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Abstract

We obtain efficient programs for obtaining representatives of all the
conjugacy classes of all the sporadic simple groups except the Monster
and the Baby Monster.

1 Introduction

For many purposes, for example in calculating modular character tables (see
[8], [10] etc.), or in finding particular subgroups of a group, it is useful to
have representatives of the conjugacy classes of a given group readily to hand.
While ‘generic’ simple groups tend to have a nicely parametrized set of conju-
gacy classes, this is not true for the 26 sporadic simple groups. In this paper
we try to obtain a list of class representatives, starting from the ‘standard gen-
erators’ defined in [11], with (close to) as few multiplications of group elements
as possible. For the groups of order less than 109 we are able to produce a
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complete list of conjugacy classes of elements, carefully distinguishing between
automorphic classes, and between algebraically conjugate classes. For the rest
of the groups, we do not distinguish between algebraically conjugate classes.
For the largest Fischer group, Fi′24, we also do not distinguish between au-
tomorphic classes. Finally, we have not considered the Baby Monster or the
Monster. In all cases, the open problems here seem to be difficult.

Our notation follows the Atlas of Finite Groups [2]. The matrix calculations
were performed using a version of Parker’s Meat-axe [5] implemented by M.
Ringe [7]. A few character calculations were carried out using GAP [9]. All the
programs which we construct here are available on the world-wide-web under
the URL http://www.mat.bham.ac.uk/atlas/ [12].

2 Identifying conjugacy classes

Notice that it is sufficient to produce a generator for a representative of each
conjugacy class of maximal cyclic subgroups, as every conjugacy class is rep-
resented by a suitable power of such an element.

We first need to have enough invariants to be able to identify the conjugacy
class to which a given element belongs. Usually this means having several
representations of the group, and looking at orders and traces of elements and
their powers. In practice, small permutation representations are the easiest to
work with, and also (happily) tend to be very good at distinguishing classes,
since elements in different conjugacy classes most often have different cycle
types. However, we often need some other representations as well.

For example, for the groups HN , Ly, Th and J4 the smallest permuta-
tion representations are uncomfortably big, and we used the following matrix
representations instead:

HN : dimension 133 over GF (5) and dimension 132 over GF (4).
Ly: dimension 111 over GF (5).
Th: dimension 248 over GF (5).
J4: dimension 112 over GF (2).

In most cases it is sufficient to calculate orders and traces of elements in these
matrix representations, while occasionally it is necessary to calculate also the
dimension of the fixed space of the element or a suitable power of it. In J4 we
first find a 2A-element, for example as the 8th power of an element of order
16, and calculate its fixed space, which we find has dimension 62. Then when
we find an involution whose fixed space has dimension 56, we know it must
be in class 2B. This solves all problems except distinguishing 12A from 12B
(see Section 5 below). A similar method using the classes 5A and 5B in the
Lyons group Ly resolves all problems there, or alternatively, one can use the
651-dimensional representation over GF (3).



In most other cases the cycle types of the elements in the smallest per-
mutation representation were sufficient to distinguish the necessary classes of
cyclic subgroups. (In the cases M11, J1, M23 and J3, only the orders of the ele-
ments are needed.) There are just six exceptions, where we used the following
representations instead:

M22: 77 points.
HS: dimension 133 over GF (5).
Co3: 276 points and dimension 22 over GF (2).
Fi22: 3510 points and dimension 78 over GF (5).
Fi23: dimension 253 over GF (3).
Co1: dimension 24 for 2Co1 over Z and its skew square.

Again, we occasionally needed to use the dimension of the fixed space to
distinguish similar classes. For example, to distinguish 8C from 8A in Co3 we
used the rank of 1 + x in the 22-dimensional representation over GF (2) as an
invariant for the conjugacy class of the element x. A similar case was trying
to distinguish 12E from 12F in Fi22. Here we had to use the 176-dimensional
representation of the double cover 2.F i22 over GF (3). However, each of the
classes 12E and 12F lifts to two classes in the double cover, so the rank of
1 + x is no longer an invariant of the Fi22 conjugacy class. Thus we use the
(unordered) pair {rank(1 + x), rank(1− x)} as an invariant to distinguish the
classes.

For compatibility with the Atlas of Brauer characters [3], we sometimes
need to distinguish between algebraically conjugate classes, that is classes
of elements which generate the same cyclic subgroups. We have done this
systematically for all the groups of order less than 109, which is as far as the
Atlas of Brauer characters goes. For larger groups we do not usually have
enough information to be able to resolve the ambiguities, and even when we
do, there may be no definitive published labelling of the classes for us to use.
Thus we did not consider it sensible to attempt to do so at this stage.

