ei + e−i + e−1 = e′1

e′1 ? e′−1 + e′i ? e′−i = (e1 + ei + e−i + e−1) ? e−1 + (ei + e−i) ? (e−i + e−1)
= e−i + e−1 + e−i + e−1 = 0 (15)

as required. Notice that in this last case the individual terms e′1?e
′
−1 and e′i?e

′
−i are

not zero, which is why we had to restrict the star product to pairs of perpendicular
vectors.

3.6 Root elements on W7

In the case W7, there are three types of roots and therefore three types of root
elements. In fact, the root elements corresponding to −1, ω and ω together
generate a root subgroup of order q3. In all cases except q = 3, it is sufficient to
construct the root element corresponding to ω.

Indeed, a similar calculation to the case W4 shows that for each α, β, γ ∈ F
there is a unique symmetry fα,β,γ which fixes e−1 and maps

e0 7→ e0 + αeω + βeω + γe−1.

Uniqueness follows immediately from the stabilizer theorem above.
To prove existence we apply the algorithm suggested by the proof of the

stabilizer theorem to the case α = 1, β = γ = 0. Write e′t for the image of et

under this map, so that e′−1 = e−1 and e′0 = e0 + eω. We first find the eigenspaces
of the map x 7→ (e0 + eω)× x to be

W ′
− = 〈e−1, e−ω, e−ω − e0 + eω〉

W ′
0 = 〈e0 + eω〉

W ′
+ = 〈eω, e1 − e−ω, e−1 + eω〉 (16)

Therefore e′ω = eω + e−1, since it lies in e−1 ? W = 〈e−1, eω〉 and in W ′
+. Now we

calculate v?W for each v in turn: in each case we first calculate the 3-dimensional
kernel of the map x 7→ x× v, and then calculate v ? x for x a basis vector other
than v for this kernel. Then the next vector is determined by the fact that its
leading coefficient is 1 and it lies both in this space and in one of W ′

− or W ′
+.

First we have

e′ω ? W = (eω + e−1) ? 〈e−1, e−ω − e0 + eω〉
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= 〈e−1, eω − eω〉 (17)

so e′ω = eω − eω − e−1. Next we calculate

e′ω ? W = (eω − eω − e−1) ? 〈e−1, e−ω + e−ω − e0 + eω〉
= 〈eω + e−1, e−ω − e0 + eω − eω〉 (18)

and deduce that e′−ω = e−ω − e0 + eω + e−1. Then we have

e′−ω ? W = (e−ω − e0 + eω + e−1) ? 〈eω + e−1, e1 − e−ω − eω〉
= 〈eω − eω − e−1, e−ω + e−ω − e0 + eω〉 (19)

and therefore e′−ω = e−ω + e−ω − e0 + eω − e−1, and finally by using the inner
products we obtain e′1 = e1 − e−ω − eω − eω − e−1.

To summarise, we have shown that f1,0,0 is represented with respect to the
ordered basis {e−1, eω, eω, e0, e−ω, e−ω, e1} by the matrix

1 0 0 0 0 0 0
1 1 0 0 0 0 0
−1 −1 1 0 0 0 0
0 0 1 1 0 0 0
1 0 1 −1 1 0 0
−1 0 1 −1 1 1 0
−1 −1 −1 0 0 −1 1


.

We must now check that this element preserves the algebraic structure. Check-
ing the inner product is a triviality: the only non-obvious cases to check are e′ω.e′1,
e′ω.e′1 and e′ω.eω. The fact that the basis vectors e′t lie in the correct eigenspaces
W ′

+, W ′
0 or W ′

− means that the cross products with e′0 are correct. The cyclic
symmetry of the trilinear form implies that all values of the trilinear form at
triples of basis vectors involving e′0 are correct. All other triples involve either
two vectors from W ′

− or two from W ′
+, so it is sufficient to check the products of

such pairs. We calculate

e′ω × e′ω = (eω − eω − e−1)× (eω + e−1)
= eω × (eω + e−1) = e−1

e′ω × e′1 = (eω + e−1)× (e1 − e−ω − eω − eω − e−1)
= eω × (e1 − eω − e−ω) + e−1 × (e1 − e−ω)
= e−ω + e−1 + eω − e0 = e′−ω

e′1 × e′ω = (e1 − e−ω − eω − eω − e−1)× (eω − eω − e−1)
= e−ω + e−ω − e−1 + eω − e0 = e′−ω

e′−1 × e′−ω = e−1 × (e−ω − e0 + eω + e−1)
= eω + e−1 = e′ω

e′−ω × e′−1 = (e−ω + e−ω − e0 + eω − e−1)× e−1

= eω − eω − e−1 = e′ω
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e′−ω × e′−ω = (e−ω − e0 + eω + e−1)× (e−ω + e−ω − e0 + eω − e−1)
= (e−ω − e0 + eω + e−1)× (e−ω + e−1)
= e1 − eω − e−ω − e−1 − eω = e′1

which concludes the proof that the cross product is invariant. Finally we need
to prove that the star product is invariant. We need to check all the fourteen
defining equations. This is similarly straightforward, and is left as an exercise for
the reader.

