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Abstract

We show how to construct a representation of the Lyons sporadic
simple group in 2480 dimensions over GF(4), which is the smallest
faithful representation in characteristic 2. On the way, we construct
the smallest representation of G2(5) in characteristic 2, which has
degree 124. Finally, we will give a new uniqueness proof for the Lyons
group.

MSC 20C34, 20D08

1 Introduction

This note is a companion to [6], in which a representation of the Lyons
group Ly in GL651(3) is constructed. Much of the group-theoretical part
of the present construction is the same as before, while the representation-
theoretical part obviously differs. The methods are by now fairly standard,
following the general procedure described in [11], and making use of the
Meat-axe package [10], [12].

The smallest representation of the Lyons group in characteristic 2 is of
degree 2480, and the smallest field over which this representation is realisable
is GF(4). Indeed, there are two such representations, which are dual to
each other, and which are simply the reductions modulo 2 of the complex
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irreducibles of the same degree. We construct both of these representations.
It turns out also that, because our chosen representation lifts to characteristic
0, we obtain as a bonus an easy proof of the uniqueness of a group of Lyons
type.

Our plan here is, as in [6], to amalgamate two subgroups G2(5) and
53.L3(5) over their intersection 52+1+2:GL2(5). The representation restricts
irreducibly to both G2(5) and 53.L3(5). The representation of the latter group
can be made easily as it is contained in the same permutation representation
on 7750 points which was used in [6]. The representation of G2(5) turned
out not to be so easy to construct, however, so we begin by describing the
construction of this subgroup.

2 The representation of G2(5)

It turned out that the 2480-dimensional 2-modular representation could not
be made in a straightforward manner from the (smallish) permutation repre-
sentations which can be made by permuting sets of vectors or subspaces in the
natural 7-dimensional representation over GF(5). However, it is contained
in the skew-square of a 124-dimensional representation, which we decided to
make from scratch. In this section we outline the strategy for the construc-
tion. Details needed in order to repeat the calculations are relegated to an
Appendix.

The plan here is similar to that for constructing the Lyons group, but on a
smaller scale. We amalgamate subgroups L3(5) and 52+1+2:GL2(5) over their
intersection 52:GL2(5). It turns out that the representation is irreducible on
restriction to L3(5), and breaks up as 4 ⊕ 120 for 52+1+2:GL2(5). For the
intersection 52:GL2(5), the representation has the shape 4⊕ 24⊕ 96.

The representation of L3(5) is easy to make. For example, the permu-
tation representation on the 1-dimensional subspaces of the natural module
reduces modulo 2 as 1 + 30, and the skew-square of this 30 breaks up as
1a3 + 30a2 + 124ab2 in Atlas notation [2], [5]. In fact the representation we
want has indicator +, so is 124a, that is ϕ13, in the notation of [5].

It is easy to find a subgroup 52:GL2(5) in L3(5), and to verify that the
representation restricts as 4 + 24 + 96. (It does not matter which class of
52:GL2(5) we take, since the outer automorphism of L3(5) interchanges them
and fixes the given representation.)

To make the representation of 52+1+2:GL2(5), we first found this group as
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a subgroup of G2(5) in its natural representation. The orbits of this subgroup
on the 3906 isotropic 1-spaces are 1 + 30 + 750 + 3125, and the orbit of
size 750 gives rise to a 2-modular representation whose Brauer character is
1a2 + 4a + 20a2 + 24a + 40ab + 120a + 480a. Thus it is easy to make a
representation of shape 4⊕ 120. At this stage we make no attempt to prove
that this is the correct representation—we simply try it and see if it works.

In fact, it does not work. We must replace 4a by 4b, the unique other
4-dimensional 2-modular irreducible of 52+1+2:GL2(5), which can be chopped
out of the skew-square of 4a.

Next we find a subgroup 52:GL2(5) in 52+1+2:GL2(5), and adjust the gen-
erators so that they are compatible with the generators already found for
52:GL2(5) inside L3(5). Then we use the usual standard basis method (see
[6] for example) to identify these two copies of 52:GL2(5). Since we are work-
ing over GF(2), and all the representations considered are sums of distinct
irreducibles, it is easy to see that all the groups used have trivial central-
izer in GL124(2). It follows at once that the group generated by L3(5) and
52+1+2:GL2(5) intersecting in 52:GL2(5) is isomorphic to G2(5). (In fact, it is
more useful to find two matrices X and Y in this group which we believe to
be standard generators for G2(5), and prove that they do indeed generate a
group isomorphic to G2(5). We find words in the standard generators X, Y
giving elements A,B,C,C1, . . . , C5, D,E which satisfy the relations given in
[6], and then find words in these new generators which give back new stan-
dard generators, X ′, Y ′. Finally we use the usual ‘standard basis’ algorithm
to prove that the groups 〈X, Y 〉 and 〈X ′, Y ′〉 are isomorphic, and therefore
are identical. It follows that all three groups are equal, and isomorphic to
G2(5).)

Finally, we chop the 2480-dimensional representation of G2(5) out of the
skew-square of this 124.

