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Abstract

We develop a new and uniform approach to the three families of twisted simple groups of Lie type discovered by
Suzuki and Ree, without using Lie algebras. A novel type of algebraic structure is defined, whose automorphism
groups are the groups in question. This leads to elementary proofs of the group orders and simplicity, as well
as much information on subgroup structure and geometry.

1. Introduction

Around 1960 the last three infinite families of finite simple groups were discovered. These
were the Suzuki groups, and two families of Ree groups. Suzuki [15] constructed his groups as
groups of 4×4 matrices, over a field of characteristic 2 and odd degree. Ree’s approach [13, 14]
was more abstract, and he constructed his groups as centralizers of certain outer automorphisms
in Chevalley groups of type G2 (in characteristic 3) and F4 (in characteristic 2). The latter
approach also yields the Suzuki groups when applied to Chevalley groups of type B2. It also
generalizes to perfect infinite fields with a so-called Tits automorphism, that is, one which
squares to the Frobenius automorphism x 7→ xp, where p is the characteristic. Nevertheless,
the machinery behind these constructions is formidable, as it involves first constructing the
Lie algebras, then the Chevalley groups as groups of automorphisms of the algebras, and using
much detailed structural information in order to construct the automorphisms of the groups,
and the centralizers of the automorphisms. This ‘standard approach’ is well exposed in Carter’s
book [2], though not, unfortunately, in complete detail.

Tits [17, 18] made some simplifications to the constructions by interpreting all these groups
as groups of automorphisms of certain geometries. In the case of the Suzuki groups, the resulting
‘ovoid’ of q2 + 1 points (where q is the order of the underlying field) was already implicit in
Suzuki’s work, and the group acts 2-transitively on the points of the ovoid. In the G2 case, the
so-called Ree–Tits unital has q3 + 1 points, on which again the group acts doubly-transitively.
In the F4 case, the result is a ‘generalized octagon’, which contains (q + 1)(q3 + 1)(q6 + 1)
points and (q2 + 1)(q3 + 1)(q6 + 1) lines. Each line contains q + 1 points, and each point lies
on q2 + 1 lines. Nevertheless, the geometries could not really be constructed without at least
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some motivation from the Suzuki–Ree constructions, and the calculations required were still
formidable, and consequently not published in full.

More recently, other approaches have been tried in order to simplify the constructions of
these groups further. This is not really necessary in the case of the Suzuki groups, which are
small enough that any number of elementary approaches will work. There are constructions
for example in the books of Huppert and Blackburn [9], Taylor [16], and Geck [7] as well as
Lüneburg [11] and van Maldeghem [20]. In the case of the ‘small’ Ree groups (those of type
G2), there is a recent paper by de Medts and Weiss [6] which fills in the details of the Tits
construction.

The large Ree groups (those of type F4) are however very much harder to construct. Tits
[18] published a construction in 1983, and there is another in the book of Tits and Weiss
[19] from 2002. Nevertheless, when I came to write about these groups for my book [21], I
did not find anything at a suitably elementary level anywhere in the literature, so I set about
re-constructing the groups for myself. The result of this work [25] appeared in 2010, and gives
arguably the first genuinely elementary proof of existence of the large Ree groups. Remarkably,
most of the geometrical part of this work had already been done, in a rather different way,
by Coolsaet [3, 4, 5], although I was not aware of it at the time, and he was not trying to
re-construct the groups, but rather to understand the generalized octagon.

In the course of this work, I explored a number of different approaches to the Suzuki groups
[22] and small Ree groups [23, 24] as well. By considering all three cases in parallel, I am
now able to make significant further simplifications. In particular, the definitions of the bullet
product (which I now rename the star product), the Weyl group and the root groups are better
motivated and no longer appear so arbitrary, and most of the substantial calculation which was
suppressed in [25] is now unnecessary. Moreover, I no longer rely on constructions of octonions
or the exceptional Jordan algebra, but instead use directly the algebraic structure of the root
lattices as rings of integral complex numbers or quaternions.

In this paper we develop this new theory of the Suzuki and Ree groups, proving everything
from first principles. The groups are defined as automorphism groups of a new kind of algebraic
structure, with three different products defined on it. This structure is defined in Section 3,
using the rings of Gaussian, Eisenstein, and Hurwitz integers described in Section 2 as motiva-
tion. In Sections 4 and 6 we construct some automorphisms, which in the Lie theory are known
as the Weyl group, the maximal split torus, and the root groups, but whose definitions come
entirely from the algebraic structure defined in Section 3. The construction of the root groups
utilizes the stabilizer theorem proved in Section 5. In Section 7 we construct the Tits geometries
and count the points. Finally in Section 8 we derive the group orders, prove simplicity, and
describe the exceptional behaviour of the first group in each series. We conclude the paper with
some remarks on maximal subgroups, and on extending the constructions to infinite fields.

2. Number systems and root systems

The Gaussian integers are the elements of the ring G = Z[i] of complex numbers, where
i2 = −1. The Eisenstein integers are the elements of E = Z[ω], where ω2 + ω + 1 = 0. The
Hurwitz ring of integral quaternions is H = Z[i, ω], where ω = 1

2 (−1 + i + j + k). As lattices,
these are the root lattices of types B2, G2 and F4 respectively. From these three rings we shall
construct the Suzuki groups 2B2(22n+1), the small Ree groups 2G2(32n+1), and the large Ree
groups 2F4(22n+1).

The unit groups of these three rings are respectively

U(G) = {±1,±i} ∼= C4,
U(E) = {±1,±ω,±ω} ∼= C6,
U(H) = {±1,±i,±j,±k, 1

2 (±1± i± j ± k)} ∼= SL2(3), (2.1)
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where i2 = j2 = k2 = −1, ij = −ji = k, iω = j, jω = k and kω = i. To facilitate calculations
in this last case it is useful to note the following identities:

ωi = jω = ωk = 1
2 (−1 + i− j − k)

ωj = kω = ωi = 1
2 (−1− i + j − k)

ωk = iω = ωj = 1
2 (−1− i− j + k)

−ωi = ωj = kω = 1
2 (1 + i− j − k)

−ωj = ωk = iω = 1
2 (1− i + j − k)

−ωk = ωi = jω = 1
2 (1− i− j + k) (2.2)

In each case denote the set of units by U . Geometrically, these units form the short roots
of a root system of type B2, G2, or F4 respectively (i.e. a root system of type A1A1, A2 or
D4, respectively). Then the set of long roots is the set of non-zero non-units of smallest norm,
which is (1 + i)U in the cases G and H, and is θU , where θ = ω − ω =

√
−3, in the case E .

Denote this set by L in each case.
We choose once and for all a linear map φ from U to L, which squares to a scalar p (where

p = 2 in the cases G and H, and p = 3 in the case E), as follows.

φ : z 7→ (1 + i)z in the case G
φ : z 7→ (1− ω)z in the case E
φ : z 7→ (1 + i)zj in the case H (2.3)

Since φ2 = p, the eigenvalues of φ are ±√p. In the cases G and E , both eigenspaces are
1-dimensional, while in the case H they are 2-dimensional. Explicit calculation shows that the
short roots r are of two or three types, according to the inner product of r with φ(r).

Definition 1. A root r is called

(i) inner if r.φ(r) = −p/2,
(ii) middle if r.φ(r) = 0, and
(iii) outer if r.φ(r) = p/2.

The reason for the terms inner, middle and outer will become clear once we have drawn
pictures of the root systems. In the case G there are no middle roots, and we have

(1) if r ∈ {±1}, then r.φ(r) = 1, so r is outer; and
(2) if r ∈ {±i}, then r.φ(r) = −1, so r is inner.

In the case E the three types are as follows.
(1) if r ∈ {±1}, then r.φ(r) = 3/2, so r is outer;
(2) if r ∈ {±ω}, then r.φ(r) = −3/2, so r is inner; and
(3) if r ∈ {±ω}, then r.φ(r) = 0, so r is middle.

Finally in the case H we have
(1) if r ∈ {±1,±j,±ω,±ωi}, then r.φ(r) = 1, so r is outer;
(2) if r ∈ {±i,±k,±ωj ,±ωk}, then r.φ(r) = −1, so r is inner; and
(3) if r ∈ {±ω,±ωi,±ωj ± ωk}, then r.φ(r) = 0, so r is middle.
We next choose an ordering of the roots compatible with the map φ, ordering by the inner

product with a suitable vector v0.

Definition 2.

(i) In the case B2, let v0 = 2 + i; in the case G2, let v0 = 4 − ω; and in the case F4, let
v0 = 8 + 3i + 2j + k.

(ii) If r is a root and r.v0 > 0 we call the root positive and if r.v0 < 0 the root is negative.
(iii) If r.v0 > s.v0 we write r > s.
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In the case B2 the short roots are put in the order

−1,−i, i, 1. (2.4)

In the case G2 the ordering of short roots together with 0 is

−1, ω, ω, 0,−ω,−ω, 1. (2.5)

Note that the ordering on long roots may also be obtained by applying φ to the ordering on
short roots.

In the case F4 we obtain only a partial order, and in cases where two short roots have the
same inner product with v0, we order them according to the order of the corresponding long
roots. In cases where this does not discriminate, we make an arbitrary choice. Our ordering on
the negative short roots is

−1, ω, ωk, ωj , ωi, ωi,−i, ωj ,−j, ωk,−k, ω, (2.6)

and on the positive short roots

−ω, k,−ωk, j,−ωj , i,−ωi,−ωi,−ωj ,−ωk,−ω, 1. (2.7)

Applying φ to these gives the ordering on long roots.
We end this section with some pictures. First we exhibit the cases G and E in full detail,

in Fig. 1 and Fig. 2 respectively. Then we give the case H in its projection onto the
√

2-
eigenspace of φ. This last is given in two versions. The first version, in Fig. 3, includes only the
short roots, for clarity, while the second, in Fig. 4, includes also the long roots, for completeness.
To construct these pictures of H, we start by putting the eight inner short roots on the vertices
of two superimposed squares. The relative position of these two squares can be determined by
a small calculation. Then the positions of the middle roots are determined as they are sums
of adjacent inner roots, and similarly the outer roots are the sums of three consecutive inner
roots. The long roots are similarly the sums of pairs of perpendicular short roots. (It is perhaps
worth remarking that if we project instead onto the −

√
2-eigenspace of φ, then we obtain a

similar picture, but with the positions of the inner and outer roots interchanged.)
For convenience in performing these calculations, we list here the triples of short roots (r, s, t)

with r + s + t = 0 (up to an overall sign).

