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Abstract

In this paper we describe the completion of the determination of
the maximal subgroups of the Baby Monster simple group. Our results
are proved using computer calculations with matrix generators for the
group. The full details of the calculations will appear elsewhere.

1 Introduction

This paper is a sequel to [8], [10], [12], in which a partial classification of the
maximal subgroups of the Baby Monster simple group B of Fischer (see [2])
was achieved. The cases left open after [12] were the 2-local subgroups, and
the non-local subgroups whose socle is a simple group, isomorphic to one of
the following 16 groups.

A6, L2(11), L2(16), L2(17), L2(19), L2(23), L2(25), L3(3), U3(3),

L3(4), U3(8), U4(2), 2F4(2)′, G2(3),M11 and M22.

The maximal 2-local subgroups have recently been completely classified
by Meierfrankenfeld and Shpektorov, with a very beautiful argument [4]. In
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this paper we deal with the remaining non-local subgroups, using computer
calculations with the matrix generators for B constructed in [9]. Here we
give the theoretical parts of the argument, together with brief descriptions of
the computations and results. We make much use of the information in the
Atlas [1], including the character table computed by David Hunt [3]. Full
details of the calculations will appear elsewhere [13].

Acknowledgements. The calculations described in this paper were begun
on a SUN SPARCstation ELC, provided by the School of Mathematics and
Statistics of the University of Birmingham with assistance from a grant from
the Science and Engineering Research Council Computational Science Ini-
tiative. They were completed on a DEC Alpha AXP workstation provided
from another SERC CSI grant. I am grateful to both institutions for their
financial assistance.

2 Statement of results

We prove the following theorem.

Theorem 2.1 The maximal subgroups of B are the conjugates of

1. the 22 maximal subgroups listed in the ATLAS;

2. the following 8 new maximal subgroups:

(a) (S6 × L3(4):2).2

(b) (S6 × S6):4

(c) L2(31)

(d) L2(49).2

(e) L2(11):2

(f) M11

(g) L2(17):2

(h) L3(3)

This may be re-stated as follows.

Theorem 2.2 There are just 30 conjugacy classes of maximal subgroups of
B, as listed in Table 1.
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Table 1: The maximal subgroups of the Baby Monster

Group Order
2.2E6(2):2 306 129 918 735 099 415 756 800
21+22.Co2 354 883 595 661 213 696 000
Fi23 4 089 470 473 293 004 800
29+16S8(2) 1 589 728 887 019 929 600
Th 90 745 943 887 872 000
(22 × F4(2)):2 26 489 012 826 931 200
22+10+20(M22:2× S3) 22 858 846 741 463 040
25+5+10+10L5(2) 10 736 731 045 232 640
S3 × Fi22:2 774 741 019 852 800
2[35](S5 × L3(2)) 692 692 325 498 880
HN :2 546 061 824 000 000
O+

8 (3):S4 118 852 315 545 600
31+8:21+6.U4(2).2 130 606 940 160
(32:D8 × U4(3).22).2 1 881 169 920
5:4×HS:2 1 774 080 000
S4 × 2F4(2) 862 617 600
32+3+6(S4 × 2S4) 204 073 344
S5 ×M22:2 106 444 800
(S6 × L3(4):2).2 58 060 800
53.L3(5) 46 500 000
51+4:21+4A5.4 24 000 000
(S6 × S6).4 2 073 600
52:4S4 × S5 288 000
L2(49).2 117 600
L2(31) 14 880
M11 7 920
L3(3) 5 616
L2(17):2 4 896
L2(11):2 1 320
47:23 1 081
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3 General strategy

We work our way up from small subgroups to large ones. Suppose we wish to
classify up to conjugacy all subgroups of B isomorphic to a particular simple
group S. Then we choose some way of generating S by subgroups H and
K with L ≤ H ∩K. Usually we take L = H ∩K, and often L is a normal
subgroup of K, but these are computational conveniences and not always
necessary. Our aim is then to classify up to conjugacy all occurrences of such
an amalgam (H,K)L in B, and identify which of these generate subgroups
isomorphic to S.