In the case when q > 3, this element and its conjugates by the maximal torus
are sufficient to generate the whole root subgroup, of order q3. In the case q = 3
we need to calculate the case β = 1, α = γ = 0 as well. For completeness we give
the root elements for the roots ω and −1 here:

1
0 1
−1 0 1
0 1 0 1
1 0 0 0 1
0 1 0 −1 0 1
1 0 −1 0 1 0 1


,



1
0 1
0 0 1
1 0 0 1
0 −1 0 0 1
1 0 1 0 0 1
1 −1 0 −1 0 0 1


.

3.7 Root elements on W26

Again there are three orbits of the Weyl group on roots, namely the inner, middle
and outer roots. We shall show that it is only necessary to prove existence of
the inner root elements, as the others can be constructed from these. We shall
first construct the root element corresponding to the inner root −i. This is
defined as the unique unitriangular matrix which fixes e(−1) and e(0) and maps
e(ω0) 7→ e(ω0) + e(−i). As before, uniqueness follows immediately from our
stabilizer theorem.

Moreover, the proof of this theorem tells us how to calculate the root element,
which I shall call x(−i). It acts as

1 0 0 0
1 1 0 0
1 1 1 0
1 0 1 1


on each of the four 4-spaces E(ω, ωi,−ω,−ωi), E(ωi, ω,−ωi,−ω), E(ωj, ωk,−ωj,−ωk),
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E(ωk, ωj,−ωk,−ωj), and as 
1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
1 1 1 1 0 0
1 1 0 1 1 0
0 0 1 0 0 1


on E(0,−1,−i, i, 1, ω0), as well as the identity on E(±j,±k). For the remainder
of this section, write e′(r) for the image of e(r) under x(−i).

We must now show that this element x(−i) preserves the three products.
Note first that the blocks of the action are given by the horizontal lines in Fig. 3.
Moreover, x(−i) is centralized by the element ρ1 of the Weyl group, which reflects
the picture in the horizontal axis. This involution swaps the 4×4 blocks in pairs,
in such a way that the given bases are dual to each other with respect to the
inner product B. Thus to show that x(−i) preserves B it suffices to check the
fixed block E(0,−1,−i, i, 1, ω0). This is a small and easy calculation.

Next consider the cross product, and write e′(r) for the image of e(r) under
x(−i). Consider first the products among the 16 coordinates which lie in the four
blocks of size 4: these are all the coordinates of the form e(r) for r ∈ ωQ8 ∪ωQ8.
Let W16 denote the space spanned by these 16 coordinate vectors, and let W10

denote the space spanned by the other ten. All the products in W16 are zero except
when the roots lie symmetrically about the vertical axis (when the product can
be e(±j of e(±k)), or about the horizontal axis (giving e(±1) or e(±i)), or both
(giving e(ω0) or e(ω0)).

First consider the case when r, s are not symmetric about the horizontal axis.
Depending on which rows r and s lie in, the products of terms in those rows may
be always zero (in which case the result is trivial), or may involve just one of
e(j), e(k), e(−k) or e(−j) (in which case we need to check the coefficient of this
term). The case when r lies in the first row and s lies in the second is typical, so
consider this case. If r and s lie in the same column, then all the cross terms in
the expansion of e′(r)× e′(s) cancel out, and the diagonal terms are all zero, so
e′(r)× e′(s) = 0 = e(r)× e(s) as required. If r and s lie symmetrically about the
vertical axis, then e(r)× e(s) = e(j), and all the trailing terms in e′(r)× e′(s) are
zero. The only remaining cases which could be non-zero are r = −ω and s = −ωj

or ωk. In both these cases we check that e′(r) × e′(s) picks up two terms e(j),
which cancel out.