1 + ω + ω = 1 + ωi + ωi = 1 + ωj + ωj = 1 + ωk + ωk = 0
i− ω + ωi = i− ωi + ω = i + ωj − ωk = i + ωk − ωj = 0

j − ω + ωj = j − ωj + ω = j + ωk − ωi = j + ωi − ωk = 0
k − ω + ωk = k − ωk + ω = k + ωi − ωj = k + ωi − ωk = 0 (2.8)

Notice that in each picture the ordering of the roots is from left to right, and from bottom
to top. In the case H, the inner, outer and middle roots lie on three regular octagons, which
are respectively inner, outer and middle in the picture.

3. W-algebras

We use the set U of units as an indexing set for a basis of a vector space, augmented by a
set Z of ‘zero’ elements defined in the three cases by

Z(G) = {0},
Z(E) = {0,−0},
Z(H) = {0, ω0, ω0}. (3.1)

Write I = U∪Z. Let F be a field of characteristic p (where, as above, p = 2, 3, or 2 respectively).
Let W be the vector space over F spanned by vectors et, for t ∈ I, subject to the relation∑

t∈Z et = 0. Then W has dimension 4, 7 or 26 respectively. We shall specify the dimension by
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Figure 1. The root system of type B2
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Figure 2. The root system of type G2

writing W4, W7 or W26 for W when necessary. To prevent the notation becoming unreadable,
we shall when necessary write e(r) for er, and E(r, s, . . .) for 〈er, es, . . .〉. We shall also write
E(S) for 〈e(s) | s ∈ S〉.

Using the ordering on the roots defined above, we may talk about the leading term of a
vector in W (with a slight ambiguity, which will not be important, in the case of W26 if the
leading term is one of the ‘zero’ terms e0, eω0, eω0).

Roughly speaking, we shall put three products onto W , one an ‘inner’ or ‘dot’ product defined
by pairs of short roots which sum to zero, the second an ‘outer’ or ‘cross’ product defined by
pairs of short roots which sum to another short root, and the third a ‘middle’ or ‘star’ product
defined by pairs of short roots which sum to a long root. The rest of Section 3 is devoted to
making this precise.
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Figure 3. The D4 root system projected onto the
√

2-eigenspace of φ

3.1. The inner or dot product

The inner product is a symmetric bilinear form B : W ×W → F , where we also write v.w for
B(v, w). It is defined by B(et, e−t) = 1 for t ∈ U , and in the case W7 also B(e0, e0) = 1, and
in the case W26 also B(et, eωt) = 1 for t ∈ Z, and in all cases B(es, et) = 0 otherwise. In the
characteristic 2 cases, namely W4 and W26, the form B is also alternating, that is B(v, v) = 0.
In the characteristic 3 case, namely W7, the bilinear form B is equivalent to a quadratic form
Q. On W26, the form B is the bilinear form associated to a quadratic form Q, which may be
defined by its values on a basis by Q(et) = 0 for t ∈ U and Q(et) = 1 for t ∈ Z. It turns
out that any linear map which preserves both the inner and outer products also preserves this
quadratic form. However, this is not necessary for our theory, and so we shall not use the
quadratic form in this case.

3.2. The outer or cross product

The outer product is an alternating (and therefore also skew-symmetric) bilinear product
M : W ×W → W . We shall write v×w for M(v, w). This product has the following properties.

E(r)× E(s) = E(r + s) whenever r, s, r + s ∈ U,
E(r)× E(s) = 0 if r, s ∈ U, r + s 6∈ U. (3.2)

In the case W4, there is no pair of short roots whose sum is a short root, so the outer product
is identically zero. In the case W7, all such sums derive from the equation 1 + ω + ω = 0 by
taking one or two terms across to the right-hand side. As the characteristic is 3 there is a
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The short roots are marked with black circles, and labelled with the corresponding Hurwitz integer. The long
roots are marked with white circles, and unlabelled. The labels can be calculated (a) as φ(r) where r is a
short root, using the fact that φ is multiplication by

√
2 in the picture, and (b) as r + s where r and s are

perpendicular short roots, by using the rectangular grid.

Figure 4. The F4 root system projected onto the
√

2-eigenspace of φ
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delicate question about the signs. We specify that er× es = et when r, s, t are in anti-clockwise
order, and er × es = −et when the order is clockwise. When one of r, s, t is 0, we define the
outer product by

e−1 × e1 = e0,
e1 × e0 = e1,

e0 × e−1 = e−1, (3.3)

and images under multiplication of the subscripts by ω and ω. This product may be identified
with the usual octonion product (modulo the centre) on the 7-space of pure imaginary octonions
in characteristic 3. See for example Section 4.5.2 of [21].

In the case W26, the outer product is equivalent to the product on the trace 0 part of the
exceptional Jordan algebra. The products which do not involve any zero subscripts are of
the form er × es = er+s, which may be more symmetrically written er × es = e−t whenever
r, s, t ∈ U satisfy r + s + t = 0. The triples which occur have already been listed in (2.8) and
can also be read off from Fig. 3.

In the case when one of r, s, t is zero we have to distinguish carefully between the three
different zeroes, 0, ω0 and ω0. The short roots fall into three cosets Q8, ωQ8 and ωQ8 of the
quaternion group Q8 = {±1,±i,±j,±k}. We adopt the convention that for r in one of these
three cosets, r + (−r) = 0 or ω0 or ω0 respectively. The rest of the values of the outer product
are now given by

e0 × eω0 = 0,
er × e−r = e0, eω0, eω0 according as r ∈ Q8, ωQ8, ωQ8,
e0 × er = er when r ∈ ωQ8 ∪ ωQ8,

eω0 × er = er when r ∈ Q8 ∪ ωQ8,
eω0 × er = er when r ∈ Q8 ∪ ωQ8. (3.4)

3.3. The trilinear form

The inner and outer products together give rise to a skew-symmetric trilinear form T defined
by T (u, v, w) = (u × v).w. It is easy to check that this is cyclically symmetric on the basis
vectors. Indeed, the non-zero values at basis vectors occur for T (er, es, et) where r + s + t = 0.
In the case W4, of course, T is the zero form, as the outer product is zero.

In the case W7, either r, s, t are all non-zero, and we have T (er, eωr, eωr) = 1, or one of them
is zero, and we have T (er, e−r, e0) = 1 for r = 1, ω, ω. (For these values of r, we adopt the
convention that r + (−r) = 0 while (−r) + r = −0.)

In the case W26, where the characteristic is 2, we have

T (er, es, et) = 1 whenever r, s, t are non-zero and r + s + t = 0.
T (er, e−r, e0) = 1 for r ∈ ωQ8 ∪ ωQ8,

T (er, e−r, eω0) = 1 for r ∈ Q8 ∪ ωQ8,
T (er, e−r, eω0) = 1 for r ∈ Q8 ∪ ωQ8,
T (e0, eω0, eω0) = 1, (3.5)

and T (er, es, et) = 0 otherwise.

3.4. The middle or star product

When r and s are two short roots whose sum is a long root, we have that

t = φ−1(r + s) = φ(r + s)/p (3.6)
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is a short root, and we define er ? es = et (with the condition r = 1, ω, ω in the case W7). We
also define

er ? e−r + es ? e−s = et+(−t), (3.7)

with the same conventions as above for the different types of zeroes. For all other pairs of basis
vectors we define er ? es = 0.

Now we extend this product by the rules

u ? v = −v ? u
u ? (v + w) = u ? v + u ? w

u ? (λv) = λσ(u ? v) (3.8)

where σ−1 = τ is an automorphism of F which squares to the Frobenius automorphism λ 7→ λp.
This last condition implies that the field F must have order p2n+1, and then λσ = λpn

and
λτ = λpn+1

.
For the purposes of defining the groups, however, we must restrict this product to pairs of

isotropic vectors u, v which satisfy u.v = 0 and u × v = 0. Observe that since er ? er = 0,
the anti-symmetry implies that v ? v = 0 for all isotropic v. A more formal way to define this
product, which perhaps makes it clearer that it is really well-defined, is to first interpret the
dot and cross products as linear maps π1 : W ∧ W → F and π2 : W ∧ W → W , and then
to define π3 : (ker π1) ∩ (ker π2) → W by interpreting u ? v as π3(u ∧ v) and u ? v + w ? x as
π3(u ∧ v + w ∧ x).

It may be useful to list here the non-trivial star products in each case. In W4 we have

e1 ? ei = e1

e1 ? e−i = ei (3.9)

and images under negating the subscripts. (Notice incidentally that if er?es = et, then eir?eis =
e−it.) In W7 we have

e1 ? e−ω = e1

eω ? e−1 = eω

eω ? e−ω = eω

e1 ? e−1 + e−ω ? eω = e0

eω ? e−ω + e−1 ? e1 = e0 (3.10)

In this case when we negate the subscripts we also negate e0, since e−0 = −e0. We also have
that if er ? es = et then eωr ? eωs = eωt.

In the case of W26 we may use Fig. 4 to read off the products. We take two short roots r, s,
corresponding to black circles in the figure, with the property that their sum is a long root,
corresponding to a white circle. This white circle is found by usual vector addition. Then we
shrink the result by a factor of

√
2 until it becomes a short root t, say: we now have er ?es = et.

For example, if r = 1 and s = k then r+s shrinks down to t = −ωk and we have e1?ek = e−ωk .
We give these products here in a simplified notation, so that an entry t in row r and column
s denotes that er ? es = et. The products which are not explicitly listed can be read off from
the fact that if er ? es = et then e−r ? e−s = e−t. First we give the product of roots in Q8.

r\s −1 −i −j −k k j i 1
−1 −1 ω ωk ωj ωi −i
−i −1 ωi ωj ωk ω i
−j ω ωi −j −k −ω −ωi

−k ωk ωj −j k −ωk −ωj

(3.11)
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Next we give the product of roots in ωQ8.

r\s ωk ωj ωi ω −ω −ωi −ωj −ωk

ωk −1 ω ωj ωi ωk −k
ωj −1 ωk ωi ωj ω k
ωi ω ωk −i −j −ω −ωk

ω ωj ωi −i j −ωj −ωi

(3.12)

Finally we give the product of roots in ωQ8.

r\s ω ωi ωj ωk −ωk −ωj −ωi ω
ω −1 ω ωk ωi ωj −j
ωi −1 ωj ωi ωk ω j
ωj ω ωj −i −k −ω −ωj

ωk ωk ωi −i k −ωk −ωi

(3.13)

In addition, the products involving the zero elements are

er ? e−r + es ? e−s = e0 when r, s ∈ Q8

er ? e−r + es ? e−s = eω0 when r, s ∈ ωQ8

er ? e−r + es ? e−s = eω0 when r, s ∈ ωQ8 (3.14)

3.5. Definitions of the automorphism groups

In each case let us define the ‘algebra’ W to be the vector space W endowed with the three
products just defined. As before, we add a subscript to indicate the dimension when necessary.

