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Abstract. We determine a presentation for the Thompson sporadic simple
group Th. The proof of correctness of this presentation uses a coset enu-
meration of 143,127,000 cosets. In the process of our work, we also determine
presentations for 3D4(2), 3D4(2):3, G2(3):2, and CTh(2A) (of shape 21+8

+
.A9).

We also provide, via the internet, matrices generating Th and satisfying our
presentation.
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1. Introduction

Presentations for many sporadic simple groups and their automorphism groups
have been published. For example, see [PS97] for M11, M12, M22, M23, M24,
J1, J2, HS, McL, He, Suz, O’N , Co1, Co2, Co3, Fi22, Fi23, Fi24; see
[HM69] for J3, [Wei91] for Ru, [BN97] for HN :2, [JW96,HS99] for Ly,
[SW88,Iva92] for J4, and [Iva99] for B and M . Indeed, until now, the
Thompson group Th was the only sporadic simple group S for which there
was no published presentation for S or Aut (S). In this paper, we apply
computational group theory in various ways to determine a presentation for
Th (∼= Aut (Th)). In the process, we also determine presentations for 3D4(2),
3D4(2):3, G2(3):2, and CTh(2A). We also provide, via the internet, matrices
generating Th and satisfying our presentation.

Throughout, we use ATLAS notation [ATLAS] for conjugacy classes and
group structures. The proof of correctness of the presentation for Th uses a
coset enumeration of 143,127,000 cosets, first completed during the Conference.

2. The Thompson group

In the monster group M , the centralizer of an element in conjugacy class 3C is
of shape 3×Th, where Th is the Thompson (sporadic simple) group. The group
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Th has order 90, 745, 943, 887, 872, 000 = 215.310.53.72.13.19.31. The maximal
subgroups of Th have been completely determined (see [Wil88,Lin89,Lin91]),
the largest being 3D4(2):3 of index 143,127,000. The next largest maximal sub-
group is the Dempwolff group 25.L5(2), of index 283,599,225. The Thompson
group contains just one conjugacy class of involutions, and the centralizer of
an element in this class is a maximal subgroup of shape 21+8

+
.A9. There are

exactly three conjugacy classes of elements of order 3 in Th, and the normal-
izer N(3A) of the subgroup generated by an element in the smallest such class
is a maximal subgroup of shape (3×G2(3)):2.

3. The presentations

Theorem 3.1. Consider the group T presented by generators a, b, c, d, e, s, t, u
and relators (1)− (6) below:

a2, b2, c2, d2, e2, (ab)3, (ae)2, (bc)3, (bd)2, (be)2, a = (cd)4, (ce)2, (de)3, (bcde)8,
(1)

s7, [s, a], [s, b], [s, c], (sd)2, [e, s] = es
3

, (2)

t3, [t, a], [t, b], [t, c], [t, d], [t, e], st = s2, (3)

u2 = ac, [u, a], [u, c], [u, e], (dedu)2, [u, (ac)b] = e, [ud, (ac)b] = ue(ac)budec,
(4)

tu = t−1, (5)

[e, us2 ], ac = (us)3 = [u, s]4, (dus2)4 = accdcdes
−1

cdes
2

. (6)

(Here, the equation w1 = w2 denotes the relator w1w
−1
2 . The notation ww2

1

means w−1
2 w1w2, and [w1, w2] means w−1

1 w−1
2 w1w2.)

Then the following hold:

1. T ∼= Th.

2. Generators a, b, c, d, e, s together with relators (1), (2) is a presentation
for 3D4(2).

3. Generators a, b, c, d, e, s, t together with relators (1), (2), (3) is a presen-
tation for 3D4(2):3.

4. Generators a, b, c, d, e, u together with relators (1), (4) is a presentation
for G2(3):2.
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5. Generators a, c, d, e, s, t, u together with the relators from (1) − (6) not
involving b is a presentation for CTh(2A).

Proof. Using the 248-dimensional GF (2)-matrix representation of Th available
from the ATLAS of Finite Group Representations [Wil98,W+99], we have
constructed non-identity 248-dimensional GF (2)-matrices a,b, c,d, e, s, t,u ∈
Th satisfying all the relators (1)− (6) above (in the obvious way). The inter-
ested reader can find these matrices in GAP-format (see [GAP4]) at

http : //www.mat.bham.ac.uk/atlas/gap/Th/

and verify this. Later, we will see that these matrices generate Th. The
determination of these matrices is described in Section 4.

