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Abstract

The McKay conjecture states that the number of irreducible com-
plex characters of a group G which have degree prime to p, is equal
to the same number for the Sylow p-normalizer in G. We verify this
conjecture for the 26 sporadic simple groups.

1 Introduction

McKay’s conjecture in its simplest form states that if G is a finite group,
p a prime, and P a Sylow p-subgroup of G, then the number of irreducible
complex characters of G whose degree is not divisible by p is equal to the
number of irreducible complex characters of NG(P ) with the same property.
This conjecture is related to the Alperin and Dade conjectures (see for exam-
ple [5]), and all three seem to be true for very deep reasons, though a proof
may still be a long way off. It is known to be true in the case when P is
cyclic—this follows from the extensive theory of Brauer trees—see [7].

The work described in this paper was mostly done well over ten years ago,
but not written up at the time, partly due to difficulties in completing one or
two tricky cases. Some of the results were obtained earlier by Ostermann [10],
as corollaries of his calculations of the character tables of many of the Sylow
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p-normalizers of sporadic groups. Our proofs here, however, use far less
information about the Sylow p-normalizers than this. Again, some of the
results have since been obtained independently by Jianbei An and others,
as part of the much more general verification of the Dade conjectures for
the smaller sporadic simple groups (see for example [2], [1],[8], [9], etc.).
Nevertheless, we considered it worth while to present all these results again,
both for completeness and because our proofs are often simpler.

In what follows, the word ‘character’ will always mean an irreducible
complex character.

In general, we note that the degrees of the characters of P are powers of
p, so are either divisible by p, or equal to 1. In the latter case, they are lifts
of characters of P/P ′. It follows immediately, by Clifford’s theorem, that all
characters of NG(P ) which have degree coprime to p arise in the same way
as lifts of characters of NG(P )/P ′. On the other hand, a closer inspection
of the character table of NG(P )/P ′, using Clifford theory again, shows that
every character has degree dividing |NG(P )/P |, which is prime to p. Thus
our task is reduced to counting the number of characters (or equivalently,
conjugacy classes) of NG(P )/P ′, for non-cyclic Sylow p-subgroups P .

Now NG(P )/P ′ is a split extension of an abelian p-group by a p′-group,
isomorphic to NG(P )/P . Clifford theory gives us a simple parametrization
of the characters of a group of this shape: consider the orbits of NG(P )/P
on the characters of P/P ′, and for each orbit pick the stabilizer Iχi

of a
representative point χi (called the inertial group). Then the characters of
NG(P )/P ′ are in one-to-one correspondence with the pairs (χi, ξj) as i runs
over orbits, and ξj runs over the characters of Iχi

.
Thus the total number of characters of NG(P )/P ′ is equal to the sum over

the orbits of NG(P ) on characters χ of P/P ′, of the number of characters
of the inertial subgroup Iχ in NG(P )/P . It turns out that in all cases in
the sporadic groups, P/P ′ is elementary abelian, though this is not always
immediately obvious. This slightly simplifies some of the calculations.

We first present a table of results (see Table 1), showing the structure of
NG(P )/P ′, and the number of its conjugacy classes, in each case. In later
sections we present some examples of the proofs.
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Table 1: Results

G p NG(P )/P ′ No. of chars.
M11 2 22 4

3 32:SD16 9
M12 2 23 8

3 S3 × S3 9
J1 2 23:7:3 8
M22 2 23 8

3 32:Q8 6
J2 2 2× A4 8

3 32:8 9
5 52:D12 14

M23 2 23 8
3 32:SD16 9

HS 2 23 8
3 2× 32:SD16 18
5 52:QD16 13

J3 2 2× A4 8
3 32:8 9

M24 2 24 16
3 32:D8 9

McL 2 23 8
3 (32:4× 3).2 12
5 52:3:8 13

He 2 24 16
3 32:D8 9
5 52:4A4 16
7 72:(S3 × 3) 20

Ru 2 23 8
3 32:SD16 9
5 52:(4 o 2) 20

Suz 2 A4 × 22 16
3 (3× 32:D8):2 18
5 52:(4× S3) 16

O’N 2 23 8
3 34:21+4D10 18
7 72:(3×D8) 20

Co3 2 24 16
3 S3 × 32:SD16 27
5 52:24:2 20
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G p NG(P )/P ′ No. of chars.
Co2 2 25 32