Definition 3. An automorphism of W is a linear map g which preserves the three products,
in the sense that

(i) ug.vg = u.v for all u, v ∈ W ;
(ii) ug × vg = (u× v)g for all u, v ∈ W ; and
(iii) ug ? vg = (u ? v)g for all u, v ∈ W which satisfy u.u = u.v = v.v = 0 and u× v = 0.

With this definition of the automorphism groups, it turns out that the automorphism groups
of W4 are isomorphic to the Suzuki groups, the automorphism groups of W7 are isomorphic
to the small Ree groups, and the automorphism groups of W26 are isomorphic to the large
Ree groups. Indeed, one could reasonably take these are the definitions of the Suzuki and Ree
groups.

4. The Weyl group and the torus

In this section we shall exhibit some elements of the automorphism groups of the W-algebras,
which will eventually turn out to be sufficient to generate them. In increasing order of difficulty
these are generators for the Weyl group (that is, the group of coordinate permutations), the
maximal torus (that is, the group of diagonal matrices), and the root groups (that is, certain
groups of lower triangular matrices).

4.1. The Weyl group

The Weyl group of our root system, of type B2, G2 or F4, is by definition the group generated
by the reflections in the roots. If r is a short root, so that rr = 1, then reflection in r is the
map z 7→ −rzr, while if r is a long root, so that rr = p, it is the map z 7→ −rzr/p.

Definition 4. The twisted Weyl group is the subgroup of the Weyl group which commutes
with φ.
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The axes of the fundamental reflections ρ1 and ρ2 of the Weyl group are marked on the picture, as is a line
separating positive and negative roots, and the direction along which the ordering of the roots is measured.

The outer roots mark (the leading terms of) the points, and the edges making these into an octagon mark the
lines, of the generalized octagon.

Figure 5. The F4 root system showing the octagonal symmetry

It is easy to see that in the case of B2 the Weyl group is the dihedral group D8 of order 8,
and in the case of G2 it is D12

∼= 2 × S3. In these two cases it is obvious that the part of the
Weyl group which commutes with φ is just the group of order 2 generated by t 7→ −t. This
now acts on W by et 7→ e−t (including e0 7→ e−0 = −e0 in the case W7), and clearly preserves
the forms B and T , as well as the partial product ?. In both cases this group C2 is transitive
on roots r with a given value of r.φ(r).

In the case F4 the full (untwisted) Weyl group is a group of order 27.32 = 1152 and shape
21+4.(S3 × S3), and the subgroup which commutes with φ is a dihedral group D16, although
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we shall not need any of these facts. All we need is that φ commutes with the dihedral group
D16 generated by the maps

ρ1 : z 7→ zi

ρ2 : z 7→ (1 + i)zk(1 + j)/2. (4.1)

These maps induce linear maps on W26 via ρ : er 7→ eρ(r), and by defining ρ1 to fix the vectors
et with t ∈ Z, while ρ2 swaps e0 with eω0. More explicitly, ρ2 acts by permuting the coordinates
as

ρ2 = (0, ω0)(1,−ω)(i,−ωj)(j,−ωi)(k,−ωk)
(−1, ω)(−i, ωj)(−j, ωi)(−k, ωk)
(ωi, ωj)(−ωi,−ωj)(ω,−ω). (4.2)

Again, it is easy to see that these maps preserve all the forms and products. And again, the
twisted Weyl group is transitive on roots r with a fixed value of r.φ(r). In Fig. 5 we show the
root system with the full octagonal symmetry under the action of the Weyl group.

4.2. The maximal torus

Consider a diagonal symmetry et 7→ λtet. Since this preserves the bilinear form B it must
satisfy λtλ−t = 1, which implies that λ−t = λt

−1 for all short roots t. Since it preserves the
trilinear form T , which has non-zero terms T (er, e−r, er+(−r)) we also get λt = 1 for t ∈ Z.
Also T (er, es, et) is non-zero whenever r, s, t are short roots with r + s + t = 0, so we obtain
corresponding equations λrλsλt = 1. Since the equations r+s+t = 0 are sufficient to define the
ambient 2- or 4-dimensional space in which the root system lies, the corresponding equations
are sufficient to reduce the number of free parameters λr to 2 (in the cases W4 and W7) or
4 (in the case W26). For example we may take free parameters λr as r runs over a system of
fundamental roots for the system of short roots, say {1, i} for the system of type A1A1 in the
first case, or {1, ω} for the system of type A2 in the second, or {1, i, j, ω} for the system of
type D4 in the third.

Finally, to preserve the product ? where er ? es = eφ−1(r+s) it must satisfy the condition

(λrλs)σ = λφ−1(r+s), (4.3)

which can also be written

λrλs = (λφ−1(r+s))τ . (4.4)

We shall show that this gives one condition on the two free parameters in the first two cases,
and two conditions on the four free parameters in the last case.

To see that the many different equations given here are consistent, we need to use the fact
that τ2 = p, in the sense that τ2 is the Frobenius automorphism. Explicitly, in the case W4 we
have λ1λi = λ1

τ , which we can write as λi = λ1
τ−1, which is equivalent to λ1 = (λi)τ+1 since

(τ − 1)(τ + 1) = τ2 − 1 = 1. Thus it is equivalent to the other equation λ1λ−i = (λi)τ .
Similarly, in the case W7, the three equations are

λ1λ−ω = λ1
τ

λωλ−1 = λω
τ

λωλ−ω = λω
τ (4.5)

and since λ1λωλω = 1, any two of these equations imply the third. Moreover, substituting
λω = λ−1λ−ω into the first equation gives λω = λ1

−2+τ , and substituing into the third equation
gives λ−1 = λω

τ+2, which is equivalent since (τ + 2)(τ − 2) = τ2 − 4 = −1. Hence these three
equations are equivalent.
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Finally in the case W26 we have

λ1λi = λ1
τ

λ1λj = λω
−τ (4.6)

so we can take the two free parameters to be λ1 and λω, and express all the other parameters
in terms of them. Now every root can be expressed as

a.1 + b.φ(1) + c.ω + d.φ(ω), (4.7)

where a, b, c, d are integers, and the corresponding eigenvalue is

(λ1)a+bτ (λω)c+dτ . (4.8)

In Fig. 5 this root is drawn at position (a + b
√

2) + (c + d
√

2)ω. Moreover, adding exponents
corresponds to adding vectors in Fig. 5, and multiplying exponents by τ corresponds to
multiplying vectors by

√
2. Hence the geometry of the figure makes clear that the eigenvalues

are well-defined by this procedure.
In conclusion, we have

Theorem 1.
(i) The group of diagonal matrices which are automorphisms of W4 or W7 is a cyclic group

of order q − 1;
(ii) The group of diagonal matrices which are automorphisms of W26 is Cq−1 × Cq−1.

5. A stabilizer theorem

In order to motivate the construction of the root groups, we show that certain subgroups
of the stabilizer of E(−1) are diagonal. The proofs of these results actually give an effective
algorithm to compute each root group explicitly. The main purpose of these results is however
to help us prove that the automorphism group of W is generated by the root groups, together
with the torus and the Weyl group. This is a crucial ingredient in the later calculation of the
order of the automorphism group. In each case we fix E(−1) and either the zero terms, or in
the case W4 where there is no zero term, the one immediately above where the zero would be,
and show that the only remaining automorphisms are diagonal.

Theorem 2. Any automorphism of W4 which fixes E(−1) and E(i) lies in the diagonal
subgroup, which is cyclic of order q − 1.

Proof. Any such automorphism must fix both

E(−1) ? E(i) = E(−i) and
(E(i) ? W ) ∩ E(i)⊥ = E(1), (5.1)

so is diagonal. We have just shown in Theorem 1 that the group of diagonal automorphisms is
isomorphic to the multiplicative group of the field, so is cyclic of order q − 1.

Theorem 3. Any automorphism of W7 which fixes E(−1) and E(0) lies in the diagonal
subgroup, which is cyclic of order q − 1.

Proof. First note that the map x 7→ e0×x has eigenvalues −1, 0, 1 with multiplicities 3, 1, 3
respectively, and eigenspaces

W− = E(−1,−ω,−ω)
W0 = E(0)
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W+ = E(1, ω, ω) (5.2)

Now we have

E(−1) ? W = E(−1, ω), (5.3)

whose intersection with W+ determines E(ω). Then E(ω) ? W = E(−1, ω), whose intersection
with W+ determines E(ω). Next, E(ω)?W = E(ω,−ω), whose intersection with W− determines
E(−ω); then we have E(−ω) ?W = E(−ω, ω) whose intersection with W− determines E(−ω);
and finally, E(−ω)?W = E(1,−ω), whose intersection with W+ determines E(1). Therefore all
the coordinate 1-spaces are determined, which means that the given automorphism is diagonal.
In this case also we have shown that the group of diagonal automorphisms is cyclic of order
q − 1.

Theorem 4. The subgroup of the automorphism group of W26 which fixes E(−1), E(0)
and E(ω0) has order 2(q − 1)2 and is generated by the diagonal elements and ρ1.

Proof. Suppose that g is an automorphism of W26 which fixes E(−1), E(0) and E(ω0).
The space E(0, ω0)⊥ is fixed, and is the space E(U) spanned by all e(r) for r ∈ U . On this
24-space, the map v 7→ v × e(0) has kernel

E(Q8) = E(±1,±i,±j,±k), (5.4)

which is therefore fixed. Similarly the kernels of the maps v 7→ v × e(ω0) and v 7→ v × e(ω0)
are respectively

E(ωQ8) = E(±ω,±ωi,±ωj ,±ωk)
E(ωQ8) = E(±ω,±ωi,±ωj ,±ωk), (5.5)

so both are fixed. For the rest of the proof it will be useful to refer to Fig. 4 (or Fig. 5) for the
calculation of the various spaces E(r) ? W .

(i) First, the space

E(−1) ? W = E(−1,−i, ωj , ωk, ω, ωi) (5.6)

is fixed, and therefore so are the respective intersections E(−1,−i), E(ωj , ωk) and
E(ω, ωi) with the spaces E(Q8), E(ωQ8) and E(ωQ8). Now it is easy to see from the
operation table for ? that if v ∈ E(ω, ωi) satisfies v = v ? w for some w then either
v ∈ E(ω) or v ∈ E(ωi). But ρ1 swaps E(ω) with E(ωi) while fixing E(−1), E(0) and
E(ω0), so we may assume that g fixes E(ω) and E(ωi).

