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Abstract

We describe a construction of the Monster simple group implicitly as 196882 × 196882 matrices

over the field of 3 elements.

1 Introduction

The Monster is the largest of the 26 sporadic simple groups. Evidence for its existence emerged in

the early 1970s, but due to its enormous size it could not be constructed by computer. The first

construction, therefore, by Griess in 1980 [3], was entirely by hand. Implicitly, Griess’s construction

describes the group by generators given as 196884 × 196884 matrices over Z[1/2]. It is therefore

possible, in principle at least, to reduce the matrix entries modulo 3 to obtain a representation

of the group over GF (3). As there is a fixed vector and a fixed hyperplane, this gives rise to an

irreducible representation of degreee 196882. In practice, however, such matrices would be useless for

computation, as they occupy nearly 8GB each and it would take months or years to multiply two

matrices.

We will describe a computational construction of the Monster sporadic simple group as a group
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generated by three 196882-dimensional matrices over GF (3) and stored in a compact format which

allows effective computation. The construction is based on Griess’ strategy [3] and Conway’s simpli-

fication of it [2] by using the 2-local structure of the Monster. It also uses many ideas and techniques

from the 3-local construction over GF (2) given in [5] and the construction of the Baby Monster over

GF (3) in [7].

The basic strategy (following Griess) is to construct the restriction of the representation to an

involution centraliser 21+24
+ Co1, then restrict further to the centraliser 22+11+22·M24 of two commuting

involutions, and finally to adjoin an element of order 3 normalising the central 22 of the latter group.

We denote modules by their degrees, followed where necessary by a distinguishing letter, in boldface

type. The only exceptions to this will be the Leech Lattice representation reduced modulo 2 and the

permutation representation of Co1 on 98280 points, which will be denoted by 24f2 and P respectively.

The group for which this is a module will always be clear from the context. An index of notation is

provided at the end of the paper.

Section 2 describes the construction of the group G ∼= 21+24
+
·Co1, the centraliser of an element x

in class 2B of the Monster. We will construct generators c and d of G. They will have orders 4 and 6

respectively and will be preimages of standard generators of Co1 as defined in [10]. The restriction of

196882, the module for the Monster, to G is a direct sum of three modules

298⊕ 98280⊕ 98304 ∼= 298⊕ 98280⊕ (24⊗ 4096),

where the modules 298, 98280 and 98304 are modules for G and the modules 24 and 4096 are

modules for the double cover, 2G.

Let y be a non-central element of O2(G) such that 〈x, y〉 is a four-group of type BBB (i.e. all its

involutions are in class 2B). We will find generators for K = CG(y) ∼= 22+11+11+11·M24 as words in c

and d. Restricting 196882 to K gives a module of structure

276a⊕ 22⊕ 276b⊕ 276c⊕ 48576⊕ 49152a⊕ 49152b⊕ 49152c.

We will define a standard basis for this module relative to a list of standard generators (a, b, u, v, w)

for K and construct a basis change matrix B which will map our original basis to the standard one.

Next we construct our extra generator as a matrix T realising an automorphism σ of K of order

3. The group 〈K,T 〉 will be called H. The automorphism σ may be defined by σ : (a, b, u, v, w) 7→

(a, b, w, u, v). In particular, T permutes the three 276-dimensional constituents of the module, the
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three 49152-dimensional ones, and three subgroups of K of shape 22+11. There are several matrices

which realise the automorphism σ and we will need to test all the cases to select the correct one

to generate the Monster. This will require a method of calculating in these groups, which will be

described in Section 7.

Most of the programs used were written by the first author, based on programs described in [5]. In

addition, the Meataxe [6], [8] and Magma [1] were used. This paper forms part of the first author’s

PhD thesis, written under the supervision of the second author.

1.1 Standard basis algorithms

In [5], the standard basis algorithm together with its variants and uses was given in great detail. Here

we summarise the algorithm and state how it is used in our construction.

The matrix group version of the algorithm works as follows. The input is a set of generators of

the group and a “seed” vector. The seed vector is one that can be specified precisely, e.g. the fixed

vector of a subgroup. This seed is taken as the first vector in the basis and the other basis vectors are

defined to be its images under some list of words in the group generators.