3 S3 × 32:SD16 27
5 52:4S4 20

Fi22 2 24 16
3 S3 × 32:2 18
5 52:4S4 20

HN 2 22 × A4 16
3 S3 × 32:4 18
5 D10 × 5:4 20

Ly 2 23 8
3 S3 × 32:SD16 27
5 5:4× 5:4 25

Th 2 24 16
3 1

2
(S3 × S3 × S3) 15

5 52:4S4 20
7 72:(3× 2S4) 27

Fi23 2 24 16
3 S3 × S3 × S3 27
5 52:4S4 20

Co1 2 25 32
3 S3 × 32:SD16 27
5 5:4× 5:4 25
7 72:(3× 2A4) 27

J4 2 25 32
3 (2× 32:8):2 18

11 112:(5× 2S4) 42
Fi′24 2 25 32

3 S3 × S3 × 32:2 54
5 (A4 × 52:4A4):2 56
7 72:(6× S3) 25

B 2 26 64
3 S3 × S3 × S3 27
5 5:4× 5:4 25
7 (22 × 72:(3× 2A4))

.2 81
M 2 26 64

3 S3 × 32:SD16 × S3 81
5 5:4× 52:(4× S3) 80
7 7:6× 7:6 49

11 112:(5× 2A5) 50
13 132:(3× 4S4) 55
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Table 2: Sylow 7-normalizers

G P H NG(P )/P ′

He 71+2 72:SL2(7) 72:(S3 × 3)
O’N 71 + 2 L3(7):2 72:(3×D8)
Th 72 − 72:(3× 2S4)
Co1 72 − 72:(3× 2A4)
Fi′24 71+2 He:2 72:(S3 × 6)
B 72 (22 × F4(2)):2 (22 × 72:(3× 2A4))

.2
M 71+4:7 71+4:(3× 2S7) 7:6× 7:6

2 Proofs for large primes, p ≥ 7

For p = 13, the only case which arises is the Monster, M , in which the Sylow
13-normalizer is a maximal subgroup of the shape 131+2:(3 × 4S4). Thus
NG(P )/P ′ ∼= 132:(3 × 4S4), in which the action of 3 × 4S4 is given by the
(unique) embedding into GL2(13) ∼= 3× 2.(2×L2(13)).2. A straightforward
calculation (using 2×2 matrices over GF (13), if necessary) shows that 3×4S4

has just two orbits, of lengths 72 and 96, on the 168 non-trivial characters
of P/P ′ ∼= 132, and so the inertial groups of the non-trivial characters have
orders 4 and 3 respectively. Moreover, the group 4S4 is well understood, and
has 16 characters. Thus NG(P )/P ′ has exactly 3×16+4+3 = 55 characters.

For p = 11, two cases arise: the Monster, in which P ′ = 1 and NG(P ) ∼=
112:(5 × 2A5), and J4, in which NG(P ) ∼= 111+2:(5 × 2S4), so NG(P )/P ′ ∼=
112:(5× 2S4). In both cases, the calculations are very similar to the above.

In M , the group 5× 2A5 has just 5× 9 = 45 characters, and acts transi-
tively on the 120 non-trivial characters of P . The inertial subgroup therefore
has order 5, and the total number of characters of NG(P ) is 45 + 5 = 50.

Similarly, in J4, the group 5× 2S4 acts transitively on the 120 non-trivial
characters of P/P ′, the inertial subgroup therefore has order 2, and the total
number of characters of NG(P )/P ′ is 5× 8 + 2 = 42.