(ii) Next calculate

E(ω) ? W = E(−1,−j, ωk, ωi, ω, ωj)
E(ωi) ? W = E(−1, j, ω, ωj , ωi, ωk), (5.7)

and intersect with E(ωj , ωk) to see that E(ωk) and E(ωj) are fixed.
(iii) Now calculate

E(ωk) ? W = E(−1,−k, ωi, ωj , ω, ωk)
E(ωj) ? W = E(−1, k, ω, ωk, ωi, ωj) (5.8)

and intersect with the fixed spaces already calculated to see that g fixes E(ωk) and
E(ωj), and E(ω) and E(ωi). It then follows that E(−i) = E(ωj) ? E(ωk) is also fixed.

(iv) Now we can calculate

E(ωk) ? W = E(−i, k, ωk,−ωi, ωi,−ωk)
E(ωj) ? W = E(−i,−k,−ω, ωj , ω,−ωj)
E(ωi) ? W = E(−i,−j,−ω, ωk, ω,−ωk)
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E(ω) ? W = E(−i, j,−ωi, ωj , ωi,−ωj)
E(−i) ? W = E(−1, i, ω, ωi, ωj , ωk) (5.9)

and the various intersections give the fixed 1-spaces E(k), E(−j), E(−ω), E(−ωi),
E(−ωj) and E(−ωk).

(v) All the remaining coordinates can be calculated with the outer and star products, as
follows:

E(j) = E(ωk)× E(−ωi)
E(−k) = E(ωi)× E(−ωj)

E(i) = E(−ωj) ? E(−ωk)
E(−ω) = E(i)× E(−ωi)

E(−ωk) = E(i)× E(−ωj)
E(−ωj) = E(i)× E(−ωk)
E(−ωi) = E(i)× E(−ω)

E(1) = E(−ωj)× E(−ωj) (5.10)

Hence g is diagonal. We have already shown that the subgroup of diagonal elements is the
torus D ∼= Cq−1 × Cq−1, so this concludes the proof.

6. Root elements

The simplest non-monomial symmetries are the so-called ‘root elements’. There is one type
of root element for each orbit of the Weyl group on the roots.

6.1. Root elements on W4

In the case of W4, there are two types of roots, so two types of root elements. In fact, the
root elements corresponding to the roots ±i square to root elements corresponding to roots
±1, and the corresponding ‘root subgroups’ are special groups of order q2.

In order to construct such a root subgroup, we shall prove that for any α, β ∈ F there
is a unique symmetry fα,β which fixes e−1 and maps ei 7→ ei + αe−i + βe−1. Uniqueness is
immediate from the stabilizer theorem (Theorem 2) in the previous section.

To prove existence, it is sufficient to consider the case α = 1, β = 0, since the element f1,0

together with its conjugates by the maximal torus will then generate the whole root subgroup.
The proof of Theorem 2 actually gives us an algorithm for constructing this element. Write e′t
for the image of et under f1,0. Thus e′i = ei + e−i, and therefore e′−i = e′−1 ? e′i = e−i + e−1.
Then

e′i ? W = (ei + e−i) ? 〈e−1, e1〉
= 〈e1 + ei, e−i + e−1〉, (6.1)

and using e′1.e
′
−i = 0 we have e′1 = e1 + ei + e−i + e−1. In other words f1,0 is represented with

respect to the ordered basis {e−1, e−i, ei, e1} by the matrix
1 0 0 0
1 1 0 0
0 1 1 0
1 1 1 1

 .

It is a triviality to check that this element preserves the inner product. We have already
checked the product e′−1 ? e′i, and the case e′−1 ? e′−i is trivial, which leaves the three cases:

e′−i ? e′1 = (e−i + e−1) ? (e1 + ei + e−i + e−1)
= ei + e−1 + e−i + e−1 = e′i

e′1 ? e′i = (e1 + ei + e−i + e−1) ? (ei + e−i)
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= e1 + ei + e−i + e−1 = e′1
e′1 ? e′−1 + e′i ? e′−i = (e1 + ei + e−i + e−1) ? e−1 + (ei + e−i) ? (e−i + e−1)

= e−i + e−1 + e−i + e−1 = 0 (6.2)

as required. Notice that in this last case the individual terms e′1 ? e′−1 and e′i ? e′−i are not zero,
which is why we had to restrict the star product to pairs of perpendicular vectors.

6.2. Root elements on W7

In the case W7, there are three types of roots and therefore three types of root elements.
In fact, the root elements corresponding to −1, ω and ω together generate a root subgroup of
order q3. In all cases except q = 3, it is sufficient to construct the root element corresponding
to ω.

Indeed, a similar calculation to the case W4 shows that for each α, β, γ ∈ F there is a unique
symmetry fα,β,γ which fixes e−1 and maps

e0 7→ e0 + αeω + βeω + γe−1.

Uniqueness is again immediate from the stabilizer theorem (Theorem 3) above.
To prove existence we apply the algorithm suggested by the proof of Theorem 3 to the case

α = 1, β = γ = 0. Write e′t for the image of et under this map, so that e′−1 = e−1 and
e′0 = e0 + eω. We first find the eigenspaces of the map x 7→ (e0 + eω)× x to be

W ′
− = 〈e−1, e−ω, e−ω − e0 + eω〉

W ′
0 = 〈e0 + eω〉

W ′
+ = 〈eω, e1 − e−ω, e−1 + eω〉 (6.3)

Therefore e′ω = eω + e−1, since it lies in e−1 ? W = 〈e−1, eω〉 and in W ′
+. Now we calculate

v ? W for each v in turn: in each case we first calculate the 3-dimensional kernel of the map
x 7→ x× v, and then calculate v ? x for x a basis vector other than v for this kernel. Then the
next vector is determined by the fact that its leading coefficient is 1 and it lies both in this
space and in one of W ′

− or W ′
+. First we have

e′ω ? W = (eω + e−1) ? 〈e−1, e−ω − e0 + eω〉
= 〈e−1, eω − eω〉 (6.4)

so e′ω = eω − eω − e−1. Next we calculate

e′ω ? W = (eω − eω − e−1) ? 〈e−1, e−ω + e−ω − e0 + eω〉
= 〈eω + e−1, e−ω − e0 + eω − eω〉 (6.5)

and deduce that e′−ω = e−ω − e0 + eω + e−1. Then we have

e′−ω ? W = (e−ω − e0 + eω + e−1) ? 〈eω + e−1, e1 − e−ω − eω〉
= 〈eω − eω − e−1, e−ω + e−ω − e0 + eω〉 (6.6)

and therefore e′−ω = e−ω + e−ω − e0 + eω − e−1, and finally by using the inner products we
obtain e′1 = e1 − e−ω − eω − eω − e−1.

To summarise, we have shown that f1,0,0 is represented with respect to the ordered basis
{e−1, eω, eω, e0, e−ω, e−ω, e1} by the matrix

1 0 0 0 0 0 0
1 1 0 0 0 0 0
−1 −1 1 0 0 0 0
0 0 1 1 0 0 0
1 0 1 −1 1 0 0
−1 0 1 −1 1 1 0
−1 −1 −1 0 0 −1 1


. (6.7)
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We must now check that this element preserves the algebraic structure. Checking the inner
product is a triviality: the only non-obvious cases to check are e′ω.e′1, e′ω.e′1 and e′ω.eω. The fact
that the basis vectors e′t lie in the correct eigenspaces W ′

+, W ′
0 or W ′

− means that the cross
products with e′0 are correct. The cyclic symmetry of the trilinear form implies that all values
of the trilinear form at triples of basis vectors involving e′0 are correct. All other triples involve
either two vectors from W ′

− or two from W ′
+, so it is sufficient to check the products of such

pairs. We calculate

e′ω × e′ω = (eω − eω − e−1)× (eω + e−1)
= eω × (eω + e−1) = e−1

e′ω × e′1 = (eω + e−1)× (e1 − e−ω − eω − eω − e−1)
= eω × (e1 − eω − e−ω) + e−1 × (e1 − e−ω)
= e−ω + e−1 + eω − e0 = e′−ω

e′1 × e′ω = (e1 − e−ω − eω − eω − e−1)× (eω − eω − e−1)
= e−ω + e−ω − e−1 + eω − e0 = e′−ω

e′−1 × e′−ω = e−1 × (e−ω − e0 + eω + e−1)
= eω + e−1 = e′ω

e′−ω × e′−1 = (e−ω + e−ω − e0 + eω − e−1)× e−1

= eω − eω − e−1 = e′ω
e′−ω × e′−ω = (e−ω − e0 + eω + e−1)× (e−ω + e−ω − e0 + eω − e−1)

= (e−ω − e0 + eω + e−1)× (e−ω + e−1)
= e1 − eω − e−ω − e−1 − eω = e′1 (6.8)

which concludes the proof that the cross product is invariant. Finally we need to prove that
the star product is invariant. We need to check all the fourteen defining equations. This is
similarly straightforward, and is left as an exercise for the reader.

In the case when q > 3, this element and its conjugates by the maximal torus are sufficient
to generate the whole root subgroup, of order q3. In the case q = 3 we need to calculate the
case β = 1, α = γ = 0 as well. For completeness we give the root elements for the roots ω and
−1 here: 

1
0 1
−1 0 1
0 1 0 1
1 0 0 0 1
0 1 0 −1 0 1
1 0 −1 0 1 0 1


,



1
0 1
0 0 1
1 0 0 1
0 −1 0 0 1
1 0 1 0 0 1
1 −1 0 −1 0 0 1


. (6.9)

6.3. Root elements on W26

Again there are three orbits of the Weyl group on roots, namely the inner, middle and outer
roots. We shall show that it is only necessary to prove existence of the inner root elements, as the
others can be constructed from these. We shall first construct the root element corresponding
to the inner root −i. This is defined as the unique unitriangular matrix which fixes e(−1) and
e(0) and maps e(ω0) 7→ e(ω0) + e(−i). As before, uniqueness is immediate from our stabilizer
theorem (Theorem 4).