We use a version of the standard basis algorithm in Section 2.1 to construct the 4096-dimensional

representation of a non-split extension 21+24·Co1, in Section 4 to find standard generators for O2(K)

and in Sections 3.2 and 5 to rewrite our generators for G with respect to a nicer basis. Note that,

modulo permutations and sign changes on the vectors, the basis that we use is essentially the same

as in [3] and [2]. Variants of the algorithm are also used to construct an outer element of the split

extension H ∼= K :3.

2 A 196882 dimensional representation of 21+24
+
·Co1

2.1 The non-monomial summands of the representation

We will construct each of the modules 298, 98280, 24 and 4096 for the group 2G ∼= 2·21+24
+
·Co1

separately.

If x is an element of G we write xm for the action of x on the module m. We also abuse notation a

little by defining x4096 as “the image of some element x′ in 4096, where x′ is a preimage of x in 2G”

and similarly for x24. In this situation, we can change the sign of both x24 and x4096 simultaneously,

but not separately.

The module 24 is the Leech Lattice representation of 2Co1 reduced modulo 3, and c24 and d24 are
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standard generators [9]. We obtain 298 by removing one trivial submodule and one trivial quotient

module from the symmetric square of 24 using the Meataxe “chop” program [6].

Let E = 21+24, Ē = E/Z(E) and 24f2 be the 24-dimensional Leech Lattice representation of 2Co1

reduced modulo 2. The vector space V = GF (2)24 is isomorphic to Ē so they can be identified with

each other. The representation 4096 can be constructed by finding two matrices c4096 and d4096

which act by conjugation on generators for the natural representation of E in the same way (modulo

−1) as c24f2 and d24f2 act on a basis of V .

To construct this representation we follow the method given in [5] and [7], changing the numbers

where necessary. As in [7], we choose our generators for E to be a set of 24 involutions {gi} such that

gigj = −gjgi if i ≡ j (mod 12), and gigj = gjgi otherwise. We define the basis vectors {vi} of V to

be their images in Ē.

2.2 The degree 98280 monomial representation of 224·Co1

This construction also follows the method of [7], but we include the details here as they were not given

in this reference.

Abstractly, the monomial representation of degree 98280 is the representation induced from the

non-trivial linear representation of 224·Co2 = 223·(2 × Co2). We can obtain it via the action by

conjugation of G on a certain conjugacy class of elements of E, which fall into 98280 pairs under

multiplication by the central involution. We label the elements of each pair “+” and “−”. So 98280

can be constructed from 4096. Each pair corresponds to a vector in a certain orbit of Ē ∼= V , which

is isomorphic to the reduction modulo 2 of the Leech Lattice under Co1. We first construct the

permutation representation of Co1 on the 98280 points which will tell us where the nonzero entries lie

in the monomial matrices generating 224·Co1, and then determine the sign of each entry.

As in [7], we use a spanning tree algorithm to provide an efficient ordering in which to calculate

the entries.

Let Λ = {λ1, . . . , λ98280} be the orbit of 98280 vectors in V under the action of G. The action of

c24f2 and d24f2 on Λ gives a permutation representation of c and d on the 98280 pairs of elements.

We must now determine their action on the elements of each pair.

Define the sign of an element of E to be the sign of the nonzero entry ±1 in the first row. For any

given x ∈ G, suppose λix4096 = λj . Then ex4096
i = ej , where ei and ej are lifts of λi and λj into E.

The i, j-th entry of x98280 will be +1 if ei and ej have the same sign, and −1 otherwise.

So in theory the monomial matrices could be written down simply by conjugating each element

of E by x and noting whether the sign is preserved. The problem with this approach is in the im-

4



plementation, as conjugating 4096-dimensional matrices 98280 times for each generator would require

too much time.

Fortunately all the necessary information is available in 24f2, and in the next section we show

how to extract the information.

2.3 Implementing the construction of 98280

Fix some λ ∈ Λ and x ∈ G. Suppose

λ =
24∑
i=1

αivi and λx24f2 =
24∑
i=1

βivi,

where αi, βi ∈ {0, 1}.

One lift of λ into E is

e =
24∏
i=1

gαii so ex4096 = (−1)ε
24∏
i=1

gβii ,

where (−1)ε is the sign we need to calculate.