In the case p = 7, again it turns out that in every case P/P ′ ∼= 72, and
similar calculations produce the results without too much difficulty. The
cases are listed in Table 2, together with a subgroup H in which the structure
of NG(P ) can be easily seen.

In each case there is up to conjugacy only one subgroup of GL2(7) which
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acts as NG(P )/P does on P/P ′, and therefore it is again a simple calculation
to obtain the results given in Table 1.

For G ∼= He, there are five orbits of NG(P )/P on non-trivial characters
of P/P ′, with lengths 6, 6, 9, 9, 18, and inertial groups of orders 3, 3, 2,
2, 1. Since S3 × 3 itself has 3 × 3 = 9 characters, we obtain a total of
9 + 3 + 3 + 2 + 2 = 1 = 20 characters of NG(P )/P ′.

For G ∼= O’N , NG(P )/P ′ ∼= 3 × D8 has 3 × 5 = 15 characters, and the
non-trivial orbit lengths are 12, 12, 24, corresponding to inertial groups of
orders 2, 2, 1. Thus NG(P )/P ′ has 15 + 2 + 2 + 1 = 20 characters.

For G ∼= Th, NG(P )/P ′ ∼= 3 × 2S4 has 3 × 8 = 24 characters, and is
transitive on the non-trivial characters of P/P ′, with inertial group of order
3. Thus NG(P )/P ′ has 24 + 3 = 27 characters.

For G ∼= Co1, NG(P )/P ′ ∼= 3 × 2A4 has 3 × 7 = 21 characters, and has
two orbits of size 24 on the non-trivial characters of P/P ′, each with inertial
group of order 3. Thus NG(P )/P ′ has 21 + 3 + 3 = 27 characters.

For G ∼= Fi′24, we calculate similarly that there are 18 + 3 + 2 + 2 = 25
characters of NG(P )/P ′, and for G ∼= M we have 7× 7 = 49 characters.

Finally we consider the case G ∼= B. It is easy to see that there are just
two inertial groups, namely (22 × (3× 2A4))

.2 and 22 × 3. The latter group
clearly has 12 characters. To see how many characters the former group has,
we need to do a little more work. First note that the normal subgroup of
order 4 has 2 conjugacy classes fixed by the outer automorphism, and one pair
of classes swapped by this automorphism. Similarly, the group 3×2A4 has a
total of 21 conjugacy classes, of which 9 are fixed, and six pairs swapped, by
the automorphism. Thus the number of conjugacy classes in the inner half
of the inertial group is 2× 9 + 2× 6 + 1× 9 + 2× 1× 6 = 51. The number
of classes in the outer half of 22:2 ∼= D8 is 2, while the number in the outer
half of (3× 2A4)

.2 ∼= 3× 2S4 is 3× 3 = 9, giving a total count of 2× 9 = 18
outer classes, and a total number of characters 51 + 18 + 12 = 81.

3 The case p = 5

In the cases G ∼= J2, He, Suz, F i22, F i23 and Fi′24, the Sylow 5-subgroup is
an elementary abelian group 52, and the structure of its normalizer is clear.
In the cases G ∼= HS,McL,Ru,Co3, Co2 and Th, the Sylow group is an
extraspecial group 51+2, so again P/P ′ ∼= 52, and the calculations we are
required to do are very similar.
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For G ∼= J2, we have D12
∼= 2×S3 acting, with four orbits of size 6, giving

6 + 2 + 2 + 2 + 2 = 14 characters.
For G ∼= HS, we have QD16 = 〈a, b | a8 = b2 = 1, ab = a5〉 acting, with

non-trivial orbit sizes 8 and 16, and with 10 conjugacy classes of elements.
Thus there are 10 + 2 + 1 = 13 characters of 52:QD16 in total.