Moreover, the proof of Theorem 4 tells us how to calculate the root element, which we shall
call x(−i). It acts as 

1 0 0 0
1 1 0 0
1 1 1 0
1 0 1 1
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on each of the four 4-spaces E(ω, ωi,−ω,−ωi), E(ωi, ω,−ωi,−ω), E(ωj , ωk,−ωj ,−ωk), E(ωk, ωj ,−ωk,−ωj),
and as 

1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
1 1 1 1 0 0
1 1 0 1 1 0
0 0 1 0 0 1


on E(0,−1,−i, i, 1, ω0), as well as the identity on E(±j,±k). For the remainder of this sub-
section, write e′(r) for the image of e(r) under x(−i).

We must now show that this element x(−i) preserves the three products. Note first that the
blocks of the action are given by the horizontal lines in Fig. 3. Moreover, x(−i) is centralized
by the element ρ1 of the Weyl group, which reflects the picture in the horizontal axis. This
involution swaps the 4× 4 blocks in pairs, in such a way that the given bases are dual to each
other with respect to the inner product B. Thus to show that x(−i) preserves B it suffices to
check the fixed block E(0,−1,−i, i, 1, ω0). This is a small and easy calculation.

Next consider the cross product. Let W16 denote the space spanned by the 16 coordinate
vectors e(r) for r ∈ ωQ8 ∪ ωQ8, and let W10 denote the space spanned by the other ten.

Theorem 5. The element x(−i) preserves the cross product on W26.

Proof. We consider first the case u × v where u, v ∈ W10. But this product is zero except
for the product by e(ω0), which acts as an identity on the 8-space E(±1,±i,±j,±k), so this
case is trivial.

Next consider the products of u ∈ W16 with v ∈ W10. Since both W16 and W10 are invariant
under the action of x(−i), and since the products of the coordinate vectors in W10 with those
in W16 lie in W16, we know that the only values of the trilinear form which we need to check
are T (u, v, w) where u ∈ W10 and v, w ∈ W16. Hence by the symmetry of the trilinear form,
we have reduced to the case when u, v ∈ W16.

Now all the products in W16 are zero except when the roots lie symmetrically about the
vertical axis (when the product can be e(±j) or e(±k)), or about the horizontal axis (giving
e(±1) or e(±i)), or both (giving e(ω0) or e(ω0)).

First consider the case when r, s are not symmetric about the horizontal axis. Depending on
which rows r and s lie in, the products of terms in those rows may be always zero (in which
case the result is trivial), or may involve just one of e(j), e(k), e(−k) or e(−j) (in which case
we need to check the coefficient of this term). The case when r lies in the first row and s lies
in the second is typical, so consider this case. If r and s lie in the same column, then all the
cross terms in the expansion of e′(r)× e′(s) cancel out, and the diagonal terms are all zero, so
e′(r)× e′(s) = 0 = e(r)× e(s) as required. If r and s lie symmetrically about the vertical axis,
then e(r)× e(s) = e(j), and all the trailing terms in e′(r)× e′(s) are zero. The only remaining
cases which could be non-zero are r = −ω and s = −ωj or ωk. In both these cases we check
that e′(r)× e′(s) picks up two terms e(j), which cancel out.

Now consider the case when r and s are symmetrically placed about the horizontal axis. We
may suppose that r lies in the second row and s lies in the third row, as the case of the first
and fourth rows is the same. If r and s lie in the same column, then again all the cross terms
in e′(r)× e′(s) cancel out, and the diagonal terms are all zero, so the result follows. This leaves
six cases to consider individually:

e′(ωj)× e′(ωj) = e(ωj)× (e(ωk) + e(ωj))
= e(−1)

e′(ωj)× e′(−ωk) = e(ωj)× (e(ωk) + e(ωj) + e(−ωk))
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= e(−i) + e(−1) = e′(−i)
e′(ωj)× e′(−ωj) = e(ωj)× (e(ωk) + e(−ωk) + e(−ωj))

= e(ω0) + e(−i) = e′(ω0)
e′(ωk)× e′(−ωk) = (e(ωj) + e(ωk))× (e(ωk) + e(ωj) + e(−ωk))

= e(ω0) + e(−i) = e′(ω0)
e′(ωk)× e′(−ωj) = (e(ωj) + e(ωk))× (e(ωk) + e(−ωk) + e(−ωj))

= e(i) + e(ω0) + e(ω0) + e(−1) + e(−i) = e′(i)
e′(−ωj)× e′(−ωj) = (e(ωj) + e(ωk) + e(−ωj))× (e(ωk) + e(−ωk) + e(−ωj))

= e(1) + e(i) + e(0) + e(ω0) + e(−1) = e′(1). (6.10)

This concludes the proof.

Now we need to prove invariance of the star product under x(−i).

Theorem 6. The element x(−i) preserves the star product on W26.

Proof. First note that the star product of u ∈ W16 with v ∈ W10 is zero everywhere, so
we can consider separately the product on W10 and on W16. We consider first the product on
W16. We have three main cases to consider: the two vectors lie in the same row, or two rows
equidistant from the horizontal axis, or two other rows. We do one of each case, as the others
are identical. First suppose both vectors lie in the first row, so that the products are

e(ωi) ? e(−ω) = e(j)
= e(ω) ? e(−ωi) (6.11)

and otherwise zero. Therefore the only cases we need to calculate are

e′(−ω) ? e′(−ωi) = (e(−ω) + e(−ωi) + e(ωi)) ? (e(−ωi) + e(ω) + e(ωi))
= e(j) + e(j) = 0

e′(−ω) ? e′(ω) = (e(−ω) + e(−ωi) + e(ωi)) ? (e(ω) + e(ωi))
= e(j) + e(j) = 0. (6.12)

Next suppose the first vector lies in the first row, and the second in the second. Now the
non-zero terms come in four pairs:

e(ωi) ? e(ωk) = e(ωj) ? e(ω) = e(ωi)
e(ωi) ? e(−ωj) = e(ωj) ? e(−ωi) = e(ω),
e(−ω) ? e(ωk) = e(ω) ? e(−ωk) = e(−ωi),

e(−ω) ? e(−ωj) = e(−ωi) ? e(−ωk) = e(−ω). (6.13)

If our two vectors are in the same column, then the cross terms cancel out, and the rest are
zero. If our two vectors are equidistant from the vertical axis, then their cross-product is e(j),
so rather than a single term e(r)?e(s) we have to consider a pair of such terms: but then every
term in the product cancels out. This leaves just two non-trivial cases to calculate:

e′(ω) ? e′(−ωk) = (e(ω) + e(ωi)) ? (e(−ωk) + e(−ωj) + e(ωj))
= e(−ωi) + e(ωi) + e(ω) = e′(−ωi),

e′(−ωi) ? e′(−ωk) = (e(−ωi) + e(ω) + e(ωi)) ? (e(−ωk) + e(−ωj) + e(ωj))
= e(−ω) + e(−ωi) + e(ωi) = e′(−ω). (6.14)

Now suppose the first vector lies in the first row, and the second in the fourth row. In
this case, most of the cross products are non-zero, which means we have to consider the star
products in pairs, and then it is easy to see that all the terms cancel out. There are also two
cases e′(ω) ? e′(−ω) + e′(ωi) ? e′(−ωi) and the same with ω replaced by ω, in which again all
terms cancel out except the term e(ω) ? e(−ω) + e(ωi) ? e(−ωi) = e(0). The only non-trivial
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cases left are

e′(ω) ? e′(ωi) = e(−i) + e(−1)
= e′(−i),

e′(−ω) ? e′(−ωi) = e(i) + e(0) + e(−i) + e(−1)
= e′(i),

e′(−ω) ? e′(−ωi) = e(1) + e(i) + e(0) + e(−1)
= e′(1) (6.15)

in which the calculations are again easy because all the cross-terms cancel out.
Finally we deal with the star product on W10. Products among e(±j) and e(±k) are trivially

fixed by x(−i), and products between these and the rest simply map the row −1,−i, i, 1 to one
of the rows of basis vectors from W16. Since the action on E(±1,±i), modulo E(0), is the same
as on each of these rows, these instances of the product are also preserved. This just leaves the
product on the horizontal axis, which is easy to check.

The other root elements are obtained by
(1) using the Weyl group to get the elements corresponding to all inner roots,
(2) squaring these to get the elements corresponding to outer roots, and
(3) computing the commutator

[x(−j), x(ωi]x(−1) = x(ωk) (6.16)

to get the elements corresponding to the middle roots.
In particular we can exhibit an explicit middle root element, such as x(ω), which acts

(1) as
(

1 0
1 1

)
on each of the six 2-spaces

E(−1, ω), E(−ω, 1), E(k,−ωk), E(ωk,−k), E(ωj , ωi), E(−ωi,−ωj), (6.17)

(2) as the identity on E(±ωk), and

(3) as
(

1 0
1 1

)
⊗

(
1 0
1 1

)
on each of the three 4-spaces

E(j,−ωj , i,−ωi), E(ωi,−i, ωj ,−j), E(ω, 0, ω0,−ω). (6.18)

Notice that the roots for each of these spaces are aligned on lines parallel to the line joining
ω, 0,−ω in Fig. 5.

7. Counting points

The Suzuki ovoid in W4, the Ree–Tits unital in W7, and the generalized octagon in W26,
may all be defined in the same way.

Definition 5.

(i) A point is a 1-dimensional subspace 〈v〉 of W such that v = v ? w for some w.
(ii) Two distinct points 〈u〉 and 〈v〉 are

(a) adjacent if u = v ? x for some x, and
(b) opposite if u.v 6= 0.

(iii) A set of q + 1 mutually adjacent points is called a line.

It follows immediately from the following theorem that in the cases W4 and W7 every pair
of points is opposite.
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Theorem 7. Let 〈v〉 be a point in W. Then, up to scalar multiplication, the leading term
of v is er, where r is an outer root. In particular

(i) Every point in W4 or W7 has leading term e1 or e−1.
(ii) Every point in W26 has leading term er where r = ±1,±j,±ω,±ωi.

Proof. By definition v is isotropic, so without loss of generality the leading term of v is er

for some r ∈ U . The condition v = v ? w implies that er has the property that r is a short
root and φ(r) is a long root which is the sum of r and another short root. This means that
the inner product of r with φ(r) is 1, 3/2 or 1 respectively in the three cases, in other words r
is an outer root. These have already been classified, and in the case of G and E they are just
r = ±1. In the case H they are r = ±1,±j,±ω,±ωi.

We shall show that every point except E(−1) is in the same orbit under the group as a point
with a lower leading term. It follows that every point is in the same orbit as E(−1).

Theorem 8. Let 〈v〉 be a point in W4, with leading term e1. Then there is an element of
the automorphism group of W4 which maps v to e−1.