Typically our strategy consists of finding first H (inside some known
proper subgroup), then L (inside H—this is usually easy), and then NB(L)
(this is much harder), and finally searching through all possibilities for K
inside NB(L).

We describe first the cases where we build up from an A5: in section 4 we
consider the four ‘small’ cases A6, L2(11), L2(19) and L3(4), and in section 5
we consider the six ‘large’ cases L2(16), L2(25), U4(2), 2F4(2), M11 and M22.
Then we consider the progressively more difficult cases L2(23), G2(3), U3(8),
L3(3), U3(3) and L2(17).

4 Groups generated by an (A5, A5) amalgam

Many of the groups in the above list can be generated by two subgroups
A5 intersecting in D10. This includes the groups A6, L2(11), L2(19), and
L3(4). It also includes L2(31) and L2(49), and thus our present work provides
another proof of the results in [10]. In all cases, by the results of [12], we are
only interested in groups containing 5B-elements. We show the following.

Proposition 4.1 If H is a subgroup of B containing 5B-elements, and H
is isomorphic to A6, L2(11), L2(19) or L3(4), then H is conjugate to one of
the following five groups.

1. H1
∼= A6, with N(H) ∼= M10 < Th,

2. H2
∼= A6, with N(H) ∼= A6

.22 < (S6 × S6).4,

3. H3
∼= A6, with N(H) ∼= M10 contained in a 2-local subgroup,

4. H4
∼= L2(11), with N(H) ∼= L2(11):2 maximal,
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5. H5
∼= L2(19), with N(H) ∼= L2(19):2 < Th.

Now there are two classes of A5 containing 5B-elements, and any such
A5 has normalizer S5. They can be distinguished in various ways. One type
of S5 is contained in the Thompson group, and therefore all its involutions
are of class 2D in B. The other type has transpositions in class 2C (this
fact was noted by Norton [5], and we have also verified it computationally),
and the A5 can be found in L2(31) for example (although we cannot prove
this until the end of the present section!). We therefore have three cases to
consider, according as the two groups A5 are both of one type, both of the
other type, or one of each type.

The case when both A5s are of Th-type. Our plan is to find such an
A5, and then find the normalizer in B of a D10 in the A5. This group has
the shape (D10 × 5:4 × 5:4).2. The possibilities for the second A5 are then
exactly the 400 conjugates of the first A5 by elements of the D10-centralizer
5:4× 5:4.

The results of this analysis are that we obtain one class each of A6, L2(11),
L2(19), and L2(49). Each has index 2 in its normalizer. The groups A6

.2 ∼=
M10 and L2(19):2 that we obtain are both contained in Th, while the groups
L2(11):2 and L2(49).2 will both turn out to be maximal.

Finding the other type of A5. We have observed that the other type of
A5 is contained in L2(31). For later convenience we want this to have a D10

in common with the first A5. We therefore seek first an L2(31) containing
the particular 5B-element which we used earlier. To begin with, we find 31:3
in Th, normalized by this 5-element. Then we look in the normalizer of the
15-element to find an involution extending to L2(31). Finally we conjugate
the 31-element by a suitable element to ensure that L2(31) has a D10 (not
just a 5) in common with the original A5.

The remaining cases. When both A5s are of the second type, we find
that such an A5 extends to just three groups A6, and not to any of the other
groups on the list.

One of these groups extends to S6, and therefore has normalizer A6
.22 in

the Baby Monster. This is contained as a diagonal subgroup in the maximal
subgroup (S6 × S6).4. The other two groups are interchanged by a known
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element, and each has normalizer A6
.2 ∼= M10. It can easily be shown that

there is a proper subgroup (actually contained in a 2-local subgroup) con-
taining both of these groups M10. In particular, such an A6-normalizer is not
maximal.

In the mixed case, we find nothing except the single class of maximal
subgroups L2(31).