Now the abstract generators a, b, c, d, e together with the relators (1) is
easily seen to be a presentation for the group U3(3):2 (this is essentially the
same presentation as that for U3(3):2 which appears in [Soi92]). Indeed, the
reader is encouraged to (at least) check that the group so presented has order
12,096. A coset enumeration shows that 〈a, b, c, d, e〉 has index 17,472 in the
group D presented by generators a, b, c, d, e, s and relators (1), (2). Thus D,
as well as its matrix group image

D := 〈a,b, c,d, e, s〉,

has order at most that of 3D4(2). Moreover, the subgroup D of Th contains
〈a,b, c,d, e〉 ∼= U3(3):2 (as opposed to a proper quotient of this group, in which
case the relators would imply a = 1, a contradiction), and also D contains
72 ∼= 〈bccd, s〉. From the maximal subgroup structure of Th we conclude that
the only possibility for D is 3D4(2). Since the order of D is bounded by that
of 3D4(2) as well as having D as a homomorphic image, we conclude that
D ∼= 3D4(2), establishing Statement 2 of the theorem.

Given that t has order 3 and the relators (3), we conclude that t is an
element of order 3 in T , normalizing the subgroup 〈a, b, c, d, e, s〉 ∼= 3D4(2)
and centralizing its maximal subgroup 〈a, b, c, d, e〉 ∼= U3(3):2. Since no inner
element of 3D4(2) of order 3 has these properties, it follows that

H := 〈D, t〉 ∼= 3D4(2):3,

and Statement 3 follows.
Now H is a maximal subgroup of Th, and u 6∈ H since, by relator (5), u

must invert t. Hence

Th = 〈a,b, c,d, e, s, t,u〉,

and we have that Th is a homomorphic image of the group T presented.
Now the main Statement 1 of the theorem follows from the enumeration of
143,127,000 cosets of H := 〈a, b, c, d, e, s, t〉 in T . This enumeration is described
in Section 5.
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We now tackle Statement 4. The matrix u is in the normalizer of t, with
u inverting t. Hence

G := 〈a,b, c,d, e,u〉 ≤ NTh(t) ∼= (3×G2(3)):2,

and it is easy to see that G ∼= G2(3):2 (with the full normalizer of 〈t〉 being
〈G, t〉). A coset enumeration shows that 〈a, b, c, d, e〉 has index 702 in the
group presented by generators a, b, c, d, e, u and relators (1), (4), establishing
Statement 4.

Finally, we prove Statement 5. It is easily deduced from relators (1)− (3)
that a commutes with c, d, e, s, and t. Then a coset enumeration shows
that 〈a, c, d, e, s, t〉 has index 819 in H = 〈a, b, c, d, e, s, t〉, establishing that
〈a, c, d, e, s, t〉 = CH(a) ∼= 21+8

+ :L2(8):3 ∼= 〈a, c,d, e, s, t〉. Since [u,a] = 1 and
u 6∈ H, we have that

C := 〈a, c,d, e, s, t,u〉 = CTh(a).

Now let C be the group presented by generators a, c, d, e, s, t, u together with
the relators from (1)− (6) not involving b. It is easy to show, using coset enu-
meration, that in C, L := 〈d, e, s, t〉 ∼= L2(8):3, and then a coset enumeration
of the 61,440 cosets of L in C completes the proof of 5.

We now outline (roughly) how our presentation for Th was derived. We
started by determining the presentation above for H = 〈a, b, c, d, e, s, t〉 ∼=
3D4(2):3, starting with the known presentation for U := 〈a, b, c, d, e〉 ∼= U3(3):2,
and using the subgroup structure of 3D4(2):3 given in [ATLAS] to determine
the further generators and relators. In H, t is an outer element of order 3 cen-
tralized by U , and in Th, we can extend U to G2(3):2 by an element u inverting
t. Up to automorphisms of G2(3):2 there is just one way to identify the ele-
ments a, b, c, d, e. Calculating in a permutation representation of G2(3):2, we
identified these elements, chose an outer element u centralizing a and satisfying
other short relators, and then determined a presentation for G2(3):2 on gener-
ators a, b, c, d, e, u. For this, the GAP4 function PresentationViaCosetTable

was very helpful in determining the crucial relation [ud, (ac)b] = ue(ac)budec,
to make correct the subgroup 〈a, c, (ac)b, cd, e, u, ud〉 ∼= 23.L3(2).2 in G2(3):2.
Defining relators for CTh(a) ∼= 21+8

+
.A9 on generators a, c, d, e, s, t, u were more

difficult to obtain, although starting with 〈d, e, s, t〉 ∼= L2(8):3, we determined
defining relators modulo the normal 21+8

+ (which is the normal closure of c
in 〈a, c, d, e, s, t〉). To exactly determine defining relators for CTh(a), we then
constructed the matrices generating Th, and satisfying all the relators (1)−(5)
above, and then deduced the relators (6).