Proof. Applying elements of the root group as necessary to remove the terms in ei and e−i

from v, we may assume that v = e1 +λe−1, and that w has leading term ei. Since e1 ?e−i = ei,
it follows that w has no term in e−i. Since v.w = 0, it follows that w has no term in e−1.
Finally, since e−1 ? ei = e−i, it follows that λ = 0. Therefore v = e1, which is mapped to e−1

by an element of the Weyl group.

As an immediate corollary, we have that the number of points is q2 + 1, and the group acts
2-transitively on the points. Since E(1) is not adjacent to E(−1), it follows that no pair of
points is adjacent, and hence there are no lines in W4.

Theorem 9. Let 〈v〉 be a point in W7, with leading term e1. Then there is an element of
the automorphism group of W7 which maps v to e−1.

Proof. Applying elements of the root group as necessary, we may assume that v has no term
in e−ω, e−ω or e0. Since v is isotropic, it has no term in e−1. Therefore the element et 7→ e−t

of the Weyl group maps v to a vector with no term in e1. Since this is a point, its leading term
is e−1, so v must have been e1.

Again, it follows immediately that the number of points is q3 + 1, and that the group acts
2-transitively on the points. No pair of points is adjacent, and there are no lines in W7.

Theorem 10. Let 〈v〉 be a point in W26, other than E(−1). Then there is an element of
the automorphism group of W26 which maps v to w, where the leading term of w is strictly
lower than the leading term of v.

Proof. The possible leading terms of v are, in increasing order

e(−1), e(ω), e(ωi), e(−j), e(j), e(−ωi), e(−ω), e(1).

Now ρ1 acts on these vectors as the permutation (ω, ωi)(−j, j)(−ωi,−ω), and ρ2 acts as
(−1, ω)(ωi,−j)(j,−ωi)(−ω, 1). In each case, therefore, one of the elements ρ1 or ρ2 takes the
given leading term to the next one down in the sequence, while fixing the zero coefficients in v
corresponding to the higher terms in the sequence. Therefore, all that remains is to prove that
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suitable root elements can be used to remove the term in v corresponding to the next term
down in this sequence.

For example, if v has leading term e(1), we can remove the term in e(−ω) from v by using a
conjugate of x(ω) by a suitable element of the torus. Then ρ2 conjugates the resulting vector
to one with a lower leading term, namely e(−ω). The same argument deals with the case when
the leading term is e(ω).

The other cases are only slightly more difficult. If the leading term is e(−ω) or e(ωi) then we
have the standard generators of Aut(W4) acting on the appropriate 4-space E(−ωi,−ωj ,−ωk,−ω)
or E(ω, ωk, ωj , ωi), with the root element e(−k) acting faithfully. As the argument is the same
in both cases we give the latter. We may use the root group to remove the terms in e(ωj) and
e(ωk). Now the leading term of w is e(ωk), and e(ωk) ? e(ω) = e(ωk), so the term in e(ω) in
v must be zero, as required. The same argument deals with the case when the leading term is
e(j), with Aut(W4) acting on the 4-space E(−j,−k, k, j) modulo E(0).

The remaining two cases are e(−j) and e(−ωi). In these two cases we use x(ω) again, acting
on the 4-space E(ωi,−i, ωj ,−j) or E(j,−ωj , i,−ωi) as appropriate. Consider the first case, as
the other is identical. The leading term of v is e(−j) and the leading term of w is e(−k). We
use the root group to remove the term in e(ωj) from v. But now e(−k) ? e(−i) = e(ωj), so the
term in e(−i) must also be zero. Finally consider the term in e(ωi). We must have v × w = 0,
but e(−k) × e(ω) = e(ωj), which cannot be cancelled out by any lower term of v × w, so the
term in e(ωi) in v is also zero, as required.

Just as in W4 and W7, this argument also allows us to count the points. The root groups
used to remove the next term are alternately of order q and q2. Thus as we go up the sequence,
the number of points with given leading term is multiplied alternately by q and then by q2.
Therefore the total number of points is

1 + q + q3 + q4 + q6 + q7 + q9 + q10 = (1 + q)(1 + q3)(1 + q6).

This time, each point is opposite to precisely q10 other points. Moreover, the group is transitive
on pairs of opposite points. Each point is adjacent to exactly q + q3 points. Moreover, if 〈v〉
and 〈w〉 are adjacent, then for every λ 6= 0 the 1-space 〈v + λw〉 is a point adjacent to both of
them. Thus we obtain a set of q + 1 mutually adjacent points, which is a line.

8. Properties of the Suzuki and Ree groups

8.1. The group orders

Since in each case the group acts transitively on pairs of opposite points, it suffices, in order
to calculate the group order, to calculate the stabilizer of any pair of opposite points, say E(1)
and E(−1).

Theorem 11.
(i) The stabilizer of two opposite points in W4 is Cq−1.
(ii) The stabilizer of two opposite points in W7 is Cq−1.
(iii) The stabilizer of two opposite points in W26 has shape Cq−1 ×Aut(W4) and has order

q2(q2 + 1)(q − 1)2.

Proof.
(i) If the two points E(1) and E(−1) are fixed, then so are

(E(1) ? W ) ∩ E(−1)⊥ = E(1, i) ∩ E(−1)⊥

= E(i)
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E(−1) ? E(i) = E(−i) (8.1)

Therefore the stabilizer consists of diagonal matrices, so by Theorem 1 is cyclic of order
q − 1.

(ii) If the two points E(1) and E(−1) are fixed, then so is E(1) × E(−1) = E(0), and the
result follows from Theorem 3.

(iii) Both the root element x(−k) and the Weyl group element ρ1 are in the stabilizer the
opposite points E(−1) and E(1). Moreover, these elements together with the torus
act on the 4-space E(ω, ωk, ωj , ωi) as the generators of Aut(W4) do on W4. Hence, by
multiplying by a suitable element of Aut(W4), we may assume that E(ω), E(ωk), E(ωj)
and E(ωi) are all fixed. Therefore so are

E(1)× E(ωi) = E(−ωi),
E(−ωi) ? E(ωj) = E(ω),

E(ω)× E(1) = E(−ω),
E(ω)× E(−ω) = E(ω0), (8.2)

and Theorem 4 implies that our symmetry is diagonal. A subgroup Cq−1 of the diagonal
group Cq−1 × Cq−1 already lies inside Aut(W4), so the result follows.

Corollary 1.

(i) The order of the automorphism group of W4 is q2(q2 + 1)(q − 1).
(ii) The order of the automorphism group of W7 is q3(q3 + 1)(q − 1).
(iii) The order of the automorphism group of W26 is

(1 + q)(1 + q3)(1 + q6)q10(1 + q2)q2(q − 1)2.

8.2. Simplicity when q > p

In order to prove simplicity we first need information on the point stabilizers. Since we now
have the group orders, we also have the orders of the point stabilizers. Obtaining the precise
structures is a matter of calculation with root elements, the torus and the Weyl group.

Theorem 12.

(i) The point stabilizer in W4 is a soluble group of lower triangular matrices, of order
q2(q − 1). The stabilizer of a pair of points is a dihedral group of order 2(q − 1).

(ii) The point stabilizer in W7 is a soluble group of lower triangular matrices, of order
q3(q − 1). The stabilizer of a pair of points is a dihedral group of order 2(q − 1).

(iii) The stabilizer of a point in W26 is a group of shape q.q4.q.q4.(Cq−1 × Aut(W4)). The
stabilizer of a pair of points is D2(q−1) ×Aut(W4).

Now we are ready to prove simplicity. The following result is well-known, and easy to prove.

Lemma 1. If G is a primitive permutation group and the point stabilizer is soluble, then
G is simple if it is perfect.

Proof. If K is any proper non-trivial normal subgroup of G, and H is a point stabilizer in G,
then G = HK by maximality, whence G/K = HK/K ∼= H/(H ∩K) is soluble, contradicting
the assumption that G is perfect.

Theorem 13. Aut(W4) is simple if q > 2.
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Proof. If q > 2, then the point stabilizer in Aut(W4) is generated by conjugates of the
diagonal elements, of order q − 1. Hence Aut(W4) itself is generated by conjugates of these
elements. Since these elements lie in the dihedral group D2(q−1), and q − 1 is odd, they are
commutators, and therefore Aut(W4) is perfect. Hence it is simple, for q > 2.

Theorem 14. Aut(W7) is simple if q > 3.

Proof. If q > 3, then the point stabilizer in Aut(W7) is generated by conjugates of the
diagonal elements of order q− 1. Now all involutions are commutators, since they lie in 23:7:3,
and the elements of order (q − 1)/2 are commutators since they lie in a dihedral group Dq−1

of twice odd order. Hence Aut(W7) is perfect, and therefore simple, for q > 3.

In the case of W26 we need the following stronger result, usually known as Iwasawa’s Lemma.

Lemma 2. If G is a finite primitive permutation group, and the point stabilizer H has a
normal soluble subgroup S whose G-conjugates generate G, then G is simple if it is perfect.

Proof. If K is a proper non-trivial normal subgroup of G, then K is transitive, so HK = G.
Now G is generated by the conjugates of S, and writing g = hk with h ∈ H, k ∈ K, for an
arbitrary element g ∈ G, we have Sg = Shk = Sk ≤ SK by normality of K. Hence SK = G,
and G/K = SK/K = S/(S ∩K) is soluble, contradicting the assumption that G is perfect.

Theorem 15. Aut(W26) is simple if q > 2.

Proof. If q > 2, then the point stabilizer in Aut(W26) is again generated by conjugates
of the diagonal elements of order q − 1. Moreover, the normalizer of this torus has shape
Cq−1

2:D16, and therefore these diagonal elements lie in the derived subgroup. Hence Aut(W26)
is perfect. Moreover, the whole torus Cq−1

2 is generated by conjugates of any single non-trivial
element. Hence Aut(W26) is generated by conjugates of the normal soluble subgroup [q10].Cq−1

of the point stabilizer. It only remains to show that the group acts primitively on the points,
and then we apply Iwasawa’s Lemma to deduce that Aut(W26) is simple whenever q > 2. Now
the point stabilizer has orbits of lengths 1, q + q3, q4 + q6, q7 + q9 and q10. For each of the
non-trivial suborbits, there is an element of the Weyl group swapping the fixed point with a
point in that suborbit. In two of the four cases, this element fuses all suborbits. In the other
two, we obtain two orbits, of lengths 1+ q4 + q6 + q10 and q + q3 + q7 + q9. Again, the putative
blocks are more than half the size of the whole orbit, so this is impossible, and therefore the
group is primitive, as required.