By collecting together all the terms in {gi, gi+12}, for each i, and using the fact that g2
i = 1, we

can find

ex4096 =
24∏
i=1

(gix4096)αi =
12∏
i=1

(. . . gigi+12gigi+12gi . . .)

where each of the terms (. . . gigi+12gigi+12gi . . .) may start and finish either with gi or gi+12. We can

convert this to

ex4096 = (−1)ε
12∏
i=1

gβii g
βi+12
i+12

by replacing each occurrence of gi+12gi by gigi+12 and changing sign each time we do so. So ε is the

number of these operations required modulo 2. We can count these operations as follows.

Let R=(ri,j) and S=(si,j) (1 ≤ i ≤ 24, 1 ≤ j ≤ 12) be the matrices with entries ri,j=x24f2i,j and

si,j=x24f2i,j+12. In other words, R consists of the first 12 columns of x24f2 and S the remaining 12.

Now let M ′ = (m′i,j) = RSt, and M = (mi,j) be the matrix with (i, j)-th entry m′i,j for i < j, 0

otherwise.

Then mi,j is equal to the number of “bad” pairs (products of two generators which must be

interchanged) contributed to the above product by the summands vi, vj of λ when αi and αj are both

non-zero. So we can count the number of such bad pairs which appear in λx by calculating λMλt, as

the premultiplication gives the sum of the rows i for αi = 1, and the postmultiplication deletes the
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unnecessary columns and sums all other entries.

We have now determined the signs to attatch to the permutations generating Co1, in order to

convert them to our desired representation of 224·Co1. This completes our construction of the module

196882 restricted to G ∼= 21+24
+
·Co1.

3 The subgroup K ∼= 22+11+22·M24

3.1 Restriction of 196882 to K

Here we will find K as a subgroup of G ∼= 21+24·Co1. The crucial point is to find generators for K

with the property that we can easily write down the action of the required automorphism σ on the

given generators. In this section the generators are only defined up to certain ambiguities, which are

resolved in Section 4. While finding the generators that we need, we will construct the monomial part

of the basis change matrix B = B196882.

We shall define a standard generating set of five generators {a, b, u, v, w} for K = CM (22) =

22+11+11+11·M24. At this stage u, v, and w are only defined up to certain ambiguities which will be

resolved later on.

First, we will find a and b generating a subgroup 211·M24 (this subgroup is unique up to conjugacy).

They will be preimages for standard generators of M24 and have orders 4 and 3 respectively where

ab has order 23 and ab(abab2)2ab2 has order 4. It is not necessary to specify these generators more

precisely.

Let K̄ = K/22+11 ∼= (211 × 211):M24. Then K̄ has three normal subgroups of order 211, which we

call Ū , V̄ and W̄ . If l is an element of order 11 in 〈a, b〉, then l̄ centralises unique involutions ū ∈ Ū ,

v̄ ∈ V̄ and w̄ ∈ W̄ . We will choose preimages u, v and w of ū, v̄ and w̄ in K such that:

• They generate the centraliser 22 ×D8 of l,

• The automorphism σ of K which maps U →W → V will map u→ w → v.

As already described, the module for Co1 restricts to K as

276a⊕ 22⊕ 276b⊕ 276c⊕ 48576⊕ 49152a⊕ 49152b⊕ 49152c.

Here, 276a and 22 come from the restriction of 298 to K. Restricting the tensor product 24⊗ 4096

gives

49152b⊕ 49152c ∼= 24⊗ (2048a⊕ 2048b).
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The remaining modules are summands of 98280.

22 is a representation of the quotient group M24, 276a, 276b and 276c are representations of the

three isomorphic quotient groups 211:M24, 48576 is a representation of K/Z(K) ∼= 211+11+11·M24,

and the three representations of degree 49152 are of the three isomorphic quotients 21+11+11+11·M24

obtained by factoring out each of the three non-trivial elements of the centre of K.

The module 98304 becomes monomial on restriction to K. But the image of K in 276b⊕276c has

a monomial action on 2-dimensional subspaces, whereas on 98280 the group 224Co1 acts monomially

on 1-dimensional subspaces. We therefore cannot cut the pieces 276b and 276c from 98280 using

only monomial-format programs. It is therefore worth converting the representation 552, which is

the direct sum of 276b and 276c, to ordinary matrix format. As all the modules of dimension 276

must be considered at once, all the smaller pieces can be “pasted” together and we can work with the

representation 850, where 850 = 276a⊕ 22⊕ 276b⊕ 276c.

3.2 Words for some generators of K

As c and d are preimages for standard generators of Co1, a good place to start looking for suitable

words for (not necessarily standard) generators of K is in a list of words for maximal subgroups of

Co1 on standard generators. These are available in the WWW Atlas [9].