Now consider the case when r and s are symmetrically placed about the
horizontal axis. We may suppose that r lies in the second row and s lies in the
third row, as the case of the first and fourth rows is the same. If r and s lie in the
same column, then again all the cross terms in e′(r) × e′(s) cancel out, and the
diagonal terms are all zero, so the result follows. This leaves six cases to consider
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individually:

e′(ωj)× e′(ωj) = e(ωj)× (e(ωk) + e(ωj))
= e(−1)

e′(ωj)× e′(−ωk) = e(ωj)× (e(ωk) + e(ωj) + e(−ωk))
= e(−i) + e(−1) = e′(−i)

e′(ωj)× e′(−ωj) = e(ωj)× (e(ωk) + e(−ωk) + e(−ωj))
= e(ω0) + e(−i) = e′(ω0)

e′(ωk)× e′(−ωk) = (e(ωj) + e(ωk))× (e(ωk) + e(ωj) + e(−ωk))
= e(ω0) + e(−i) = e′(ω0)

e′(ωk)× e′(−ωj) = (e(ωj) + e(ωk))× (e(ωk) + e(−ωk) + e(−ωj))
= e(i) + e(ω0) + e(ω0) + e(−1) + e(−i) = e′(i)

e′(−ωj)× e′(−ωj) = (e(ωj) + e(ωk) + e(−ωj))× (e(ωk) + e(−ωk) + e(−ωj))
= e(1) + e(i) + e(0) + e(ω0) + e(−1) = e′(1). (20)

We consider next the products of u ∈ W16 with v ∈ W10. Since both W16

and W10 are invariant under the action of x(−i), and since the products of the
coordinate vectors in W10 with those in W16 lie in W16, we know that the only
values of the trilinear form which we need to check are T (u, v, w) where u ∈ W10

and v, w ∈ W16. But by the symmetry of the trilinear form, these have already
been checked.

To conclude the proof of invariance of the cross product, we only need to
consider the case u× v where u, v ∈ W10. But this product is zero except for the
product by e(ω0), which acts as an identity on the 8-space E(±1,±i,±j,±k), so
this case is trivial.

Now we need to prove invariance of the star product under x(−i). Again we
consider first the product on W16. We have three main cases to consider: the two
vectors lie in the same row, or two rows equidistant from the horizontal axis, or
two other rows. We do one of each case, as the others are identical. First suppose
both vectors lie in the first row, so that the products are e(ωi) ? e(−ω) = e(j) =
e(ω) ? e(−ωi) and otherwise zero. Therefore the only cases we need to calculate
are

e′(−ω) ? e′(−ωi) = (e(−ω) + e(−ωi) + e(ωi)) ? (e(−ωi) + e(ω) + e(ωi))
= e(j) + e(j) = 0

e′(−ω) ? e′(ω) = (e(−ω) + e(−ωi) + e(ωi)) ? (e(ω) + e(ωi))
= e(j) + e(j) = 0. (21)

Next suppose the first vector lies in the first row, and the second in the second.
Now the non-zero terms come in four pairs:

1. e(ωi) ? e(ωk) = e(ωj) ? e(ω) = e(ωi);

2. e(ωi) ? e(−ωj) = e(ωj) ? e(−ωi) = e(ω);
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3. e(−ω) ? e(ωk) = e(ω) ? e(−ωk) = e(−ωi); and

4. e(−ω) ? e(−ωj) = e(−ωi) ? e(−ωk) = e(−ω).

If our two vectors are in the same column, then the cross terms cancel out, and
the rest are zero. If our two vectors are equidistant from the vertical axis, then
their cross-product is e(j), so rather than a single term e(r) ? e(s) we have to
consider a pair of such terms: but then every term in the product cancels out.
This leaves just two non-trivial cases to calculate:

e′(ω) ? e′(−ωk) = (e(ω) + e(ωi)) ? (e(−ωk) + e(−ωj) + e(ωj))
= e(−ωi) + e(ωi) + e(ω) = e′(−ωi),

e′(−ωi) ? e′(−ωk) = (e(−ωi) + e(ω) + e(ωi)) ? (e(−ωk) + e(−ωj) + e(ωj))
= e(−ω) + e(−ωi) + e(ωi) = e′(−ω). (22)

Now suppose the first vector lies in the first row, and the second in the fourth
row. In this case, most of the cross products are non-zero, which means we have
to consider the star products in pairs, and then it is easy to see that all the terms
cancel out. There are also two cases e′(ω) ? e′(−ω) + e′(ωi) ? e′(−ωi) and the
same with ω replaced by ω, in which again all terms cancel out except the term
e(ω) ? e(−ω) + e(ωi) ? e(−ωi) = e(0). The only non-trivial cases left are

1. e′(ω) ? e′(ωi) = e(−i) + e(−1) = e′(−i),

2. e′(−ω) ? e′(−ωi) = e(i) + e(0) + e(−i) + e(−1) = e′(i), and

3. e′(−ω) ? e′(−ωi) = e(1) + e(i) + e(0) + e(−1) = e′(1)

in which the calculations are again easy because all the cross-terms cancel out.
This deals with the star product on W16. Now the product of u ∈ W16 with

v ∈ W10 is zero everywhere, so this just leaves the product on W10. Products
among e(±j) and e(±k) are trivially fixed by x(−i), and products between these
and the rest simply map the row −1,−i, i, 1 to one of the rows of basis vectors
from W16. Since the action on E(±1,±i), modulo E(0), is the same as on each
of these rows, these instances of the product are also preserved. This just leaves
the product on the horizontal axis, which is easy to check.