8.3. The case q = p

First consider the group Aut(W4) in the case q = 2. We have shown that this is a 2-transitive
group of order 20 acting on a set of 5 points. Therefore it is the Frobenius group of this order,
and may be generated by the permutations (1, 2, 3, 4, 5) and (2, 3, 5, 4).

Next consider the group Aut(W7) in the case q = 3.

Theorem 16. If q = 3 then Aut(W7) ∼= PSL2(8):3.

Proof. We have shown that this is a 2-transitive group of order 28.27.2 = 1512 acting on a
set of 28 points. We have also shown that the Sylow 2-subgroup is elementary abelian of order
8, and has normalizer 23:7:3 of order 168. Therefore Aut(W7) has a transitive action on the 9
Sylow 2-subgroups. Indeed, Sylow’s theorems imply that this action is 3-transitive and faithful.
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Hence Aut(W7) embeds in S9 and is easily seen to be isomorphic to PSL2(8):3. To prove this,
we may label the nine points ∗,∞, 0, 1, 2, 3, 4, 5, 6 and generate the point stabilizer with the
permutations (∞, 0)(1, 3)(2, 6)(4, 5), (0, 1, 2, 3, 4, 5, 6) and (1, 2, 4)(3, 6, 5). Now the stabilizer of
a pair of points contains 7:3 to index 2, and since the involutions in Aut(W7) are all conjugate,
the extra element may be taken to be (∗,∞)(1, 6)(2, 5)(3, 4). Relabelling the points by the
more usual notation for the projective line of order 8, that is ∞ for ∗, 0 for ∞, and ηt for
t = 0, 1, 2, 3, 4, 5, 6, where η3 + η + 1 = 0, our generators become the elements z 7→ z + 1,
z 7→ ηz, z 7→ z2 and z 7→ z−1 which generate the full automorphism group of the projective
line, that is PSL2(8):3. Since the latter group also has order 1512, we obtain the isomorphism
Aut(W7) ∼= PSL2(8):3 as required.

Finally consider Aut(W26) in the case p = 2.

Theorem 17. If q = 2, then Aut(W26) has a subgroup of index 2, which is simple.

Proof. This can be proved by an application of the transfer map to the Sylow 2-subgroup
(Borel subgroup) or to one of the maximal 2-local subgroups (maximal parabolic subgroups)
already constructed. For example, consider the stabilizer of the point E(−1), which, since q = 2,
is the same as the stabilizer of the vector e(−1), and the same as the centralizer of x(−1). Since
x(−1) is the square of x(−i), it is straightforward to calculate the centralizer of x(−i), and we
find that it has shape 4×24.5.4. Moreover, we see at least three conjugacy classes of inner root
elements in the point stabilizer, namely the classes containing x(−i), x(ωj) and x(−k).

Conversely, the root element x(−i) fixes exactly 31 points. To prove this, note first that the
leading term of any fixed point must be one of e(−1), e(ω), e(ωi), e(−j) or e(j) . Now there
is just one point with leading term e(−1), two with leading term e(ω) and eight with leading
term e(ωi). The last two are fused into a single orbit of length 10 under the centralizer of x(−i).
Similarly, this centralizer maps the points with leading term e(j) to those with leading term
e(−j), so it suffices to consider the latter. In total there are 16 such points, and precisely four
of these are fixed by x(−i), namely the images of e(−j) under the group generated by x(ωi)
and x(ω). In particular, there are exactly three orbits of the centralizer of the inner root group
x(−i) on the points fixed by x(−i), so there are exactly three conjugacy classes in the point
stabilizer which consist of conjugates in Aut(W26) of x(−i). But we have already exhibited
three, so there are no more.

Now it is not difficult to see that the point stabilizer is generated by the inner root groups
it contains. I claim that the subgroup generated by products of an even number of inner root
elements has index 2. To prove this, we first calculate some commutators to show that the
subgroup generated by the root groups for the roots ω, ωi, ωj , ωk,−1, ωi, ω and the products
x(−i)x(ωj), x(−i)x(ωk) is normal in the point stabilizer. (Actually we only need to calculate
the commutators of x(ω) and x(−i)x(ωk) with x(−k) and then the rest follow.) Now extend this
normal subgroup by ρ1 and x(−i)x(−k), which generate a group isomorphic to Aut(W4) ∼= 5.4.
This proves the claim.

Now we apply transfer. Specifically, (37.4) in [1] shows that the inner root elements lie
outside Aut(W26)′. (It may be objected that this is not an elementary argument, but in fact it
only relies on the previous two pages of [1], which in this instance is elementary and does not
rely on any earlier parts of the book.) Obviously therefore the subgroup generated by products
of two inner root elements has index exactly 2 in Aut(W26). We shall show that this subgroup
is simple, whence it is equal to the derived group Aut(W26)′. The root elements corresponding
to inner roots lie outside the subgroup. The point stabilizer in this subgroup is soluble, and it
is easy to see that the action on the 1 + 20 + 80 + 640 + 1024 = 1755 points is still primitive:
for the only possibility would be that some of the given orbits of Aut(W26) split into two
orbits of equal size for the subgroup, but then simple arithmetic rules out any possiblility for a
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block size. The structure of the point stabilizer as 2.24.24.5.4 shows that a subgroup of index 4
thereof is in the derived group, and the rest of the group is generated by x(−i)x(−k), which is
conjugate to x(ωk)x(ωj), which lies inside the derived group also. Hence Aut(W26)′ is perfect,
and therefore simple.

9. Further remarks

9.1. Identification of the groups

At this stage we have proved that, for q > p, the automorphism groups of our W-algebras
are simple groups of the same order as the Suzuki and Ree groups, and therefore they are
isomorphic to the Suzuki and Ree groups. However, this argument uses some highly non-trivial
parts of the Classification Theorem for Finite Simple Groups, and so one may prefer a more
concrete proof. Indeed, in the case of the Suzuki groups, it is transparent that our matrices are
the same as those obtained by Suzuki. In the case of the small Ree groups, one can also make
the identification with the Tits geometry without too much difficulty. In the case of the large
Ree groups, one can find a re-labelling of the coordinates which identifies our basis with that
used by Howlett, Rylands and Taylor [8] in their computation of explicit matrices.

In the case q = p, we showed that Aut(W) has a subgroup of index p. When W = W26,
this is the Tits simple group, and in the other two cases we see the well-known isomorphisms
2B2(2) ∼= 5:4 and 2G2(3) ∼= PSL2(8):3.

9.2. Subgroups of Suzuki groups

The maximal subgroups of the Suzuki groups were determined by Suzuki [15] in his original
paper. In this section we sketch a proof, and briefly describe how these maximal subgroups can
be related to the geometry of our algebra.

Theorem 18. (Suzuki) The maximal subgroups of 2B2(q), q > 2, are, up to conjugacy,

(i) [q2].(q − 1);
(ii) (q − 1):2;
(iii) (q +

√
2q + 1):4;

(iv) (q −
√

2q + 1):4;
(v) 2B2(q0), for q = qr

0, r prime, q0 > 2.

Proof. (Sketch.) We have already shown that the stabilizer of E(−1) is a (maximal, soluble)
subgroup of shape [q2].(q − 1), consisting of lower triangular matrices. Now the stabilizer of
E(−i) fixes also

(E(−i) ? W ) ∩ E(−i)⊥ = E(−1, i) ∩ E(−i)⊥

= E(−1) (9.1)

so is a non-maximal subgroup of order q(q − 1). This accounts for all the

(q2 + 1) + q(q2 + 1) = (q2 + 1)(q + 1) (9.2)

1-dimensional subspaces of W4.
No two points are perpendicular, so an isotropic 2-space can contain at most one point. But

there are q + 1 isotropic 2-spaces containing each of the q2 + 1 points, which accounts for all
of the (q2 + 1)(q + 1) isotropic 2-spaces. In every case, the stabilizer of the 2-space lies inside
the point stabilizer.
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The non-singular 2-space E(−1, 1) contains exactly two points, namely E(−1) and E(1), so
its stabilizer is a dihedral group (q − 1):2. This group also fixes the 2-space

E(−1, 1)⊥ = E(−i, i), (9.3)

which contains no points, and together these account for all the (q2+1)q2 non-singular 2-spaces.
Hence any other maximal subgroup is irreducible. If it is local, then it is of shape A:4, where

A is abelian, since an elementary abelian 22 does not act regularly on W4. On the other hand,
if it is non-local it can only be a smaller Suzuki group. To see the remaining local maximal
subgroups, it is useful to consider the exterior square of W4. This is a 6-dimensional space, on
which the group acts fixing the vector e1 ∧ e−1 + ei ∧ e−i. Factoring by the 1-space spanned
by this vector, we obtain a 5-dimensional space on which the group acts. This contains an
invariant 4-space, spanned by e±1 ∧ e±i, on which the group acts as the Frobenius twist of its
action on W4 itself.

Now the q4 1-spaces which lie outside this 4-space fall into two orbits under the action of
the dual of the 5-dimensional orthogonal group, of lengths (q4 ± q2)/2. The subgroup D2(q−1)

must fix such a vector, which must be in the orbit of length (q4 + q2)/2, so this remains a
single orbit on restriction to the Suzuki group. The orbit of length (q4 − q2)/2 must split into
at least two orbits on restriction to the Suzuki group, since the latter has order not divisible
by q2 − 1. Since the stabilizers must have order bigger than 2(q − 1) in each case, it is not
difficult to see that there are exactly two orbits, of lengths 1

4q2(q − 1)(q ±
√

2q + 1), and the
stabilizer of a vector in one of these orbits has order 4(q ±

√
2q + 1). In each case the group

is a Frobenius group Cq±
√

2q+1:4, which is maximal as it is visibly not contained in any of the
other subgroups.

9.3. Subgroups of the small Ree groups

The maximal subgroups of the small Ree groups were determined by Kleidman [10].

Theorem 19. (Kleidman) The maximal subgroups of 2G2(q), q > 3, are, up to conjugacy,
(i) [q3].(q − 1);
(ii) 2× PSL2(q);
(iii) (22 ×D(q+1)/2):3;
(iv) (q +

√
3q + 1):6;

(v) (q −
√

3q + 1):6;
(vi) 2G2(q0), where q = qr

0, r prime.

We shall not pretend to prove this here, although our arguments make a significant contri-
bution to the proof. We merely indicate how these maximal subgroups relate to the geometry
of our algebra.