5 Other groups containing A5

The groups L2(16), L2(25), U4(2), 2F4(2)′, M11 and M22 all contain A5 and
can now be classified fairly easily given the work we have already done. The
case U4(2) is easy, since U4(2) contains an S6, which in turn contains an S5

all of whose involutions are in the same U4(2)-class. It was noted by Norton
(see [12]) that the only 5B-type S5 with all involutions conjugate in B is
the one in Th. But we have already seen that this A5 extends to exactly
two (conjugate) groups A6, each with normalizer M10 (contained in Th). In
particular, the S5 does not extend to S6, so a fortiori does not extend to
U4(2).

Similarly, the Tits group 2F4(2)′ contains an S6 all of whose involutions
are conjugate, so for the same reason there is no 5B-type 2F4(2)′ in B. (Note
that this will also follow from the non-existence of a 5B-type L2(25), which
is demonstrated below.) There is no 5B-type M22 in B since there is no
5B-type L3(4), whereas M22 contains a subgroup L3(4).

The remaining cases were dealt with by more computations. First, to
classify subgroups M11, take L2(11) and extend A5 to S5. There is a unique
such group, which can easily be verified to be M11.

Subgroups isomorphic to L2(16). The group L2(16) may be generated
from A5 by extending D10 to D30. Since the centralizer of the D10 has order
400, while the centralizer of theD30 has order 2, there are just 200 possibilities
for the extending element of order 3, falling into 100 inverse pairs. If the A5

we start with is the subgroup of Th produced above, then it turns out that
none of the 100 extensions of this type is L2(16).

If we start with the other A5, then all but four of the 100 extensions
are easily shown not to be L2(16). Now extending the A5 to S5 cannot
normalize any L2(16), since L2(16):2 does not contain S5. Therefore every
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5B-type L2(16) in B is self-normalizing, and occurs twice in our list. In
particular, there are at most two classes of such subgroups L2(16) in B.

To each of these groups we adjoin the unique involution commuting with
the D30. In each case we obtain a group which is larger than L2(16) (since
it contains elements of order 34), but is still a proper subgroup of B (since
the representation is reducible for this subgroup). It follows that no L2(16)
is maximal in B. It is not too hard to tighten up this result to the following.

Proposition 5.1 There are exactly two classes of 5B-type L2(16)s in B,
each self-normalizing and contained in the maximal subgroup 29.216.S8(2).

It should also be noted that L2(31) can be generated in the same manner,
and turns up four times in the list. In particular, we see that L2(31) contains
representatives of both classes of 5B-type A5s, from which it immediately
follows that it is self-normalizing.

Subgroups isomorphic to L2(25). The group L2(25) may be generated
from A5 by extending D10 to 52:2. Indeed, L2(25) contains S5, all of whose
involutions are conjugate in L2(25), so such an A5 must be contained in
a copy of Th. Moreover, the 52-subgroup must be 5B-pure, which implies
from [8] that it is contained in the normal 51+4 of the centralizer of any of
its non-trivial elements.

In fact there are just four extensions of this type, none of which gives rise
to L2(25). Since the Tits group 2F4(2)′ contains L2(25), we obtain another
proof that there is no subgroup 2F4(2)′ containing 5B-elements in B.

6 Subgroups isomorphic to L2(23)

Any subgroup L2(23) can be generated by a Frobenius group 23:11 together
with an involution inverting any particular element of order 11 in 23:11. We
therefore proceed by first finding the 23-normalizer 2× 23:11 inside the 2B-
centralizer 21+22.Co2. Then we choose an element of order 11 in this group
and find the group D22 × S5 of all elements which centralize or invert it.
Finally, we run through the 1 + 10 + 15 = 26 ways of extending 11 to D22 to
see which extend 23:11 to L2(23). We obtain the following.

Proposition 6.1 There is exactly one class of subgroups L2(23) in B. Any
such subgroup is self-normalizing, and is contained in a maximal subgroup
Fi23.
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7 Subgroups isomorphic to G2(3)

Our strategy for classifying subgroups isomorphic to G2(3) is to take repre-
sentatives of the two conjugacy classes of subgroups L2(13), and in each case
extend D14 to 7:6. Both types of L2(13) can be found inside the maximal
subgroup N(3A) ∼= S3 × Fi22:2.