The method is simply to calculate the given elements in certain matrix
representations, and calculate their traces. We then use [3] to determine the
possibilities for the conjugacy classes. In essence this method is no different
from that already used to distinguish conjugacy classes of elements of the
same order, except that the questions tend to be more subtle and difficult to
answer. Moreover, it is essential to use matrix representations, as such classes
cannot be distinguished by permutation representations alone. Indeed, it is
often necessary to use extremely large matrix representations, which is one
reason why the problem in general is very hard.

In the tables below, in each case we have given one choice of labelling
for the conjugacy classes, compatible with the Atlas of Brauer characters [3].
The image of our labelling under an outer automorphism is obviously also
compatible with this Atlas, but there may be other such labellings as well.



3 Finding good words

Our first step is to determine the conjugacy classes of all the ‘short’ words in
the standard generators. We then use a suitable subset of these as input to the
next stage. If the generators a and b have orders 2 and 3, then the shortest
essentially different words are described in [11]. More formally, we identify
words in a and b with elements of the free product C2 ∗ C3 in the obvious
way, and say two words are essentially different if neither generates a cyclic
subgroup containing a conjugate (in C2 ∗C3) of the other. We let x = ab, and
y = ab2. Then the first few essentially different short words are as follows:

x, xy, xxy, xxxy, xxyy, xxxxy, xxxyy, xxyxy, xxxxxy, xxxxyy,
xxxyxy, xxxyyy, xxyxyy, xxyyxy, xxxxxxy, xxxxxyy, xxxxyxy, xxxyxxy,
xxxxyyy, xxxyxyy, xxxyyxy, xxyxxyy, xxyxyxy, etc.

If the generators have orders 2 and 4, then there are rather more essentially
different short words (defined in the analogous way). We let x = ab, y = ab2

and z = ab3. Then the first few such words are as follows:

x, y, xy, xz, xxy, xxz, xyy, xyz, xzy, xzz, xxxy, xxxz, xxyy, xxyz,
xxzy, xxzz, xyxz, xyyz, xyzy, xzyy, etc.

For generators of orders 2 and 5, we actually used the same list of words, while
for larger orders, we did not make a minimal list, but just used all possible
words.

At this stage we have produced a straight line program (i.e. a program
without loops or jumps—in our case it consists simply of a sequence of multi-
plications) which makes a selection of elements in several classes of maximal
cyclic subgroups. Moreover, as all the words for these elements are short, the
program has a small number of steps. We next multiply together all pairs
of elements produced so far, to see if any of these lie in new maximal cyclic
subgroups. Usually there will be several, and we can add these new elements
to the list, and again look at all products of pairs. Iterating this procedure
very often produces a complete class list very quickly.

If not, then we can try products of three elements as well. Since there
is a large number of such products, this will almost always be enough. In a
handful of cases (such as the class 6E in Fi23) we needed a product of four
previous elements.

While it is not obvious that this procedure produces a program of the short-
est possible length, inspection of the tables of results will show that at least
it gets close. For example, in Co2 the program consists of 24 multiplications,
and it is easy to show that it is not possible to produce a program with fewer
than 23 multiplications. In a few cases, such as HS, McL, He, it is clear that
the minimum length has been attained.



4 An example

To see how this works in practice, we take the example of J2. Here the standard
generators have orders 2 and 3, with product of order 7 and commutator of
order 12. Writing a and b for the generators, we therefore have ab ∈ 7A and
abab2 ∈ 12A. Working with the permutation representations on 100 and 280
points to distinguish the classes, we find that ab(abab2)3 ∈ 6B (since it has
order 6 and is fixed-point-free on 100 points) and ab(abab2)2ab2 ∈ 10CD (since
it has order 10 and is fixed-point-free on 280 points). To make these elements,
we have to perform at least seven multiplications, so we might as well make
all of the following elements:

c = ab
d = cb = ab2

e = cd = abab2

f = ce = ababab2

g = fe = ab(abab2)2

h = ge = ab(abab2)3

i = gd = ab(abab2)2ab2

Multiplying together all pairs of these elements, we find that hi ∈ 10AB.
Multiplying this new element by all the previous ones does not produce any
new conjugacy classes. We therefore replace hi by j = ih, which is obviously in
the same conjugacy class, and try again. This time we find that k = bj ∈ 15A,
and then l = bk ∈ 8A, which completes the list of generators of maximal cyclic
subgroups.