We begin by classifying the 1-dimensional subspaces. The ambient orthogonal group Ω7(q)
has just three orbits on 1-spaces, one of q5 + q4 + q3 + q2 + q + 1 isotropic 1-spaces, and two
orbits one 1-spaces consisting of non-isotropic vectors, of lengths (q6 ± q3)/2. We know that
there are q3 + 1 isotropic 1-spaces in the orbit of E(−1) under the Ree group. Now

E(ω) ? W = E(−1, ω), (9.4)

which contains a unique point, namely E(−1). Hence E(ω) lies in an orbit of size q(q3 + 1).
Similarly,

(E(ω) ? W ) ∩ E(ω)⊥ = E(ω,−ω) ∩ E(ω)⊥

= E(ω), (9.5)

so the stabilizer of E(ω) is again contained in the stabilizer of E(−1), and therefore E(ω) lies
in an orbit of size q2(q3 + 1). This accounts for all the (q3 + 1)(q2 + q + 1) isotropic 1-spaces.
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Next consider the orbit of E(0), and recall from the proof of Theorem 3 that multiplication
by e0 has ±1-eigenspaces E(−1,−ω,−ω) and E(1, ω, ω). Since each of these contains a unique
point, namely E(−1) and E(1) respectively, it follows from Theorem 3 that the stabilizer of
E(0) has order at most 2(q − 1). But the dihedral subgroup generated by the torus and the
Weyl group does indeed fix E(0), so this is full stabilizer. This accounts for all (q6 + q3)/2
1-spaces in this Ω7(q)-orbit. In particular, the Ree group is transitive on these 1-spaces. The
stabilizer is not in fact a maximal subgroup, as we shall show below.

Finally, the orbit of length (q6 − q3)/2 must split into at least two orbits under the action
of the Ree group, with each stabilizer having order bigger than q. In fact, it splits into three
orbits. One of these has length q3(q2 − q + 1)(q − 1)/6 and the corresponding stabilizer is a
group of shape (22 ×D(q+1)/2):3 (for a proof that it has this shape, see below). The other two
have lengths

q3(q2 − 1)(q ±
√

3q + 1)/6 (9.6)

and the stabilizers are Frobenius groups Cq+
√

3q+1:6.
The only other Ω7(q)-orbit of subspaces which has length less than the order of the Ree

group (so that there is some hope of a reasonable classification of them) is the orbit on

(q3 + 1)(q2 + 1)(q + 1) (9.7)

totally isotropic 3-spaces. Now no isotropic subspace can contain more than one point, and
the number of isotropic 3-spaces containing E(−1) is (q2 + 1)(q + 1). Therefore all isotropic
3-spaces contain a unique point.

We conclude with a sketch of the 2-local analysis. Since q ≡ 3 mod 8, the formula for the
group order shows that the Sylow 2-subgroup has order 8, coming from a factor of 2 in q − 1
and a factor of 4 in q3 + 1.

Now the centralizer of the involution which negates e(±1) and e(±ω) and fixes e(±ω) and
e(0) contains the cyclic group of order q− 1 consisting of the diagonal elements, together with
the Weyl group and the root element defined by e(0) 7→ e(0) + e(ω). These together generate
at least Ω3(q) acting on the 3-space E(0,±ω). But this involution negates exactly q +1 points,
and the point stabilizer contains exactly q2 involutions, so the involution centralizer has order

q3(q − 1).
q + 1
q2

= q(q2 − 1) = 2|Ω3(q)|. (9.8)

Moreover, since we already know the involution centralizer contains C2 × C2, it cannot be
SL2(q), and therefore it is 2×Ω3(q) ∼= 2×PSL2(q). This group properly contains the stabilizer
of E(0), which is therefore not maximal.

It follows from the structure of the involution centralizer that the Sylow 2-subgroup is
elementary abelian, and the part of its normalizer which lies in the involution centralizer
is 2 × A4. Now there is a unique class of involutions in the point stabilizer, and it is easy
to see that involutions of all three classes in 2 × A4 fix points: the central involution fixes
E(−1), while the involution et 7→ e−t fixes 〈e1 − e−ω − e0 + eω − e−1〉, and their product fixes
〈e1 + eω + e−ω + e0 + eω− e−ω + e−1〉. Hence all these involutions are conjugate, and the Sylow
2-normalizer has shape 23:7:3. It is not maximal because it is contained in 2G2(3) ∼= PSL2(8):3.

Now the involution centralizer in PSL2(q), for q ≡ 3 mod 8, is a dihedral group Dq+1
∼=

2×D(q+1)/2, since (q + 1)/4 is odd. It follows that the normalizer of a 22 is a group of shape
(22 ×D(q+1)/2):3.

9.4. Subgroups of the large Ree groups

The maximal subgroups of the large Ree groups were determined by Malle [12]. In this
section we briefly describe how a number of these maximal subgroups can be related to the
geometry of our algebra.
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Theorem 20. (Malle) The maximal subgroups of 2F4(q), q > 2, are, up to conjugacy,

(i) q.q4.q.q4:(2B2(q)× Cq−1);
(ii) q2.[q9]:GL2(q);
(iii) SU3(q):2;
(iv) PGU3(q):2;
(v) 2B2(q) o 2;
(vi) Sp4(q):2;
(vii) (Cq+1 × Cq+1):2S4;
(viii) (q +

√
2q + 1)2:4S4;

(ix) (q −
√

2q + 1)2:4S4, provided q > 8;
(x) (q2 + q

√
2q + q +

√
2q + 1):12;

(xi) (q2 − q
√

2q + q −
√

2q + 1):12;
(xii) 2F4(q0), for q = qr

0, r prime.

The Borel subgroup (i.e. the subgroup of lower unitriangular matrices) has order q12.(q−1)2,
and is generated by the torus together with the root subgroups corresponding to the negative
roots. Adjoining to this the Weyl group element ρ1 gives the stabilizer of the point E(−1),
which has shape q.q4.q.q4.(Cq−1× 2B2(q)). Adjoining instead the Weyl group element ρ2 gives
the stabilizer of the line E(−1, ω), which has shape [q11]GL2(q), where GL2(q) ∼= Cq−1×SL2(q)
since q is even.

We saw that the stabilizer of two opposite points has shape Cq−1×2B2(q). Taking the points
E(−1) and E(1), this group may be generated by the torus D together with the root elements
x(k) and x(−k) corresponding to the roots ±k. Now if we conjugate these root elements by
ρ2ρ1ρ2 we obtain the root elements corresponding to ±i. It is easy to show that these new root
elements commute with the original ones. Therefore we obtain a group 2B2(q)× 2B2(q) which
is normalized by ρ2ρ1ρ2 to give a subgroup 2B2(q) o 2. It is visible that this subgroup preserves
the decomposition of the space as W10⊕W16. Indeed, it fixes the 1-space E(0), and is therefore
the stabilizer of this 1-space.

We define two lines to be opposite if every point on one line is opposite to all but one of
the points on the other line. Then the stabilizer of two opposite lines, such as E(−1, ω) and
E(−ω, 1), has shape Cq−1×SL2(q). This group is generated by the torus and the root elements
corresponding to the roots ±ω, and may be extended to SL2(q) o2 by adjoining ρ1ρ2ρ1. In fact,
if we adjoin also ρ1 we obtain a copy of the symplectic group Sp4(q) extended by its outer
automorphism of order 2. To see this, observe first that this group contains the whole torus and
Weyl group, and is generated by these together with any middle root element. In particular, we
see that all the generating elements fix E(ω0). Modulo this there are two 4-spaces E(±ω,±ωk)
and E(±ωi,±ωj) on which the generators act as the symplectic group, swapped by the outer
automorphism.

Inside SL2(q)×SL2(q) there is a subgroup (q+1)2 which fixes a 2-space. Indeed, this 2-space

is determined as the fixed space of a subgroup 32, generated by
(

0 1
1 1

)
in each SL2(q), say.

In the case when the two factors are generated by x(±i) and x(±k), the corresponding 2-space
is

〈e(ω0), e(ωk) + e(ω) + e(0) + e(−ω) + e(−ωk)〉. (9.9)

Now there is an S3 acting on this 2-space, so that its full stabilizer is (q + 1)2:2S4.
Similarly, inside 2B2(q) o 2 there are subgroups ((q ±

√
2q + 1):4) o 2 which fix 2-dimensional

subspaces, and the full stabilizer of such a 2-space is (q ±
√

2q + 1)2:4S4. One of these two
groups contains a 52, which can be defined over the prime field by taking the square of the root
element, times the involution in the Weyl group. In the two copies of 2B2(q), such an element
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acts as 
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 1 0
0 1 0 1 1 1
0 0 0 0 1 1

 (9.10)

on E(0,−1,−i, i, 1, ω0) or E(0,−j,−k, k, j, ω0). Hence the 2-space is

〈e(0), e(−i) + e(−k) + e(ω0) + e(k) + e(i)〉. (9.11)

9.5. Infinite fields

Some of the above, but not all, makes sense over infinite fields. Suppose first that we have an
infinite perfect field with a Tits automorphism. In this case, our definitions of the W-algebras
go through. The Weyl group is still the same, and so is the torus, although we do need to
check generation. For example, in the Suzuki groups we had the torus generated by diagonal
elements with entries (λ, λτ−1, λ1−τ , λ−1), but since (τ − 1)(τ + 1) = τ2 − 1 = 1 this torus
element can equally well be written with entries (µτ+1, µ, µ−1, µ−τ−1).

Now, since the multiplicative group of the field is no longer cyclic, it is not obvious that
the root group is generated by a single root together with the torus. This has to be checked
separately. For example we check the bottom right-hand corner of the Suzuki root group by
computing (

λτ−1 0
0 λ

) (
1 0
1 1

) (
λ1−τ 0

0 λ−1

)
=

(
1 0

λ2−τ 1

)
(9.12)

and observe that λ2−τ is an arbitrary element of the field since raising it to the power τ +1 gives
λ−τ2+τ+2 = λτ , and we are assuming that τ is an automorphism, not just an endomorphism.
A similar calculation shows that we also get the whole field in the case of the squares of
these root elements. Notice however that this calculation depends crucially on having a perfect
field, and even though the generators can be written down over an arbitary field with a Tits
endomorphism, this result is probably not true in the general case.

Similarly the classification of points goes through, and the above calculations give 2-transitivity
on the points in the case of the Suzuki groups and small Ree groups.

The commutators in the normalizer of the torus of the Suzuki group are now diagonal of
shape (λ2, λ2(τ−1), λ2(1−τ), λ−2), which covers all elements of the torus, since the field is perfect.
Hence we have the required generation result, and the proof of simplicity goes through. The
same is true for the small Ree groups. In the case of the large Ree groups, however, we cannot
use Iwasawa’s Lemma directly, as it only applies to finite groups.
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