Now we need to find the centralizers of our two groups D14, working inside
the 7-normalizer (7:3× 2.L3(4).2).2. The first of these centralizers turns out
to be 2×A5, corresponding to an involution in class 2D in L3(4):22. The other
case, however, gives an involution in L3(4):22-class 2B, whose centralizer in
L3(4) is 32:Q8. Since the pre-image of the latter group contains the 3-element
which centralizes the L2(13), it follows that any extension of the secondD14 to
7:6 necessarily centralizes a 3A-element, and therefore any G2(3) containing
the second L2(13) is contained in Fi22.

Finally, then, we need to consider the 21 ways of extending the first D14

to 7:6. It turns out that only one of these extends L2(13) to G2(3). The
others are easily eliminated by finding an element in the group whose order
is not the order of any element of G2(3). Since this case centralizes S3, we
have proved the following result.

Proposition 7.1 There are exactly two classes of subgroups G2(3) in B.
The normalizers are S3×G2(3) and S3×G2(3):2, both of which are contained
in S3 × Fi22:2.

8 Subgroups isomorphic to U3(8)

Our strategy here is to take a subgroup 3 × L2(8) and adjoin an involution
inverting a diagonal element of order 9. Now the subgroups L2(8) in B were
classified in [11], from which it is easy to see that there are just three classes
of subgroups 3× L2(8) in B, with normalizers as follows.

1. L2(8):3× 22 × S3,

2. L2(8):3× S3,

3. L2(8)× S3.

Any subgroup 3×L2(8) is contained in S3×Fi22:2, and the second and third
types can be found in the subgroup S3 × 26S6(2) thereof.
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Note that this implies that there are exactly three classes of L2(8) in
Fi22:2, becoming five classes in Fi22. More precisely we have the following
result.

Proposition 8.1 The Fischer group Fi22 contains five classes of subgroups
L2(8), with normalizers L2(8):3 × 2, L2(8):3 (two classes), and L2(8) (two
classes).

In particular, there are two more classes than is claimed in [7]. At first
sight, the classification of subgroups G2(3) and S6(2) in [7] depends on the
classification of L2(8). However, closer inspection reveals that it really only
depends on the classification of subgroups L2(8):3, which were in fact listed
correctly in [7]. Thus the lists of subgroups G2(3) and S6(2) of Fi22 given
there are also (I believe) correct.

Returning now to the classification of subgroups U3(8) in the Baby Mon-
ster, we first show by explicit calculation that the second and third classes
of L2(8) contain elements of Fi22-class 9C. (In fact, this can be obtained
from the class fusion from 26:S6(2) into Fi22, which is available in the GAP
library [6].) It then follows that the corresponding groups 3× L2(8) contain
elements of both B-classes 9B (inside L2(8)) and 9A (the diagonal elements).
But all cyclic subgroups of order 9 in U3(8) are conjugate, so these groups
3×L2(8) cannot extend to U3(8) in the Baby Monster. We are therefore left
with the case when we have an L2(8)× 3 of the first type.

This contains just 9B-elements, and the subgroup generated by elements
which invert a given 9B-element has the shape D18 × 33:(2× S4). Checking
through the cases we easily eliminate all but two. Both groups are centralized
by an involution, and are conjugate to each other, and to the known U3(8)
in 2.2E6(2):2. Thus we have the following.

Proposition 8.2 There is a unique conjugacy class of subgroups U3(8) in
B. The normalizer of any such subgroup is 2× U3(8):6 < 2.2E6(2):2.

9 Subgroups isomorphic to L3(3)

First note that the 3-central elements in L3(3) fuse to class 3B in B, since
the centralizer is 31+2. Next, note that the normalizer of an element of order
13 in B is S3×13:12 < S3×Fi22:2. Now by looking in the chain of subgroups

13:3 < L2(13) < G2(3) < O7(3) < Fi22
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we see that the elements of order 3 in this group 13:3 are of class 3D in
G2(3), so class 3G in O7(3) and class 3D in Fi22. Then from the character
restriction given on p. 200 of [8] we see that both these elements and the
diagonal elements of order 3 fuse to class 3B in B. We also have that there
are two classes of subgroups 13:3 in B, with normalisers S3 × 13:12 and
3× 13:12 respectively.