Finally we note that the other root elements are obtained by (a) using the
Weyl group to get the elements corresponding to inner roots, (b) squaring these to
get the elements corresponding to outer roots, and (c) computing the commutator
[x(−j), x(ωi]x(−1) = x(ωk) to get the elements corresponding to the middle
roots.

The result of this calculation is that x(ω) acts as

(
1 0
1 1

)
on each of the

six 2-spaces E(−1, ω), E(−ω, 1), E(k,−ωk), E(ωk,−k), E(ωj, ωi), E(−ωi,−ωj),

as the identity on E(±ωk), and as

(
1 0
1 1

)
⊗

(
1 0
1 1

)
on each of the three 4-

spaces E(j,−ωj, i,−ωi), E(ωi,−i, ωj,−j), E(ω, 0, ω0,−ω). Notice that the roots
for each of these spaces are aligned on lines parallel to the line ω/0/−ω in Fig. 5.
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4 Combinatorial consequences

4.1 Geometry

The Suzuki ovoid in W4, the Ree–Tits unital in W7, and the generalized octagon
in W26, may all be defined in the same way. Define a point to be a 1-dimensional
subspace 〈v〉 of W with the property that v = v?w for some w. Define two points
〈v〉 and 〈w〉 to be adjacent if v = w ? x for some x, and opposite if B(v, w) 6= 0.

Let 〈v〉 be a point. Then by definition v is isotropic, so without loss of
generality the leading term of v is er for some r ∈ U . The condition v = v ? w
implies that er has the property that r is a short root and φ(r) is a long root
which is the sum of r and another short root. This means that the inner product
of r with φ(r) is 1, 3/2 or 1 respectively in the three cases, in other words r is an
outer root. These have already been classified, and in the case of G and E they
are just r = ±1. In the case H they are r = ±1,±j,±ω,±ωi.

4.2 Classification of points

We shall show that every point except E(−1) is in the same orbit under the group
as a point with a lower leading term. It follows that every point is in the same
orbit as E(−1).

In the case W4, let 〈v〉 be a point with leading term e1. Applying elements
of the root group as necessary to remove the terms in ei and e−i from v, we may
assume that v = e1 + λe−1, and that w has leading term ei. Since e1 ? e−i = ei,
it follows that w has no term in e−i. Since B(v, w) = 0, it follows that w has no
term in e−1. Finally, since e−1 ? ei = e−i, it follows that λ = 0. Therefore v = e1,
which is mapped to e−1 by an element of the Weyl group.

As an immediate corollary, we have that the number of points is q2 + 1, and
the group acts 2-transitively on the points. Since 〈e1〉 is opposite to 〈e−1〉, it
follows that every pair of points is opposite, and no pair is adjacent.

In the case of W7, let 〈v〉 be a point with leading term e1. Applying elements
of the root group as necessary, we may assume that v has no term in e−ω, e−ω or
e0. Since v is isotropic, it has no term in e−1. Therefore the element et 7→ e−t of
the Weyl group maps v to a vector with no term in e1. Since this is a point, its
leading term is e−1, so v must have been e1.

Again, it follows immediately that the number of points is q3 + 1, and that
the group acts 2-transitively on the points. Every pair of points is opposite, and
no pair is adjacent.

In the case of W26, the possible leading terms are, in order

e(−1), e(ω), e(ωi), e(−j), e(j), e(−ωi), e(−ω), e(1).

Now ρ1 acts on these vectors as the permutation (ω, ωi)(−j, j)(−ωi,−ω), and
ρ2 acts as (−1, ω)(ωi,−j)(j,−ωi)(−ω, 1). In each case, therefore, one of the
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elements ρ1 or ρ2 takes the given leading term to the next one down in the
sequence, while not affecting the higher terms in the sequence. Therefore, all
that remains is to prove that suitable root elements can be used to clean out the
term in v corresponding to the next term down in this sequence.

For example, if v has leading term e(1), we can clean out the term in e(−ω)
from v by using a conjugate of x(ω) by a suitable element of the torus. Then ρ2

conjugates the resulting vector to one with a lower leading term, namely e(−ω).
The same argument deals with the case when the leading term is e(ω).