One such pair of words gives generators for the maximal subgroup of Co1 of shape 211:M24. The

words are

e′ = ((cdcd2)3)(cd)6
and f ′ = ((((cd)2cd2)2cd)4)(cd2)5

.

Here, e′ and f ′ generate a group which contains K but also contains an outer automorphism of K

which acts by interchanging 49152b with 49152c, and 276b with 276c. This group is NG(K) ∼= K.2.

Calculating in this group is relatively easy as it has a monomial action on 98304.

We want to study the representations separately, so we must first put the 98280-dimensional

matrices into block diagonal form. This was done by using the monomial standard basis program of

[5]. The output of the standard basis program is our first basis change matrix in shorthand form,

written as a monomial, which we will call B98280. After conjugating e′98280 and f ′98280 by the inverse

of this matrix, we can cut them into the pieces e′552, e′48576 and e′49152a, and f ′552, f ′48576 and f ′49152a.

Next, words are found for the two generators a and b for a subgroup 211·M24 of K. We start looking

for images of a and b near the top of the composition series. 22 contains insufficient information, as
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it represents only M24, so we begin in 276a which represents 211:M24. Here we find the words

a′′′ = ((e′f ′)4e′f ′2(e′f(e′f ′2)3)2)8 and b′′′ = (e′f ′e′f2)5

which generate a subgroup M24 in 276a. On testing these words in 552 we find that they generate

211:M24.2 modulo the subgroup 22+11. We can move into the subgroup of index 2 by taking the

generators

a′′ = (e′f ′)23a′′′ and b′′ = b′′′.

We may obtain a complement to the subgroup of order 211 by using the words

a′ = ((a′′b′′)5b′′a′′b′′(a′′b′′2)3(a′′b′′)2b′′)6 and b′ = ((a′′b′′)4b′′a′′b′′(a′′b′′)3)2,

which were found by a random search.

The generators are now almost as required, but their images in the representations of degree 49152

show that 〈a′, b′〉 ∼= 21+11·M24
∼= 2 × 211·M24. Let y be the central involution. We find that y =

(a′b′)23. We then have generators a = a′y and b = b′ for the subgroup of 〈a′, b′〉 of index 2.

4 Finding words for the remaining generators

4.1 Strategy

The other generators, u, v and w, can be found in a similar manner, but more care must be taken as

it must be ascertained at each step that automorphisms of K exist which centralise a and b, and map

u to w to v.

Recall that u, v and w are defined as generators for the centraliser in K of some element l, so we

must first fix our element l. It must be an element whose image in the quotient group M24 has order

11. We choose l = (bab)2(babbab2)2(bab)4bab2bab(bab2)3.

Note that u, v and w are inside K, so we first find generators e = (e′f ′)23e′ and f = f ′ for K

itself.
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4.2 Finding words for u, v and w modulo Z(K)

We can begin in the 850-dimensional representation which is the direct sum of 276a, 22, 276b and

276c. Here we find two words

u′′ = ((efef2)8l)11 and v′′ = (((ef)2(efef2))15l)11

which yield two commuting involutions u850 and v850, and their product w′′ yielding w850. Separately

each of these extends 〈a850, b850〉 to 211:M24 and together they extend it to (211 × 211):M24.

We choose a basis with respect to which the five generators satisfy

a276a = a276b = a276c,

b276a = b276b = b276c,

u276a = v276a = u276b = w276b = v276c = w276c.

This is done using the MeatAxe program “zsb” (Standard Basis) which gives the basis change matrix

B850.

In 48576 we can see 211+22·M24
∼= K/Z(K), and 〈a48576, b48576〉 ∼= 211·M24. Both these groups

have a normal subgroup Z of order 211 which was not visible in 850, and so our words for u, v and

w are only correct modulo Z. Let u′, v′ and w′ be words giving the correct images for u, v and w in

48576, and let z be the involution centralising l in this newly visible 2-group. Clearly u′ is either u′′

or zu′′, and similarly for v′ and w′.

By looking at the orders of various words in the generators, we find that the correct words are

u′ = zu′′, v′ = zv′′ and w′ = w′′.

4.3 Perfecting the words for u, v and w

The whole of K can be observed by looking in any two of the three representations of degree 49152 at

once. This means that we can fully determine words for u, v and w by working in these representations.