In particular, all 3-elements in any subgroup L3(3) are of class 3B, and
therefore the subgroups 32:2S4 of L3(3) are contained in one of the three
classes of 3B2-normalizer in B. According to [8], these have the following
shapes: 32.33.36.(S4 × 2S4) (type (a)), (32 × 31+4).(22 × 2A4).2 (type (b)),
and (32 × 31+4).(2× 2S4) (type (c)).

We divide the problem up into three cases, as follows. Case 1: the L3(3)
contains a 32:2S4 of type (b). Case 2: the L3(3) contains a 32:2S4 of type
(c). Case 3: both classes of 32:2S4 in L3(3) are of type (a).

We show first that case 1 cannot happen. Following the notation of [8], we
take the 32 to be generated by (0, 1, 1, 1) and (0, i, i, j). Then its centralizer
may be generated by (1, 0, 0, 0), (i, 0, 0, 0), (0, 1,−1, 0), (0, i,−i, 0) together
with 〈−,+,+,+〉 and 〈+, s s ,+〉. This is then normalized by a group 2A4

generated by 〈i,−k,−k,−i〉 and 〈ω, ω, ω, ω〉, extending to 2S4 by adjoining

1

2


0 i− j j − i 0

j − i 0 0 i− j
i− j 0 0 i− j

0 j − i j − i 0

 .

In particular, we see by direct calculation (by hand!) that there is a unique
class of subgroups 2S4 in here, in which the central involution is 〈−,−,−,−〉,
which is in class 2D in B. On the other hand, all the outer involutions are
conjugate to the one given above, which commutes with the element

1

2


−1 1 1 1
−1 −1 −1 1
−1 1 −1 −1
−1 −1 1 −1


of order 3, so cannot be in class 2D. (If it were, its product with the cen-
tral 3-element would be in class 6J , which has centralizer 31+4.[211], and in
particular centralizes no elements of order 3 outside the 31+8.) But this now
contradicts the fact that all involutions in L3(3) are conjugate.

10



The other two cases are rather harder. Note first that in case 3, our
hypothesis implies that two of the four elementary abelian 32-groups in the
Sylow 3-subgroup 31+2 of L3(3) are contained in the 31+8, and therefore the
whole Sylow 3-group is in 31+8. In particular, all 32-subgroups are of type
(a).

In both cases 2 and 3, we make heavy use of two maximal 3-local sub-
groups, namely N(3B) ∼= 31+8:21+6.U4(2):2 and N(3B2) ∼= 32.33.36:(S4 ×
2.S4).

L3(3)s containing a 32:2S4 of type (c). We show that there is a unique
class of such subgroups L3(3), and each such subgroup is self-normalizing
and maximal in B.

We may consider the 32 to be generated by (0, 1, 1, 1) and (i, 0, 1,−1),
centralized by (i, 0, 0, 0), (0, 1, 0, 0), (1, 0,−i, i) and (0, i, i, i), together with
〈+,−,−,−〉∗, where ∗ denotes the semilinear map 1 7→ 1, i 7→ −i. The nor-
malizer is then generated by these elements together with 〈 si si , s+ s−〉,
〈+, s -s 〉 and 〈−,+, s s〉.

Thus there are two classes of 32:2S4 of this type. One of these has outer
involutions conjugate to 〈−,+, s s〉, which is in class 2C in B, so cannot
be in any L3(3). Thus we must have one of the other class of 32:2S4, which
contains a conjugate of 〈−,−, s− s−〉∗, which is in class 2D in B.