The other cases are only slightly more difficult. If the leading term is e(−ω)
or e(ωi) then we have the standard generators of the Suzuki group acting on
the appropriate 4-space E(−ωi,−ωj,−ωk,−ω) or E(ω, ωk, ωj, ωi), with the root
element e(−k) acting. As the argument is the same in both cases we give the
latter. We may use the root group to clear out the terms in e(ωj) and e(ωk).
Now the leading term of w is e(ωk), and e(ωk)?e(ω) = e(ωk), so the term in e(ω)
in v must be zero, as required. The same argument deals with the case when the
leading term is e(j), with the Suzuki group acting on the 4-space E(−j,−k, k, j)
modulo E(0).

The remaining two cases are e(−j) and e(−ωi). In these two cases we use x(ω)
again, acting on the 4-space E(ωi,−i, ωj,−j) or E(j,−ωj, i,−ωi) as appropriate.
Consider the first case, as the other is identical. The leading term of v is e(−j)
and the leading term of w is e(−k). We use the root group to remove the term
in e(ωj) from v. But now e(−k) ? e(−i) = e(ωj), so the term in e(−i) must
also be zero. Finally consider the term in e(ωi). We must have v × w = 0, but
e(−k)× e(ω) = e(ωj), which cannot be cancelled out by any lower term of v×w,
so the term in e(ωi) in v is also zero, as required.

Just as in W4 and W7, this argument also allows us to count the points. The
root groups used to clear out the next term are alternately of order q and q2.
Thus as we go up the sequence, the number of points with given leading term is
multiplied alternately by q and then by q2. Therefore the total number of points
is

1 + q + q3 + q4 + q6 + q7 + q9 + q10 = (1 + q)(1 + q3)(1 + q6).

This time, each point is opposite to precisely q10 other points. Moreover, the
group is transitive on pairs of opposite points. Each point is adjacent to exactly
q + q3 points. Moreover, if 〈v〉 and 〈w〉 are adjacent, then for every λ 6= 0 the
1-space 〈v + λw〉 is a point adjacent to both of them. Thus we obtain a set of
q + 1 mutually adjacent points, which is called a line.

4.3 The group order

Since in each case the group acts transitively on pairs of opposite points, it
suffices, in order to calculate the group order, to calculate the stabilizer of any
pair of opposite points, say 〈e1〉 and 〈e−1〉.
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In W4, if these two points are fixed, then so is 〈e1〉 ? W = 〈e1, ei〉 and its
intersection with 〈e−1〉⊥, which is 〈ei〉. Similarly, 〈e−i〉 is fixed. Therefore the
stabilizer consists of diagonal matrices, so has order q − 1. It follows that the
Suzuki group 2B2(q) has order (q2 + 1)q2(q − 1).

Similarly, in W7, we have (e1?W )∩e−1
⊥ = 〈e−ω〉 and then (e−ω ?W )∩e−1

⊥ =
〈e−ω〉, so these 1-spaces are fixed. By the symmetry et 7→ e−t, all the coordinate
1-spaces 〈et〉 for t 6= 0 are fixed. Then e0 is the perpendicular space of the 6-space
these span, so is also fixed. Therefore the stabilizer consists of diagonal matrices,
so again has order q − 1. It follows that the small Ree groups 2G2(q) have order
(q3 + 1)q3(q − 1).

The calculation in W26 is a little more difficult, as the stabilizer of a pair of
opposite points is not diagonal in this case. Indeed, if we fix the opposite points
E(−1) and E(1) we see that the root element x(−k) and the Weyl group element
ρ1 are in the stabilizer. Moreover, these elements together with the torus act on
the 4-space E(ω, ωk, ωj, ωi) as the generators of the Suzuki group do on W4. In
particular, the group is transitive on points which are adjacent to E(−1) and
not opposite to E(1). Moreover, the root subgroup which fixes the point E(ω) is
transitive on those points which are opposite to it and not to E(−1).

Thus we only have to show that the simultaneous stabilizer of the four points
E(±1) and E(±ω) is diagonal. This is straightforward. Indeed, e(ω)× e(−ω) =
e(ω0) is fixed, and then the rest of the argument is already given in the section
on root elements.

It follows that the order of the large Ree group is

(1 + q)(1 + q3)(1 + q6)q10(1 + q2)q2(q − 1)2.

5 Description of the groups

5.1 Some geometric subgroups

In the Suzuki groups we have shown that the point stabilizer is a group of lower
triangular matrices, of order q2(q − 1), generated by an inner root element and
the maximal torus. Since the group acts 2-transitively on the q2 + 1 points, the
stabilizer of a pair of points is a group of order 2(q − 1), which is generated by
the torus and the Weyl group, and is easily seen to be dihedral.

