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Abstract

We describe the construction of explicit representations of some of
the exceptional covers of generic groups, that is, covers whose existence
is not explained by the general theory of such groups.

1 Introduction

A number of groups of Lie type have so-called ‘exceptional covers’, that
is, there is a non-trivial p-part to their Schur multiplier, where p is the
defining characteristic of the group. If we neglect those cases which can
be explained by exceptional isomorphisms (for example, the double cover
of L3(2) is explained by the isomorphism L3(2) = Lo(7)), we obtain the
following list of cases:

42 Ls(4),2:U4(2), 3% Us(3), 2% Us(2), 22 S2(8),2:S(2), 3:07(3),

2204 (2),3'G2(3),2:G2(4),2 Fy(2) and 2*?E(2),
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in addition to the exceptional covers 3 Ag and 3* A7 of alternating groups.
Many of these can be obtained as subgroups of sporadic groups, such as

2:Go(4) < 2 Suz

3G2(3) < 307(3) < 3 Fligg

2U42) < 25((2) < Cos

3A; < 3A; < 3UL3) < 3Suz
22U6(2) < 2'Fligg

Others need to be constructed from scratch in the same way that we have
constructed many representations of the sporadic groups (see, for example,
[10], [11]). In addition, many of these groups have also non-trivial ‘generic’
covers, giving rise to the following additional groups:

(3 x 4%)"L3(4), (4 x 3%)'U4(3), (3 x 22)'Us(2), and 6°0(3).

We also exploit the idea of ‘standard generators’ [15] in two ways. First,
given a pair (a,b) of standard generators for a group G (usually simple),
we can find images (a’,b") of (a,b) under outer automorphisms, and hence
construct representations of Aut(G). Second, such an automorphism of G
may be lifted to a ‘near-automorphism’ of a covering group; if there is a
double cover 2'G, for example, this may sometimes be used to construct a
cover 22-(G, if one exists.

Our notation follows the Atlas of Finite Groups [3]. The matrix calcula-
tions were performed using a version of Parker’s Meat-axe [5] implemented
by M. Ringe [7]. A few character calculations were carried out using GAP [8].
All the representations which we construct here are available on the world-
wide-web under the URL http://www.mat.bham.ac.uk/atlas/ [16]. They are
listed in Table 1, though a more up-to-date list can be found by consulting
the above-mentioned web-page.

2 2%5z(8)

We note first that a double cover 2-Sz(8) is contained in the orthogonal group
2:0¢ (5), and explicit generators are given in the ATLAS [3]. In matrix form
the three generators A, B and C' are as in Table 2.

In order to construct the ‘other’ double covers, it is useful to define ‘stan-
dard generators’ for the group Sz(8). We let (a,b) be elements of Sz(8)



Table 1: The constructed representations

We list the degree d and the underlying field GF'(q) of the representations of

the group G.
G d

q
22-52(8):3 24 5
22'U6(2)253 168 3
22-05 (2):55 24 3
12, Ls(4) 12 49
12,°U,(3) 84 & 132 25
12, U4 (3) 36 25
2-Fy(2):2 52 25
22'2E6(2)133 1706 2

such that a has order 2, b has order 4, ab has order 5, ababb has order 7
and abababbababbabb has order 13. Then it is not difficult to show that the
pair (a,b) is unique up to automorphisms, and thus there are exactly three
conjugacy classes of such pairs in Sz(8).

Computing first in the simple group Sz(8), we can find words v and v in a
and b such that @’ = u(a,b) and ¥’ = v(a, b) give a pair (a’, ") automorphic to,
but not conjugate to, the pair (a, b). Suitable words are u(a,b) = (ab) *a(ab)*
and v(a,b) = (abb)~*b(abb)*. Then clearly a” = u(a’,V’) and b" = v(d, V')
give a pair (a”,0”) in the third conjugacy class. Lifting to the double cover
2:52(8), represented as 8 x 8 matrices, denote suitable pre-images of these
elements by the corresponding Greek letters.