Now some straightforward hand calculations show that this 32:2S4 has
trivial centralizer in B, as does its subgroup 32:(2×S3) ∼= 31+2:22. The latter
has two normal 32-subgroups, one of which is the one of type (c) whose
normalizer we started with. The other turns out to be of type (a)—it may
be possible to prove this by hand, but I used the computer to do this. In
particular we have an embedding of our group 32:(2×S3) in 32.33.36:(S4×2S4),
the normalizer of a 32-group of type (a), and we wish to find all groups 32:2S4

which lie between these two groups.
In fact, it turns out that there are just two such groups—it is not too

hard to prove this by hand, but we also checked this on the computer. One
of these contains 4E-elements, whereas the 32:2S4 of type (c) does not. Since
L3(3) contains a single class of elements of order 4, we can eliminate this
case. Thus we have a unique group generated by two copies of 32:2S4, one
of type (c), intersecting in 32:(2 × S3). We made this group, as described
in detail below, and found that it was in fact isomorphic to L3(3). It is
clear from the construction that it is self-normalizing. On the other hand,
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all subgroups L3(3) contained in previously known maximal subgroups have
non-trivial centralizers. Hence this group is not contained in any previously
known maximal subgroup, and is therefore maximal.

L3(3)s in which all 32s are of type (a). We show that all such groups
L3(3) have non-trivial centralizer.

In this case we adopt a different strategy. We start with a group 13:3,
and extend a cyclic 3 subgroup to 32. As we have seen, there are two classes
of subgroups 13:3 in B. Also, each cyclic 3 extends to just 2560 groups 32

of type (a). Thus there are 5120 groups 〈13:3, 32〉 to consider. It turns out
that most are easily shown not to be L3(3), and all of the few that remain
are centralized by either 2 or S3.

10 Subgroups U3(3)

First we note from Norton’s work on the Monster [5] that any 7A-type U3(3)
in M either has centralizer (22× 32)2S4 or has type (2B, 3B, 3B, . . .). In the
former case, the centralizer in B is a non-trivial soluble group, and therefore
the normalizer of any such U3(3) in B is contained in a local subgroup. In
the latter case, any such U3(3) contains an L2(7) of M -type (2B, 3B, 7A).
According to Norton, there is a single class of such L2(7) in M . The corre-
sponding subgroups of B are given in [11]. There are two classes, and the
L2(7)-normalizers are L2(7):2× 22 and L2(7):2× 2 in the two cases. In both
cases the involutions in the L2(7) are of class 2D in B.

The first type of L2(7). In U3(3) there is a maximal subgroup L2(7),
which contains two classes of S4, which fuse in U3(3). It follows that U3(3)
can be generated by two (conjugate) subgroups L2(7), intersecting in S4.
Moreover, since in each case the normalizer of the L2(7) realises the outer
automorphism, we may assume that the two copies of L2(7) are conjugate
by an element of the centralizer of the S4. Our strategy therefore is to
find appropriate groups H ∼= L2(7), and then find the centralizer in B of a
subgroup K ∼= S4 of H, and investigate the groups 〈H,Hx〉 as x runs through
a transversal for CB(H) in CB(K).

The centralizer of the S4 turns out to have order 32, in which we find the
subgroup of order 4 which centralizes the original L2(7). Therefore there are
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eight cases to consider. A small calculation shows that none of these groups
is U3(3).

The second type of L2(7). Next we consider subgroups which contain an
L2(7) of the second type, which has normalizer 2 × L2(7):2 in B, contained
in C(2A).

We adopt a slightly different strategy here. Inside the L2(7) we take an
S3, and adjoin an element of class 3B which centralizes the S3. It is not
hard to see, by looking in the Monster, that there is a unique class of S3

of type (3B, 2D) in B, and that the centralizer of such an S3 is a group of
the shape 34:21+4D12. As a check, we note that this accounts for the full
structure constant ξ(2D, 2D, 3B) = 1/27.35.

We actually found a subgroup of index 2 in the full centralizer of the S3,
which was enough for our purposes. A detailed analysis of this group then
enables us to list the 3B-elements it contains. There are 48 such elements
(i.e. 24 such cyclic subgroups) in the normal 34. Outside this subgroup there
are 288 cyclic subgroups to consider. We find that none of these cases gives
rise to U3(3).