To sort out the algebraic conjugacies, it is sufficient to measure the traces
on the elements of order 5 and 15 in the 6-dimensional and 14-dimensional
representations over GF (4).

In this example, our program has 10 lines, and it is easy to see that it
cannot be done with fewer than 8 lines, since the calculation of ab2 (or bab or
b2a) is essential and does not produce a new conjugacy class. Indeed, once we
have calculated abab2 or an equivalent word, in class 12A, all the new words
which can be produced with one or two multiplications are equivalent to one
of the above ‘short words’ of length at most 5 in x and y. But these are easily
checked to see that no new conjugacy class appears. Therefore our program is
as short as possible.

5 Larger groups

The above methods work smoothly for the groups of order up to about 1016.
When we try to extend these results to larger groups, we encounter a problem.



Specifically, we may not be able to make enough representations to distinguish
classes of cyclic subgroups of the same order. The first case where this happens
is in the Thompson group Th, where the two classes of cyclic subgroups of order
36, labelled 36A and 36BC, have the same power maps and the same character
values on all the representations that it is practical to make. However, these
elements can be distinguished inside the involution centralizer, so having made
an element x of order 36, we next find the centralizer of its 18th power x18,
using for example Bray’s algorithm [1]. This is a group of shape 21+8.A9.
Inside this group we find the centralizer of x9, which is a group of shape
4.26.L2(8):3. Then x is a 36A-element if and only if it lies in the subgroup
4.26.L2(8) of index 3. (We are grateful to John Bray for providing us with this
improved method.) This therefore gives us a practical method of determining
which class of cyclic subgroup a given element of order 36 is in. The precise
method of determining whether x is in the subgroup of index 3 will depend on
the representation—for example, in the 248-dimensional representation over
GF (2), the full centralizer of x9 has a 2-dimensional constituent, whose kernel
is precisely this subgroup of index 3.

Two other difficult cases of the same type are the problems of distinguishing
12A from 12B in J4, and 18D from 18G in Fi23. In the former case, if x is
an element of class 12A or 12B, then x is in 12A if and only if x3 lies in the
normal 21+12 subgroup of C(x6) ∼= 21+12.3.M22:2. In the latter case, if x is
an element of class 18D or 18G, then x is in 18D if and only if it lies in the
normal subgroup (22×21+8)U4(2) of C(x9) ∼= (22×21+8)(3×U4(2)).2. In both
cases these questions can be resolved in a very similar way to the above.

It is worth asking whether we can do the same thing in the Baby Monster.
Until very recently, the only representation available was the 4370-dimensional
one over GF (2), and there are many pairs of classes which cannot easily be dis-
tinguished in this representation. Now, however, we have the 4371-dimensional
representations over GF (3) and GF (5) (see [6]), which means that character
values can be determined modulo 30 by taking traces, which gives some hope
that eventually we shall be able to complete this case also. Nevertheless, there
are still some hard cases which we do not know how to solve. One of these
is finding a 16F -element and distinguishing it from class 16D, where even the
method described in this section seems not to work. Moreover, the amount of
computing time required is several orders of magnitude greater than all of the
previous cases put together.

Finally, perhaps, we should consider the Monster itself. We now have an
effective computer construction (see [4]), in which it is possible to calculate
the orders of (short) words in the generators. At present, however, we have
no means of calculating traces (which in any case is not a good invariant, as
the representation is over GF (2)), although it should be possible to devise a
reasonable algorithm to do so. If this is combined with analogous constructions



of the group over GF (3) and/or GF (5), then it may be possible to produce a
partial list of class representatives even for the Monster. Another possibility
may be to mimic the construction of [4], using GF (7) instead of GF (4), in order
to calculate character values modulo 14. This would be sufficient to distinguish
classes of cyclic subgroups of the same order, with the single exception of 27A
and 27B, which have the same character value and the same power maps.

6 Results

In the following tables, we give generators for representatives of the conjugacy
classes of maximal cyclic subgroups. In all the groups of order less than 109,
we put a star after the letter denoting the conjugacy class of the given repre-
sentative. The most efficient way of calculating the words is also given: simply
make them in alphabetical order. In all cases, a and b denote the standard
generators of the group, as defined in [11] or [12].