For G ∼= McL, we have 3:8 = 〈a, b | a3 = b8 = 1, ab = a−1〉 acting, with a
single orbit of size 24. The group 3:8 itself has 8 linear characters and 4 of
degree 2, giving a total of 12 + 1 = 13 characters of 52:3:8.

For G ∼= He, we have 4A4 acting, with a single orbit of size 24. The iner-
tial groups are therefore 4A4 and 2, giving a total of 14 + 2 = 16 characters.
A similar argument works for the cases G ∼= Co2, F i22, Th and Fi23, where
NG(P )/P ′ ∼= 52:4S4, and shows that there are 16 + 4 = 20 characters.

For G ∼= Ru, we have 4 o 2 acting, with non-trivial orbit sizes 8 and 16,
giving a total of 14 + 4 + 2 = 20 characters.

The case G ∼= Suz is discussed together with the Monster below.
The case G ∼= Co3 has a transitive group 24:2 ∼= 〈x, y | x24 = y2 = 1, xy =

x5〉 acting, with an inertial group of order 2. Thus there are 18 + 2 = 20
characters in total.

The groups Co2, Fi22, Th and Fi23 all have a group 52:4S4 for NG(P )/P ′.
There is just one proper inertial subgroup, of order 4, and we have already
seen that 4S4 has 16 conjugacy classes, so the total number of characters of
NG(P )/P ′ is 4 + 16 = 20.

Finally, for G ∼= Fi′24, the inertial groups are (A4×4A4):2 and S4×2. The
latter has 10 characters, while the former can be shown to have 46, giving
a total of 56. To see this, note that A4 has two classes fixed by the outer
automorphism, and one pair of swapped classes. Similarly, 4.A4 has six fixed
classes, and four pairs of swapped classes. Thus the number of inner classes
is 2× 6 + 1× 6 + 2× 4 + 2× 1× 4 = 34. Also, S4 has two outer classes, while
4S4 has six outer classes, giving 2× 6 = 12 outer classes in all.

The remaining cases (where the Sylow group has order bigger than 53) are
listed in Table 3, along with a maximal subgroup H in which the structure
of the Sylow 5-normalizer can be easily elucidated.

In the case of Co1, the shape of NG(P )/P ′ is obvious. The three cases
G ∼= HN,Ly and B all have isomorphic Sylow 5-subgroups, and we see
for example from [11] that P/P ′ ∼= 52, from which the shape of NG(P )/P ′

follows immediately. [Specifically, the group 4S6 has two orbits, of lengths
36 and 120, on the 156 one-dimensional subspaces of 51+4/5, so a simple
counting argument shows that an element of order 5 in 4S6 fixes just one
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Table 3: The larger cases for p = 5

G H NG(P ) NG(P )/P ′

HN 51+4.21+4.5.4 51+4:(2× 5:4) 5:2× 5:4
Ly 51+4.4S6 51+4:(4× 5:4) 5:4× 5:4
Co1 51+2.GL2(5) 51+2:(4× 5:4) 5:4× 5:4
B 51+4.21+4.A5.4 51+4:(4× 5:4) 5:4× 5:4
M 51+6.4J2.2 51+6:(4× 52:(4× S3)) 5:4× 52:(4× S3)

of these one-dimensional subspaces. Similarly, the 5-element fixes just one
hyperplane, namely the orthogonal complement of the fixed 1-space.] A
similar calculation in 51+6:4.J2.2 is carried out in [13], with the same result.

It is now a triviality to calculate the number of characters of NG(P )/P ′ in
all cases except the Monster, where we see that 4×S3 has orbits 1+12+12 on
the characters of 52, so that 52:(4×S3) has 4×3+2+2 = 16 characters. (This
calculation also occurs for the Suzuki group.) Therefore 5:4×52:(4×S3) has
5× 16 = 80 characters.