In the small Ree groups 2G2(q), the stabilizer of a point has shape Eq.Eq.Eq.Cq−1,
and consists of lower triangular matrices. The stabilizer of a pair of points
is a dihedral group D2(q−1), just as in the case of the Suzuki groups. Ob-
serve that the stabilizer of the pair of points E(−1), E(1) fixes the product
E(−1)×E(1) = E(0). We have already shown that this group D2(q−1)

∼= 2×Dq−1

is the stabilizer of E(0). It follows immediately that the group acts transitively
on the q6 + q3 1-spaces which are in the same Ω7(q)-orbit as E(0). We shall show
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below that the stabilizer 2×Dq−1 is not maximal, since it is properly contained
in the involution centralizer.

Since q ≡ 3 mod 8, the formula for the group order shows that the Sylow
2-subgroup has order 8, coming from a factor of 2 in q − 1 and a factor of 4 in
q3 + 1.

Now the centralizer of the involution which negates e(±1) and e(±ω) and
fixes e(±ω) and e(0) contains the cyclic group of order q − 1 consisting of the
diagonal elements, together with the Weyl group and the root element defined by
e(0) 7→ e(0) + e(ω). These together generate at least Ω3(q) acting on the 3-space
E(0,±ω). But an easy counting argument shows that the involution centralizer
has order at most q(q2 − 1) = 2|Ω3(q)|. Moreover, since we already know the
involution centralizer contains C2 × C2, it cannot be SL2(q), and therefore it is
2× Ω3(q) ∼= 2× PSL2(q).

It follows that the Sylow 2-subgroup is elementary abelian, and the part of
its normalizer which lies in the involution centralizer is 2 × A4. Now there is a
unique class of involutions in the point stabilizer, and it is easy to see that the
diagonal involution fixes the point E(−1), while the involution in the Weyl group
fixes the point 〈e1 − e−ω − e0 + eω − e−1〉, so these two involutions are conjugate.
Hence the Sylow 2-normalizer has shape 23:7:3.

Now the involution centralizer in PSL2(q), for q ≡ 3 mod 8, is a dihedral
group Dq+1

∼= 2×D(q+1)/2, since (q + 1)/4 is odd. It follows that the normalizer
of a 22 is (22 ×D(q+1)/2):3.

We turn now to the case of 2F4(q). The Borel subgroup (i.e. the subgroup
of lower unitriangular matrices) has order q12.(q − 1)2, and is generated by the
torus together with the root subgroups corresponding to the negative roots (that
is, the roots whose first non-zero coordinate is negative).

Adjoining to this the Weyl group element ρ1 gives the stabilizer of the point
E(−1), which has shape q.q4.q.q4.(Cq−1 × 2B2(q)).

Adjoining instead the Weyl group element ρ2 gives the stabilizer of the line
E(−1, ω), which has shape [q11]SL2(q).

We saw that the stabilizer of two opposite points has shape Cq−1 × 2B2(q).
Taking the points E(−1) and E(1), this group may be generated by the torus D
together with the root elements x(k) and x(−k) corresponding to the roots ±k.
Now if we conjugate these root elements by ρ2ρ1ρ2 we obtain the root elements
corresponding to ±i. It is easy to show that these new root elements commute
with the original ones. Therefore we obtain a group 2B2(q) × 2B2(q) which is
normalized by ρ2ρ1ρ2 to give a subgroup 2B2(q) o 2.

5.2 Simplicity when q > p

It is well-known, and easy to prove, that if a primitive permutation group has
soluble point stabilizer, then it is simple if it is perfect. For if K is any proper
non-trivial normal subgroup of such a group G, and H is a point stabilizer in G,
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then G = HK by maximality, whence G/K = HK/K ∼= H/(H ∩K) is soluble,
contradicting the assumption that G is perfect.

Now in the Suzuki group 2B2(q) with q > 2, the point stabilizer is generated
by conjugates of the diagonal elements, of order q − 1. Hence the Suzuki group
itself is generated by conjugates of these elements. Since these elements lie in the
dihedral group D2(q−1), and q − 1 is odd, they are commutators, and therefore
the Suzuki group is perfect. Hence it is simple, for q > 2.

Similarly in the small Ree group 2G2(q) with q > 3, the point stabilizer
is generated by conjugates of the diagonal elements of order q − 1. Now all
involutions are commutators, since they lie in 23:7:3, and the elements of order
(q − 1)/2 are commutators since they lie in a dihedral group Dq−1 of twice odd
order. Hence 2G2(q) is perfect, and therefore simple, for q > 3.