In terms of the Atlas generators A, B, C' we may take a = BY, 8 = A.
Now from an alternative viewpoint we can consider the three pairs of matrices
(o, B), (¢, 0") and (a”, ") as being pre-images of the same pair (a,b) of
elements of Sz(8), and thus we obtain representations of the three double

covers of Sz(8). It is then clear that the 16 x 16 matrices (Cg 2,) and

(g B’) generate 22-Sz(8).



Table 2: Generators for 2-5z(8)
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By suitable choice of pre-images we could arrange that the 24 x 24 matrices

a 0 0 s 0 0
A=|0 o 0 ]JandB=[0 5 0
0 0 o 0o 0 p

also generate 2%-Sz(8) rather than 2 x 22-5z(8), although this is not really
important at this stage, as we can adjust by the scalar —1 at a later stage in
the calculations.

Now we have

o 0 0
wAB)=|0 o 0
0 O a///
and
g 0 0
U(A, B) = 0 ﬁ// O )
0 O /B///

where (o, ") is conjugate to («, ). Thus the pair (u(A,B),v(A,B)) is
conjugate to (A, B) in the general linear group. The usual standard basis
calculation (see [5]) can then be used to find a matrix M which realises this
conjugation. This action clearly cycles the three double covers of Sz(8), and
therefore realises the outer automorphism of 22-Sz(8). Adjusting by a scalar
if necessary, we obtain a matrix group isomorphic to 2%-5z(8):3.

3 Covers of Us(2) and Of (2)

A similar procedure can be used to construct 2% Us(2):3, given a faithful
representation of 2:Ug(2). A suitable representation is the 56-dimensional one
over GF'(3), which can be obtained from the 77-dimensional representation
of Flig:2 found in the library [16]. We defined standard generators of Ug(2)
to be (a,b) where a € 2A, b has order 7, ab has order 11, and abb has order 18,
and used the outer automorphism of order 3 defined by a’ = (abb) *a(abb)*
and O = ((ab)3bab)~1b(ab)>bab.

To extend to 2%:Us(2):S3 we apply a similar argument, using two classes
of ‘standard generators’ of Ug(2):3, interchanged by the outer automorphism
of order 2. In this case, however, the 168-dimensional representation of
22-U(2):3 extends to 22:Us(2):S3, so the calculation is actually rather easier.
If we denote the two pairs of generating matrices by (v, d) and (v/,0’), then
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all we have to do is find a matrix conjugating (v, ) to (7/,9’), and adjust by
a scalar if necessary.

Full details of this case are described in [12], including a construction of
the full ‘envelope’ (3 x 2%)-Ug(2) in characteristic 7.

The case of OF (2) is virtually identical. We start with 2:Og (2) = W (Eg)’,
a representation of which is easy to write down from the ATLAS [3], and
apply the same methods, to construct first 22-Og (2):3 and then 22-Og (2):S55.
We have carried out this construction over the field of order 3, but it equally
well can be done over any field of characteristic not 2.

4 Covers and automorphisms of L3(4) and Uy(3)

Similar methods can be used in the case of L3(4), but there are extra com-
plications due to the size of the multiplier and automorphism group. In par-
ticular, the fields required to write the representations are often large, and
there are big problems with isoclinism. Specifically, it is often very difficult
to get rid of unwanted scalars.

To begin with, we define standard generators of L3(4) to be a and b with
a,b,ab, abb of orders 2, 4, 7 and 5 respectively.

We write down generators for 3-Ls(4) = SL3(4) as 3 x 3 matrices over
GF(4). One of the fourfold covers 4,°L3(4) can be obtained as a subgroup
of 4- My, a representation of which was constructed in [11].

To obtain the other fourfold cover, we first find words giving images
under the various automorphisms of the standard generators. As with the
group Sz(8) discussed above, this can be interpreted as giving another cover
4,"-L3(4). By tensoring together representations of these different covers, we
obtain representations of 49" L3(4).