4 The case p = 3

In many ways this is the hardest case, because the structure of NG(P )/P ′

is sometimes quite hard to determine precisely. As in the previous cases,
the key is to find a suitable subgroup H in which the structure of the Sylow
p-normalizer can be seen.

The smaller cases, up to and including M24, are all quite straightforward,
as are the cases He and Ru. We treat the other 15 cases individually.

Taking the McLaughlin group first, we see the Sylow 3-normalizer as a
subgroup of shape 31+4:(4.S3) inside the maximal subgroup 31+4:2.S5, from
which we deduce that NG(P )/P ∼= Q8 and NG(P )/P ′ ∼= (32:4 × 3).2. This
enables us to calculate the orbits of Q8 on the characters of the 33 as 1 + 2 +
8 + 8 + 8, with inertial groups Q8, 4, 1, 1, 1 respectively.

Next we look at the Suzuki group, and use the two subgroups 35:M11 and
32+4:2.(A4× 22).2 to show that NG(P )/P ∼= SD16, and P/P ′ ∼= 33, on which
the action is given by NG(P )/P ′ ∼= (3 × 32:Q8).2. The inertial groups are
now SD16, Q8, and three copies of the trivial group.

The case Co3 is very similar, as the Sylow 3-normalizer is contained in
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a group 35:(2 ×M11), and we obtain NG(P )/P ′ ∼= S3 × 32:SD16. Now the
second factor has inertial groups SD16 and 2, so has 7 + 2 = 9 characters,
making 3× 9 = 27 for the whole group.

In Conway’s second group, the Sylow normalizer is contained in the
subgroup 34:(2 × A6

.22) inside U4(3).D8, so again we obtain NG(P )/P ′ ∼=
S3 × 32:SD16.

The argument for the Lyons group is also very similar, since it also
contains a group of the shape 35:(2 × M11), and we obtain NG(P )/P ′ ∼=
S3 × 32:SD16 again.

In the big Conway group Co1 we use the subgroup 36:2.M12 to come to
the same conclusion again in this group.

The Sylow 3-normalizer in the O’Nan group is the maximal subgroup of
shape 34:21+4:D10, which is transitive on the 80 non-trivial characters of the
34, with inertial group therefore of order 4. Now the group 21+4D10 itself has
14 irreducible characters, made up of the four characters of D10, six more
characters of 24:D10, and four faithful characters. Thus the total number of
characters of the Sylow 3-normalizer is 4 + 14 = 18.

For the smallest Fischer group Fi22 we use the subgroup 31+6.23+4.32.2,
and perform explicit calculation with the generators given in [12]. This shows
that the 32 fixes a unique hyperplane in its action on the 36, and therefore
NG(P )/P ′ ∼= S3 × 32:2. The second factor has just six characters, so the
whole group has 18.

For the group Fi23, we can use the analogous subgroup 31+8.21+6.31+2.2S4,
or alternatively, note that the Sylow 3-normalizer actually lies in the part of
this group which is in O+

8 (3):S3, namely 31+8:2.(A4×A4×A4).2.S3. Since the
top S3 permutes the three copies of A4, and since the action of 2.(A4×A4×A4)
is given by the tensor product action SL2(3)⊗ SL2(3)⊗ SL2(3), we pick up
a factor of 3 towards P/P ′ from each ‘layer’, and therefore NG(P )/P ′ ∼=
S3 × S3 × S3.

In the Harada–Norton group we use 34:2(A4×A4).4, in which the action
is given by some version of the orthogonal group O+

4 (3). In particular, the
action of 2(A4×A4) is given by the natural action of SL2(3)⊗SL2(3). This
means that, as usual, there is unique fixed hyperplane in the action of the
Sylow subgroup on the 34, whence NG(P )/P ′ ∼= S3×32:4, so the total number
of characters is 3× (4 + 2) = 18.