In the large Ree group 2F4(q) with q > 2, the point stabilizer is again generated
by conjugates of the diagonal elements of order q − 1. Moreover, the normalizer
of this torus has shape Cq−1

2:D16, and therefore these diagonal elements lie in
the derived subgroup. Hence the large Ree group is perfect. Moreover, the
whole torus Cq−1

2 is generated by conjugates of any single non-trivial element.
Hence the Ree group is generated by conjugates of the normal soluble subgroup
[q10].Cq−1 of the point stabilizer. It only remains to show that the group acts
primitively on the points, and then we apply Iwasawa’s Lemma to deduce that
2F4(q) is simple whenever q > 2. Now the point stabilizer has orbits of lengths
1, q + q3, q4 + q6, q7 + q9 and q10. For each of the non-trivial suborbits, there
is an element of the Weyl group swapping the fixed point with a point in that
suborbit. In two of the four cases, this element fuses all suborbits. In the other
two, we obtain two orbits, of lengths 1 + q4 + q6 + q10 and q + q3 + q7 + q9.
Again, the putative blocks are more than half the size of the whole orbit, so this
is impossible, and therefore the group is primitive, as required.

5.3 The case q = p

First consider the Suzuki group 2B2(2). We have shown that this is a 2-transitive
group of order 20 acting on a set of 5 points. Therefore it is the Frobenius group of
this order, and may be generated by the permutations (1, 2, 3, 4, 5) and (2, 3, 5, 4).

Next consider the small Ree group 2G2(3). We have shown that this is a 2-
transitive group of order 28.27.2 = 1512 acting on a set of 28 points. We have also
shown that the Sylow 2-subgroup is elementary abelian of order 8, and has nor-
malizer 23:7:3 of order 168. Therefore 2G2(3) has a transitive action on the 9 Sy-
low 2-subgroups. Indeed, Sylow’s theorems imply that this action is 3-transitive
and faithful. Hence 2G2(3) embeds in S9 and is easily seen to be isomorphic
to PSL2(8):3. To prove this, we may label the nine points ∗,∞, 0, 1, 2, 3, 4, 5, 6
and generate the point stabilizer with the permutations (∞, 0)(1, 3)(2, 6)(4, 5),
(0, 1, 2, 3, 4, 5, 6) and (1, 2, 4)(3, 6, 5). Now the stabilizer of a pair of points con-
tains 7:3 to index 2, and since the involutions in 2G2(3) are all conjugate, the
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extra element may be taken to be (∗,∞)(1, 6)(2, 5)(3, 4). Relabelling the points
by the more usual notation for the projective line of order 8, that is ∞ for ∗,
0 for ∞, and ηt for t = 0, 1, 2, 3, 4, 5, 6, where η3 + η + 1 = 0, our generators
become the elements z 7→ z + 1, z 7→ ηz, z 7→ z2 and z 7→ z−1 which generate
the full automorphism group of the projective line, that is PSL2(8):3. Since the
latter group also has order 1512, we obtain the isomorphism 2G2(3) ∼= PSL2(8):3
as required.

Finally consider the large Ree group 2F4(2). It turns out that this group
is not simple, but has a subgroup of index 2, known as the Tits group. This
can be proved by an application of the transfer map to the Sylow 2-subgroup
(Borel subgroup) or to one of the maximal 2-local subgroups (maximal parabolic
subgroups) already constructed. For example, consider the stabilizer of the point
E(−1). Since this is the same as the centralizer of x(−1), which is the square of
x(−i), it is straightforward to calculate the centralizer of x(−i), and we find that
it has shape 4× 24.5.4. Moreover, we see at least three conjugacy classes of inner
root elements in the point stabilizer, namely the classes containing x(−i), x(ωj)
and x(−k). Conversely, the root element x(−i) fixes exactly 31 points. To prove
this, note first that the leading term of any fixed point must be one of e(−1),
e(ω), e(ωi), e(−j) or e(j) . Now there is just point with leading term e(−1),
two with leading term e(ω) and eight with leading term (eωj). The last two are
fused into a single orbit of length 10 under the centralizer of x(−i). Similarly,
this centralizer maps the points with leading term e(j) to those with leading term
e(−j), so it suffices to consider the latter. In total there are 16 such points, and
precisely four of these are fixed by x(−i), namely the images of e(−j) under the
group generated by x(ωi) and x(ω). In particular, there are exactly three orbits
of the centralizer of the inner root group x(−i) on the points fixed by x(−i), so
there are exactly three conjugacy classes in the point stabilizer which consist of
conjugates in 2F4(2) of x(−i). But we have already exhibited three, so there are
no more.

Now it is not difficult to see that the point stabilizer is generated by the inner
root groups it contains. I claim that the subgroup generated by products of an
even number of inner root elements has index 2. To prove this, we first calculate
some commutators to show that the subgroup generated by the root groups for the
roots ω, ωi, ωj, ωk,−1, ωi, ω and the products x(−i)x(ωj), x(−i)x(ωk) is normal
in the point stabilizer. (Actually we only need to calculate the commutators of
x(ω) and x(−i)x(ωk) with x(−k) and then the rest follow.) Now extend this
normal subgroup by ρ1 and x(−i)x(−k), which generate a group isomorphic to
2B2(2) ∼= 5.4. This proves the claim.