3 Constructing the Lyons group

We now have copies of G2(5) and 53.L3(5), each acting irreducibly on a 2480-
space over GF(2). To construct the Lyons group, we first extend the field
to GF(4). Next, to avoid duplication of work, we find ‘standard’ generators
for G2(5), that is, generators conjugate to those used in the earlier construc-
tion [6] (see the Appendix for a definition of these standard generators).
Then all the words found earlier for subgroup generators can be re-used.
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We find that the 2480 restricts to 52+1+2:GL2(5) as 80a+240ab+480abcd.
A straightforward counting argument shows that there are now 36 cases to
consider. All but two of these are easily eliminated. To prove that the
remaining two are isomorphic to the Lyons group, it suffices to follow the
recipe given in [6] for verifying that the Sims presentation is satisfied. (Note
that each of these representations is the dual of the other.)

4 Uniqueness of the Lyons group

No straightforward proof of the uniqueness of a ‘group of Lyons type’ ap-
pears to exist in the literature. The recent hand proof by Aschbacher and
Segev [1] is very long and complicated, and all the published computer proofs,
including ours, ultimately rely on Sims’ construction [14], which proves both
existence and uniqueness. On the other hand, the recent paper by Cooper-
man et al. [3] describes the calculation of permutations on 9606125 points,
which has now been completed to a computational existence proof of the
Lyons group by Gollan [4], using some of Sims’ techniques, and enormous
computer power. A new, more-or-less computer-free, proof of existence and
uniqueness is given by Meierfrankenfeld and Parker [8], but is again rather
long and technical.

Now Lyons [7] already calculated the character table, and showed that
G2(5) is a subgroup of any group of Lyons type. The 5-local subgroups
were completely classified in [15], from which it is easy to see that there
is a subgroup 53.L3(5) which intersects G2(5) in 52+1+2:GL2(5). The two
ordinary characters of degree 2480 can be restricted to these two maximal
subgroups, and all the restrictions are easily seen to be irreducible.

The 2-modular characters of the subgroup G2(5) are known (they are
included for example in GAP 3.4 [13]), and in particular it is known that
the representation of degree 2480 remains irreducible on reduction modulo
2. Thus there are two irreducible 2-modular characters of the Lyons group
of degree 2480, whose values are given by restricting the ordinary characters
to the 2-regular classes.

Our construction shows that there are at most two ways of constructing
these two 2-modular representations of Ly (that is, one for each), and so it
follows that the Lyons group is unique. Notice that this does not rely on
the existence of the Lyons group, and does not require the checking of the
Sims presentation carried out at the end of the previous section. It does
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however rely on our proof that the group constructed in section 2 really is
G2(5), and also on the fact that the group we claim is 53.L3(5) really has
that shape. The latter is however a relatively straightforward calculation: for
example, GAP [13] tells us that the permutations on 7750 points generate a
group of order 46500000, which is the order of 53.L3(5). Then we can use
condensation methods to help chop up the permutation module modulo 5,
and find a 10-dimensional constituent, whose symmetric square contains a 3-
dimensional constituent, on which the whole of L3(5) is represented. Finally,
the existence of (non-central) elements of order 25 in our group shows that
it is a non-split extension of the natural module by L3(5).

Thus we have a new proof of uniqueness of Ly, assuming only the facts
proved by Lyons in his original paper [7] and a little more 5-local information
proved in [15].
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Appendix

Here we give the details of the calculations, which should be sufficient to
enable the construction to be repeated without too much difficulty.

First we take the group L3(5) to be generated by the two matrices

a =

 1 1 0
0 1 0
0 0 1

 and b =

 0 1 0
0 0 1
1 0 0

 .

Then the subgroup 52:GL2(5) may be generated by c = ((ab)3b)6 and d =
(ab2)−1(ab)2(abab2)2ab2.

Next we define standard generators e and f for G2(5) as in [6], that is
e ∈ 2A, f ∈ 3B, with ef of order 7 and [e, f ] of order 15. We find a subgroup
52+1+2:GL2(5) using the same words as in [6]. That is, put

g = efef 2(ef)5fef(ef 2)3ef(ef 2)2efef 2ef
h = (ef)−5g6(ef)5

i = (gefef 2)2

so that h and i generate 52+1+2:GL2(5).
Inside this group we find 52:GL2(5) to be generated by j = (hihi2)4 and

l = k−2hik2[[k, j], j], where k = (hihi2)10(hi)12. We next need to change
generators for this group, by putting m = ((lj)3(ljlj2)2(lj2)2)2 and n =
(lj)2(ljlj2)2lj2, and then replacing m by o = ((mn)12m)5.

We then find that the generating pair (o, n) for the second group 52:GL2(5)
is equivalent to (c, d) for the first. If x is a matrix which conjugates (o, n) to
(c, d), then we may take G2(5) to be generated by p = ab and q = x−1hix.

Next we have to find standard generators for this new copy of G2(5). To
do this, set

r = ((pq)2(pqpq2)2)−4p12((pq)2(pqpq2)2)4

s = (pq2)−6(pq)10(pq2)6.

It turns out that (r, s) is then a pair of standard generators for G2(5) in the
above sense.

All other words required are given in [6]. (Incidentally, Gollan tells me
that he has checked all these words, and that they all do what we claim,
except that h10 does not centralize db2. The reason is that the centralizer of
db2 is actually 8 ◦ 2A5 rather than 8 ◦ 2S5 as stated in [6], and h10 in fact
conjugates db2 to its fifth power. This does not affect any of the calculations.)

7