The case of J4 is actually not hard, but is worth giving in some detail as
the isomorphism type of the Sylow 3-normalizer has been wrongly stated in
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otherwise authoritative papers. We have NG(P ) ∼= (2× 31+2:8):2, and

NG(P )/P ∼= (2×8):2 ∼= 〈x, y, z | x2 = y8 = z2 = [x, y] = [x, z] = 1, yz = xy5〉.

The latter group has just two orbits, of lengths 1 and 8, on the 9 characters
of P/P ′ ∼= 32, and moreover has 14 conjugacy classes, so the total number of
characters of NG(P )/P ′ is 14 + 4 = 18.

In the largest Fischer group Fi24
′ we use the subgroup 32+4+8(A5×2.A4).2.

Now it is clear that we can factor out the normal 36, and we are left with the
group A5×2.A4 acting on 38 as the tensor product of the deleted permutation
representation of A5 with the natural representation of SL2(3). Thus we
pick up a contribution of 32 to P/P ′ from the 38, and calculate NG(P )/P ′ ∼=
S3 × S3 × 32:2.

In the Baby Monster, a similar calculation in the subgroup 32+3+6(S4 ×
2.S4), in which the action on the 36 is given by O3(3)⊗GL2(3), shows that
NG(P )/P ′ ∼= S3 × S3 × S3.

Similarly in the Monster we use 32+5+10(M11 × 2S4), in which the action
of M11 × 2S4 on 310 is the tensor product of a 5-dimensional representation
of M11 and the natural representation of GL2(3). Thus there is a unique
fixed hyperplane, and the usual argument shows that NG(P )/P ′ ∼= S3×S3×
32:SD16, and there are 3× 3× 9 = 81 characters in total.

Finally we are left with the Thompson group. Here we use Aschbacher’s
description of the structure of the 3-local subgroups, in Chapter 14 of [3].
He states explicitly that P/P ′ ∼= 33, and we deduce from his other results
that the action of NG(P )/P ∼= 22 on it is the sum of the three non-trivial
irreducibles. This implies that the orbits of 22 on the 27 characters of 33

are one of size 1 (the trivial character), three of size 2 (the fixed points of
the three involutions), and 5 of size 4 (the rest). Thus we obtain a total of
4 + 3× 2 + 5× 1 = 15 characters.

5 The case p = 2

In this case, the groups NG(P )/P ′ all have very straightforward structure, so
the number of characters can be very easily determined. Moreover, it is easy
to see that in all but five cases, P is self-normalizing. The exceptions are
J1, where NG(P )/P ∼= 7:3, and J2, J3, Suz and HN , where NG(P )/P ∼= 3.
The only real problem, therefore, is in certain cases to work out the order of
P/P ′.
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In M11, the Sylow 2-subgroup is SD16 = 〈a, b | a8 = b2 = 1, ab = a3〉
and P/P ′ ∼= 22. In J1, the Sylow 2-subgroup is elementary abelian, and
NG(P )/P ′ ∼= 27:7:3. In M22,M23 and McL, the Sylow 2-normalizer is a
subgroup 24:D8 of 24:A6, so we have NG(P )/P ′ ∼= 23. Now using 210:M22 in
Fi22, or its double cover in Fi23, we see that the Sylow 2-subgroup fixes a
unique hyperplane in the 210, and therefore P/P ′ has order 24.

In M24 and the Held group, NG(P ) ∼= 26:(2 × D8) < 26:3S6, in which
it is easily seen using the hexacode that there is a unique hyperplane in
the 26 fixed by the Sylow 2-subgroup, so that NG(P )/P ′ ∼= 24. Now using
the subgroups of shape 211M24 in Co1, J4 and Fi′24 we see that the Sylow
2-subgroup of M24 fixes a unique hyperplane in the 211, so that NG(P )/P ′

has order 25. Similarly, using 21+24Co1 in the Monster we get NG(P )/P ′ of
order 26.