Machine-readable versions of these tables, in the form of small programs
to make the given elements (or occasionally, obvious conjugates of them), are
also available from [12].
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Table 3: Classes in J1

Class 6A 7A 10AB∗ 11A 15AB∗ 19A∗BC
Words g = df c = ab f = de h = ef 2 e = cdcb d = c2b



Table 4: Classes in M22

Class 4B 5A 6A 7A∗B 8A 11A∗B
Words h = c2e d = cb e = cdb g = c4dcd2 f = c2d2b c = ab

Table 5: Classes in J2

Class 6B 7A 8A 10AB∗ 10C∗D 12A 15A∗B
Words e = cd3 c = ab i = bh g = fe f = cd2cb d = c2b h = bg

Table 6: Classes in M23

Class 6A 8A 11AB∗ 14AB∗ 15A∗B 23AB∗

Words d = cb e = cd g = cf h = bgd f = ce c = ab

Table 7: Classes in HS

Class 5C 6A 7A 8A 8B 8C
Words h = fg l = kh g = ce f = eb j = ci m = el

Class 10B 11A∗B 12A 15A 20A∗B
Words d = cb c = ab k = hj e = cd i = ah

Table 8: Classes in J3

Class 8A 9AB∗C 10A∗B 12A 15AB∗ 17AB∗ 19A∗B
Words f = de d = c2b h = gcb i = he g = cbf e = cd c = ab

Table 9: Classes in M24

Class 8A 10A 11A 12A 12B
Words f = ce k = ed h = gcb e = cd d = c2b

Class 14AB∗ 15A∗B 21A∗B 23A∗B
Words g = fcb i = cf j = ci c = ab



Table 10: Classes in McL

Class 5B 6B 8A 9AB∗ 11A∗B 12A 14A∗B 30A∗B
Words j = gi i = hd g = ebd f = ce c = ab d = cb e = cd h = gb

Table 11: Classes in He

Class 8A 10A 12A 12B 14CD
Words f = db h = gd j = bi d = cb k = hd

Class 15A 17AB 21AB 21CD 28AB
Words e = cd c = ab l = jf i = gf g = ef

Table 12: Classes in Ru

Class 8C 10B 12B 14ABC 15A 16AB
Words m = kci l = cjbk h = abg c = ab2 g = d2c k = bj

Class 20A 20BC 24AB 26ABC 29AB
Words f = ae j = idc i = ch e = bdc d = abc

Table 13: Classes in Suz

Class 8B 8C 10B 11A 12B 12C 12D 12E
Words h = gcb g = ed j = ci q = jl e = cd k = ej l = di m = eh

Class 13AB 14A 15AB 15C 18AB 20A 21AB 24A
Words c = ab i = ch d = c2b n = cj o = fg p = h2ec2 f = ce r = no

Table 14: Classes in O’N

Class 7B 11A 12A 15AB 16AB
Words k = fj c = ab f = eb l = kh i = ceh

Class 16CD 19ABC 20AB 28AB 31AB
Words j = di d = cb e = cd h = fce g = ced



Table 15: Classes in Co3

Class 6D 6E 8C 9B 10B 12A
Words m = a2bh h = df s = jm q = oa2b2 p = ck r = jq

Class 12C 14A 15B 18A 20AB 21A
Words n = gi c = ab e = (ac)2b j = bg o = bk f = de

Class 22AB 23AB 24A 24B 30A
Words k = dg g = acf d = cb = ab2 i = a2b2f l = eg

Table 16: Classes in Co2

Class 6F 8E 8F 11A 12A 12D 12E 12F
Words t = kq r = hl w = os i = de v = br x = g2o n = ef m = bd

Class 12G 12H 14BC 16A 16B 18A 20A 20B
Words o = eh e = dcb p = hi q = fk u = dr h = cf k = cbe l = gh

Class 23AB 24A 24B 28A 30A 30BC
Words f = eb d = c2b s = dl c = ab g = cd j = df

Table 17: Classes in Fi22

Class 6E 6F 6J 8D 9C 12A 12C
Words aen2t agps fso ck d = cb brfs u = enm

Class 12D 12E 12F 12G 12H 12I 12J
Words t = eoi emi kjg p = in r = ip s = rab q = pd

Class 12K 13AB 14A 16AB 18AB 18C 18D
Words o = ke b j = bg i = bf h = abf m = dg l = cg

Class 20A 21A 22AB 24A 24B 30A
Words g = fd c = ab2 k = fg n = kl f = abe e = abd