Proposition 10.1 Every U3(3) in B has non-trivial centralizer.

11 Subgroups L2(17)

To classify subgroups isomorphic to L2(17), we take a group 17:8 and then
extend the 8 to 8:2 ∼= D16. First note that the normalizer of a cyclic
group of order 17 in B is (22 × 17:8).2 ∼= 1

2
(D8 × 17:16). Thus there are

three conjugacy classes of groups 17:8 in B. It turns out that one of these
contains 8K-elements while the other two contain 8M -elements. To deter-
mine the number of ways of extending 8 to D16, we use the structure con-
stants of type (2, 2, 8). The only relevant non-zero structure constants are
ξ(2C, 2C, 8K) = 512/98304, ξ(2D, 2D, 8K) = 3072/98304, ξ(2C, 2D, 8M) =
ξ(2D, 2C, 8M) = 512/32768 and ξ(2D, 2D, 8M) = 2048/32768. Of course,
since all involutions in L2(17) are conjugate, the only dihedral groups we are
interested in contain only involutions of class 2D. However, it seemed to be
more trouble than it was worth to use this fact in the calculations.

In fact, we verified computationally that the three classes of 17:8 contain
elements of class 8K, 8M and 8M respectively, but this can also be proved
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by character restriction, as follows. We have

(22 × 17:8).2 < (22 × S4(4):2).2 < (22 × F4(2)):2,

in which the 8-element in 17:8 is of class 8AB in S4(4):2. In S4(4):4 these
elements have square roots, which by character restriction are in class 16HI
in F4(2):2. Thus the elements of order 8 are in class 8K in F4(2). Now the
ordinary 4371-character of B restricts to 22 × F4(2) as 833 + (1 + 1105) +
(1 + 1105) + 1326, where the brackets delimit the eigenspaces of the central
22. Thus, using character values and power maps, the 8K-elements in F4(2)
fuse to class 8K in B, while both diagonal classes of 8-elements fuse to 8M
in B.

We split the calculation into three cases, according to which of the three
elements of order 8 we are using.

The 8K-case. Here the element of order 8 has normalizer of order 217.3,
and there are 212.3 cosets which consist of inverting elements, and just 448
of these consist of involutions. We ran through all these 448 ways of extend-
ing the 8 to a group D16. It turned out that there were just six groups
L2(17) among these cases, two centralized by 22 and four with central-
izer 2. The first two are therefore the two classes of L2(17) inside F4(2),
which are interchanged by the outer automorphism, and have normalizers
22×L2(17) < (22×F4(2)):2. Of the last four, two are centralized by each of
the two 2A-elements in the 17-centralizer. Now 2E6(2) contains four classes
of subgroups L2(17), one of which is centralized by an S3 of outer automor-
phisms, while the other three are permuted in the natural manner by this
S3. In the Baby Monster, a group 2 of outer automorphisms is realised, so
there is the one class of L2(17) in F4(2):2 that we have already seen, and one
other, whose normalizer is 2× L2(17), contained in 2.2E6(2):2.

The first 8M-case. Using the same method as before, we run through
all the 384 inverting cosets which consist of involutions, and find four cases
which give rise to L2(17). Each has trivial centralizer, which means they
are all conjugate, and have normalizer L2(17):2. We verified explicitly the
existence of this subgroup L2(17):2, by checking generators and relations in
suitable elements of the group. This subgroup is not contained in any of the
previously known maximal subgroups of B. It is therefore maximal.
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The second 8M-case. Using the same method as before, we then run
through the 384 involutory cosets inverting the second 8M -element, and find
that none could extend 17:8 to L2(17). (There are however some cases which
give 2× L2(17), in which the L2(17) is of 8K-type.)

To summarise the results of this section, we have

Proposition 11.1 There are exactly three conjugacy classes of subgroups
isomorphic to L2(17) in B. Two have type (8K, 9B) and have normalizers
22 × L2(17) and 2 × L2(17). The third has type (8M, 9A) and normalizer
L2(17):2.
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