Now we apply transfer. Specifically, (37.4) in [1] shows that the inner root
elements lie outside 2F4(2)′. (It may be objected that this is not an elementary
argument, but in fact it only relies on the previous two pages of [1], which in
this instance is elementary and does not rely on any earlier parts of the book.)
Obviously therefore the subgroup generated by products of two inner root ele-
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ments has index exactly 2 in 2F4(2). This subgroup is called the Tits group. We
shall show that the Tits group is simple, whence it is equal to the derived group
2F4(2)

′.
The root elements corresponding to inner roots lie outside the subgroup. The

point stabilizer in this subgroup is soluble, and it is easy to see that the action on
the 1+20+80+640+1024 = 1755 points is still primitive: for the only possibility
would be that some of the given orbits of 2F4(2) split into two orbits of equal size
for the subgroup, but then simple arithmetic rules out any possiblility for a block
size. The structure of the point stabilizer as 2.24.24.5.4 shows that a subgroup
of index 4 thereof is in the derived group, and the rest of the group is generated
by x(−i)x(−k), which is conjugate to x(ωk)x(ωj), which lies inside the derived
group also. Hence the Tits group is perfect, and therefore simple.

5.4 Maximal subgroups

We have shown that the point stabilizer in 2B2(q) is a (maximal) subgroup of
order q2(q − 1). It consists of lower triangular matrices, so is a soluble group of
shape Eq.Eq.Cq−1, where Eq denotes an elementary abelian group of order q. We
have also shown that the stabilizer of a pair of points is D2(q−1). This subgroup
also turns out to be maximal.

To see the other maximal subgroups, it is useful to consider the exterior square
of W4. This is a 6-dimensional space, on which the group acts fixing the vector
e1 ∧ e−1 + ei ∧ e−i. Factoring by the 1-space spanned by this vector, we obtain a
5-dimensional space on which the group acts. This contains an invariant 4-space,
spanned by e±1∧e±i, on which the group acts as the Frobenius twist of its action
on W4 itself. Now the q4 1-spaces which lie outside this 4-space fall into two orbits
under the action of the 5-dimensional orthogonal group, of lengths (q4 ± q2)/2.
It turns out that the orbit of length (q4 − q2)/2 splits into two under the action
of the Suzuki group. These orbits have lengths q2(q − 1)(q ±

√
2q + 1), and the

stabilizer of a vector in one of these orbits has order 4(q±
√

2q +1). In each case
the group is a Frobenius group Cq±

√
2q+1:4, and is maximal except in a few cases

for small q.
We turn now to consider subgroups of the small Ree groups. The orthogonal

group Ω7(q) has just two orbits on 1-spaces consisting of non-isotropic vectors,
of lengths (q6 ± q3)/2. It turns out that the orbit of length (q6 − q3)/2 splits
into three orbits under the action of the Ree group. One of these has length
q3(q2−q+1)(q−1)/6 and the corresponding stabilizer is the group (22×D(q+1)/2):3
just mentioned. The other two have lengths q3(q2 − 1)(q ±

√
3q + 1)/6 and the

stabilizers are Frobenius groups Cq+
√

3q+1:6.
Finally we exhibit some more subgroups of the large Ree groups. The sta-

bilizer of two opposite lines, such as E(−1, ω) and E(−ω, 1), has shape Cq−1 ×
SL2(q). This group is generated by the torus and the root elements corresponding
to the roots ±ω, and may be extended to SL2(q) o 2 by adjoining ρ1ρ2ρ1. In fact,
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if we adjoin also ρ1 we obtain a copy of the symplectic group Sp4(q) extended
by its outer automorphism of order 2. To see this, observe first that all the root
elements for roots ±ω, ±ωi, ±ωj and ±ωk act on the space E(±1,±j), preserving
the natural symplectic form whereby e(±1) and e(±j) form two perpendicular
hyperbolic pairs. It is easy to see that they generate the whole symplectic group.
Moreover, the given Weyl group element maps this space to E(±ω,±ωi), on
which the group acts in the manner defined by the given outer automorphism.
Finally, note that the action on E(±1,±j) is faithful, for if an element fixes e(±1)
and e(±j) then it also fixes e(ω) = e(−1) ? e(−j) and e(−ω) = e(1) ? e(j) and
therefore fixes e(ω0) = e(ω)× e(−ω). But we have already shown that the group
fixing all of these vectors is trivial.

6 Final remarks
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