In J2 and J3, the subgroup 21+4:A5 shows us that NG(P )/P ′ ∼= 2×A4. In
M12, the Sylow normalizer 42:22 is seen inside 42:D12, from which it is clear
that NG(P )/P ′ ∼= 23.

In the Higman–Sims group HS, the Sylow normalizer 43:D8 is seen inside
43:L3(2), which shows that NG(P )/P ′ is isomorphic to that in the affine
group AGL3(2) ∼= 23:L3(2). This is well known to be 23. A similar argument
produces the same answer in the O’Nan group, using the subgroup 43.L3(2).

In the Rudvalis group Ru we use the subgroup 23+8L3(2), and the normal
23 is obviously contained in P ′, so we can quotient it out. Thus we look at
28:D8 inside 28:L3(2), where the action of L3(2) on 28 is the adjoint repre-
sentation (i.e. the Steinberg module). This is well known to restrict to the
regular representation of D8, and so NG(P )/P ′ ∼= 23.

In the Suzuki group, we use 24+6:3.A6, or rather its quotient group
26:3.A6. The 26 is really a 3-dimensionalGF (4)-module for 3.A6, in which the
Sylow 2-normalizer 3×D8 fixes a unique hyperplane, so NG(P )/P ′ ∼= A4×22.

In Co3 we can use the involution centralizer 2.S6(2). In the quotient
S6(2), the Sylow 2-normalizer is contained in 25:S6, the action of S6 on 25

being that on the space of even subsets of 6 letters. Direct calculation shows
that NG(P )/P ′ ∼= 24.

In the Lyons group, the Sylow 2-normalizer is in 2.A11, so in 2.S8. Now in
S8, we have Sylow 2-normalizer 24:D8 < S4o2, and by calculationNG(P )/P ′ ∼=
23.

In Co2 we use the subgroup 210:M22:2, and first determine the image of
P/P ′ in M22:2, using the subgroup 24:S6

∼= 24:S4(2). Here we have the Sylow
2-subgroup 2×D8 in S4(2), giving a contribution of 23 to P/P ′, and we pick
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up another factor of 2 from the normal subgroup 24. Similarly, in 210:M22:2
the Sylow 2-subgroup fixes a unique hyperplane in the 210, so we pick up
another factor of 2, giving P/P ′ ∼= 25 in Co2.

Similarly for the Baby Monster we can use the subgroup 22+10+20:(M22:2×
S3), and as usual work just in the quotient group 220:(M22:2 × S3). Again
we have a contribution of 25 to P/P ′ from the quotient M22:2× S3, and the
representation on 220 is the tensor product of a 10-dimensional representation
of M22:2 and the 2-dimensional representation of S3. Thus there is again a
unique fixed hyperplane for the Sylow 2-subgroup, and so in B we have P/P ′

of order 26.
Next we consider the Thompson group. Here the argument is a little trick-

ier, as both the useful 2-local subgroups 25.L5(2) and 21+8.A9 are non-split
extensions. First we use the involution centralizer, and work first in the quo-
tient A9. Here the Sylow 2-normalizer is isomorphic to that in A8

∼= L4(2),
so P/P ′ ∼= 23. Now in the action on 28 there is a unique fixed hyperplane,
so in Th we have P/P ′ of order at most 24. On the other hand, in L5(2) we
see P/P ′ of order at least 24.

Finally we consider the Harada–Norton group HN . Again we need to use
two different 2-local subgroups in order to obtain the required information
without going into too much detail in one particular group. We use the
involution centralizer 21+8.(A5 × A5):2, in which the A5 × A5 acts on the 28

as O+
4 (4), i.e. as L2(4) ⊗ L2(4). Hence P ′ contains at least a 25 out of the

21+8, and moreover we know that the normalizer of this 25 in HN has the
shape 25(26:(L3(2) × 3)). In the latter group, the L3(2) acts on 26 as two
copies of the natural module, so we have NG(P )/P ′ ∼= 22 × A4.
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