By changing characteristic via permutation representations when neces-
sary, we can tensor together representations of the triple and fourfold covers
to obtain the 12-fold covers, and so on.

Again, for the group U;(3) we encounter problems of the same order,
which we have not completely solved. By defining standard generators for
Us(3) as a of order 2 and b in class 64, with ab of order 7 and ab(ababb)? of
order 5, we can combine together representations from various places. The
exceptional cover 32-U,(3) can be obtained as a subgroup of Conway’s group
via 3'Suz. The generic cover 4'Uy(3) arises in the natural representation of
the unitary group SU4(3) = 4-Uy(3). We now need to obtain permutation
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Figure 1: Generating 2'Fy(2) from Ss(2)

representations for these groups in order to change the characteristic of the
representation, and eventually construct the full cover (3% x 4)-Uy(3).

5 The double cover of Fj(2)

So far, we have managed to obtain all our representations directly from exist-
ing representations of related groups, with no construction more complicated
than adjoining an outer automorphism. This time, however, we have to con-
struct a representation ‘from scratch’. Our plan is, following the method
described in [6], to amalgamate two subgroups H and K over their inter-
section L. As the method is by now fairly standard, we do not give full
details.

By using information in [4] about modular characters of various groups,
it seemed most sensible to try to construct the 52-dimensional representation
of 2: F4(2) in characteristic 5. This allows us to construct the group from two
subgroups Sg(2) intersecting in S4(4), in such a way that all the represen-
tations encountered are completely reducible, as shown in Figure 1. A very
similar approach may be used to generate a group isoclinic to 2 Fy(2):2, by
adjoining an element conjugating one copy of Sg(2) to the other. Indeed, the
latter approach is the one we actually followed.

The 51-dimensional representation of Sg(2) can be obtained as follows.
Note first that the permutation representation on 2295 points has ordinary
character la + 51a + 135a + 918a + 1190a (see [9, p. 157]). Thus the desired



representation may be obtained as a constituent of the reduction modulo
5 of this permutation representation, either by chopping directly with the
Meat-axe [5], or with the aid of the condensation method (see [9] or [13]).
The permutation representation itself is the representation on the maximal
isotropic subspaces of the natural module, and can therefore be readily ob-
tained. In practical terms it was easiest to find it by permuting a suitable
orbit of vectors in the exterior fourth power of the natural representation.

We carry out a random search in Sg(2) for a pair of standard generators
(¢,d) of a subgroup S4(4). We then find words in ¢ and d which give images
¢ and d’' under an outer automorphism of order 4.

We next use the standard basis method to find a matrix m conjugating
(¢,d) to (¢/,d’). Finally we run through all matrices ma where x is in the
centralizer of (¢, d), to see if (mz, ¢, d) could be of the shape 2:(Fy(2) x 2)2.
We eliminate all cases except one, and therefore this last case must generate
a group of the required shape 2'(Fy(2) x 2)2.

Extending the field to GF(25), we can multiply our new element mz
by a suitable scalar, to give an element e, say, so that (c,d,e) is actually
2'F4(2):2. As usual, we prefer to have a pair of ‘standard’ generators for the
group, rather than three rather ill-defined generators. We work first modulo
the centre.

Using GAP [8] to calculate structure constants in the character table
of Fy(2):2, we found that there are just four conjugacy classes of pairs of
elements (f,g) with f € 2E, g € 3AB and fg of order 40. By a random
search we found pre-images in 2' F4(2):2 of representatives of all four classes,
and found that exactly one of these pairs generated the whole group. This can
be distinguished from the others by the fact that in this case alone, fgfgfgg
has order 10 in F;(2):2. We take these to be our standard generators for the
group.

Lifting now to 2-Fy(2):2, there are four possible pre-images (f,g), but
these are fused in pairs by the outer automorphism which negates all elements
in 2-F4(2):2\ 2-F4(2). Thus there are just two types of pairs (f,§), and we
choose the one in which g has order 3 to be our standard generators for
2:F,(2):2.