Some of our relators for T ∼= Th are known to be redundant, but are
included for clarity or to aid coset enumeration. We also remark that, in T ,
〈a, c, (ac)b, cd, e, s, t, u, ud〉 is isomorphic to the Dempwolff group 25.L5(2).
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4. Determining matrices in Th satisfying the presentation

Inside the Thompson group, a copy of 3D4(2):3 can easily be found in a ran-
dom search of subgroups generated by an involution and a 3C-element. To
find 3 × U3(3):2, the centralizer of a 3C-element in 3D4(2):3, we first found
two elements, of orders 21 and 12, powering up to two different 3C-elements,
and then in the group generated by these two 3-elements, found an element
conjugating one to the other. (This could be done either by a random search,
or by pure thought, since the group generated by these elements turned out
to be 23:7:3.) We thus obtain elements of orders 21 and 12 powering up to
the same 3C-element, and generating the whole of its centralizer, 3×U3(3):2.
This 3C-element may be taken as t±1.

We then look for a, b, c, d, e satisfying the given presentation for U3(3):2.
We first found an outer involution, which we can take to be e, and used
standard methods to find its centralizer 2 × S4. There are two subgroups
isomorphic to S4 in here, one of which is inside U3(3). We take a, b, c to be
the transpositions (12), (23), (34) of the latter. It remains to find d, which is
unique up to conjugation by e. We do this by searching in the centralizer of
another involution, such as a (or b). Since this centralizer is small, this does
not take long.

The next step is to find s inside 3D4(2):3. Now s is an element of order 7
commuting with 〈a,b, c〉 ∼= S4, so we work inside the normalizer of the fours-
group 〈ac, (ac)b〉, which is a group of shape 22.[29].(7 × S3). We take any
element s0 of order 7 in this group, and then s1 = s0[bc, s0] commutes with
bc, so s is a suitable power of s1. Indeed, we may take s = s1 without loss of
generality. At this point we can use the relation st = s2 to determine which
central element of 3× U3(3):2 is t, and which is t−1.

Finally we must find u, which we do inside the full centralizer 21+8
+

.A9 of
a. This centralizer is generated by c, d, e, s, t and one other element, found
by standard methods. We chop the representation to find a constituent which
represents A9, and convert everything to the natural permutation represen-
tation where we can calculate easily. We are looking for an element which
commutes with e, and inverts t. In the quotient A9, there are just three invo-
lutions with these properties, but only one satisfies the relation (us)3 = 1. If
u0 is any lift of this element in 21+8

+
.A9, then u1 = u0[t,u0] inverts t.

We now have N(t) ∼= (3 × G2(3)):2 generated by t, a, b, c, d, e and u1,
but u1 still does not satisfy all the required relations, because we have not
yet specified precisely which preimage of the element of A9 to take. Inside
G2(3):2 generated by a, b, c, d, e and u1 we find that the normalizer of the
fours-group 〈a, c〉 is generated by bacb, dcd, e and u1, and we search in this
small group for the required element u.
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5. The large coset enumeration

The enumeration to determine |T : H| requires the definition of more than 140
million cosets. Thus this step requires substantial resources. Recent descrip-
tions of relevant aspects of coset enumeration are given in [Sim94,HR]. Of
particular importance here is that the space required (memory locations) for
a standard coset enumeration to complete is at least the maximum number of
cosets defined times the number of columns in the coset table. The number of
columns in the coset table is the number of involutary group generators plus
twice the number of noninvolutary generators.

In some circumstances (eg, see [HS99]) this means we need to consider
finding presentations with small generating sets. In our case here the given
presentation for T leads to eleven columns, which is not too many in the
context of memory resources available on some supercomputers. Our enumer-
ations were performed on an SGI Origin 2000 computer which has 16 gigabytes
of memory, and we were able to obtain access to some 8 gigabytes. This is
enough to store over 180 million cosets with the given presentation.

For difficult coset enumeration problems there is sometimes the need for
substantial experimentation to determine how to complete an enumeration
with given resources (see [HR]). However our experience with the various
subgroups of T discussed in this paper led us to believe that the enumeration
in this case would be relatively easy, and so it turned out.

Using the ACE3 coset enumerator [ACE], with group presentation and
subgroup generators exactly as in this paper we can readily compute the
143,127,000 cosets of H in T .

The ACE3 enumerator has a large number of parameters, with a wide
choice of settings and enumeration styles (see [ACE]). We have completed
the enumeration using various strategies without undue difficulty. Felsch-based
enumerations seem best. They complete in as little as about 62 cpu hours.
For example, with the styles Hard, Felsch:0, Felsch:1 and Sims:3 in each
case the maximum number of cosets defined is the index. The total numbers

are:
Hard Felsch:1 Felsch:0 Sims:3

145,251,396 151,273,730 155,354,391 240,046,124
.

The HLT style seems less attractive, using a maximum of 179,631,904 cosets
and a total of 473,745,756 in an enumeration given 8 gigabytes of memory.
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