Similarly we find the subgroup 2-Fy(2). We define standard genera-
tors of Fy(2) to be (z,y) where z € 2C, y € 3C, zy has order 17, and
(zy)*yxryryyryy has order 13. It is easy to find pre-images in 2 F;(2) of such
a pair of standard generators. We take (Z,y) where ¢ has order 3 and Zg has
order 17.



John Bray has used a slightly more sophisticated version of this method
to construct the 52-dimensional representation of this group in characteristic
zero (see [1]).

6 Covers of *Fg(2)

The triple cover 3-? E4(2) can be obtained from the general theory of groups
of Lie type. In fact, we took 3'Eg(4) as a subgroup of Eg(4), generators of
which were obtained from Carter’s book [2]. Then a random search among
groups generated by suitable elements of orders 2 and 3 eventually produced
a subgroup 3-2FE(2).

The double cover is more difficult to obtain. A representation in char-
acteristic 2 is available, as this group is a subgroup of the Baby Monster, a
representation of which was constructed in [14]. The smallest subquotient
on which the group acts faithfully has dimension 1704. On the other hand,
it would also be interesting to construct a faithful irreducible representation
over a field of odd characteristic.

First, however, we consider the GF'(2) representation. We define standard
generators for 2E4(2) to be a € 2B and b € 3C, with ab of order 19, and
(ab)®b of order 33. It is then possible to show that the pair (a’,), defined by
a’ = (ab)~2b(ab)? and b' = (abb) Ob(abb)®, is the image of (a, b) under an outer
automorphism of order 3. In just the same way as with Ug(2), therefore, we
can construct a representation of 22-2Fg(2):3 in 3 x 1704 = 5112 dimensions
over GF(2). If we adjoin also the outer automorphism of order 2 which maps
(a,b) to (a, (abb)~b(abb)?), then we obtain the full group 22-2FE(2):S53.

In fact, however, we can do much better than this. The 1704-dimensional
module is uniserial, with constituents of dimensions 1, 1702 and 1 in that
order. If we write this with respect to a basis which exhibits this structure,
and such that the irreducible constituents are themselves written with respect
to a standard basis, then the ‘glue’ between the constituents is given by a
column vector and a row vector, of length 1702, in each generating matrix.
If we now apply the outer automorphism, and again write our representation
with respect to a standard basis defined by the new generators o', v, then
we find that the constituents remain the same, but the ‘glue’ has changed.
By cutting and pasting the appropriate row and column vectors, we can
construct a 1706-dimensional representation of the full cover 22-? F5(2). This
can now be extended to 2%-?Fg(2):S3 in the usual way.



In the odd characteristic case, we need to make a representation from
scratch. Our tentative plan is to amalgamate two subgroups 2 Fy(2) inter-
secting in Sg(2). The representation we attempt to construct is that of di-
mension 2432 over GF(3). This restricts to 2-F(2) as 52+ 2380, and both of
these constituents occur in the permutation representation of degree 139776,
on the cosets of Sg(2). We first made this permutation representation, by
permuting a suitable orbit of vectors in the 52-dimensional representation
over GF(5). We condensed this representation modulo 3 over a subgroup
Dsg, and then we ‘uncondensed’ the two required modules.

The next step is to restrict to the subgroup Ss(2). There are now two
problems. One is that there are two classes of subgroups Sg(2), which act
differently on the module, and only one of these is in a second copy of 2" F;(2).
And even when we have the right one, the structure of the module for this
subgroup is rather complicated. The module structure for the subgroup
which appears to be the right one is as follows.

1 50 135
50 1@ 1+ 1225 @ 783.
1 20 135

It may be possible to complete this construction of the 2432-dimensional
representation in characteristic 3, but for practical calculations it will be
very much slower than the characteristic 2 representation constructed above.
Moreover, to extend to 222 E4(2):S3 would require a representation of degree
3 x 2432 = 7296 which is really too large to be useful at this stage.
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