Before we begin this section, the three generators are determined up to multiplication by elements

of the centre Z(K) ∼= 22. This group is generated by y and a second involution, x = (e2f2effef)23.

In each of the 49152-dimensional representations, the image of one of the three non-trivial elements

of Z(K) is equal to the identity.

We can use the standard basis method again here to determine which, if any, of the elements of
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Z(K) must multiply each of u′, v′ and w′ as we again know that 49152a, 49152b and 49152c must

be isomorphic to a fixed module 49152 when the respective generators {a, b, u, v}, {a, b, w, u} and

{a, b, v, w} are used. First we must change basis on 98304 so that 49152b and 49152c can be worked

in separately. This basis change can be saved as B98304, as it will be needed later.

We find that the three generating lists

{a, b, u′, yv′}, {a, b, xw′, u′}, {a, b, yv′, xw′}

are isomorphic and the third and fourth generators in each case centralise l and together generate D8.

The isomorphism test was performed by using a monomial standard basis program, based on the

one used in [5]. The seed vector was the single coordinate vector fixed by a subgroup 211M23, generated

by

g = (((ab)2ab2ab)4)(ab)4
and h = (((ab)2ab2ab)2)(ab2)3

.

The outputs when used on the respective generating sets were the standard basis matrices B49152a,

B49152b and B49152c.

The three new basis change matrices thus obtained can be recorded in a matrix

B147456 = B49152a ⊕B49152b ⊕B49152c

5 One standard basis

5.1 One standard basis for 48576

The new generator T to be constructed in the next section is defined with respect to the standard

basis obtained for the action of K on 196882. So far, we have a standard basis for 850 and for

147456, but we have not yet defined one for the remaining part of the module 48576.

The situation is more complicated here than in the other two pieces of the module as we no longer

have a unique monomial standard basis. In fact there are now three, and the action of σ on this part

of the space can be described by a matrix which will map these bases to each other. In this section

we will define one of them. The others will be defined in Section 6.2.

Before defining the basis, we must define generators for U , V and W . We can use the element

ab of order 23 to define wi to be w(ab)i−1
, so w1 = w etc., and define zi, vi and ui similarly. We

can see that 〈z1, . . . , z11〉 = Z and 〈w1, . . . , w11〉 = W , and so the sets {u1, . . . , u11} and {v1, . . . , v11}
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must generate U and V respectively as these sets are the images of the first eleven wi under the

isomorphisms σ2 and σ.

Let the products vi1 . . . vin of n generators of V be denoted by vi1,...,in , and similarly products of

generators of U , W and Z.

The first basis is defined by choosing its first element X as the centralised vector of

C1
∼= 〈W, v2,4,8, v2,3,5,6, v3,5,9, v7,3,2,1,11, v7,5,4,2,1,10, u2,4,8, u2,3,5,6, u3,5,9, u7,3,2,1,11,

u7,5,4,2,1,10, z1, z2, z3, z4, z6, z7, z5,8, z5,9, z5,10, z5,11〉

and the next 63 elements to be the images of X under the elements of 211+11+11. In this group,

H1 = 〈v1, v2, v3, v4, v5, v7〉 is a complement to C1, so we can find these vectors as the 63 images of X

under the non-trivial elements of H1.

The other words are chosen so that they will (up to signs) permute the 759 sets of 64 single

coordinate vectors of which the 64 vectors just described form one set. This will give the full set of

images of these 64-sets under the group 〈a, b〉, as it acts on these sets in a manner which corresponds

to the action of M24 on the 759 octads of the Steiner system S(5, 8, 24). Two such images can be

found by taking the images of these vectors under the elements a and aba2b, and the remaining sets

can be found by using the elements k and j2k defined below, of orders 11 and 23, with images in M24

that generate 23:11. The words used are given below in terms of the generators g and h for 211M23,

giving 253 images of these sets of 192 vectors.

The seed vector X is a single coordinate vector, so we can write B48576 using a monomial format

standard basis program. We use one that gives the image of the seed vector under the words

vα1
1 vα2

2 vα3
3 vα4

4 vα5
5 vα6

7 aβ((ab)2(abab2)2ab2)γ(B)δ(A2B)ε,

0 ≤ αi ≤ 1 for each α, 0 ≤ β ≤ 1, 0 ≤ γ ≤ 1, 0 ≤ δ ≤ 10, 0 ≤ ε ≤ 22

where the words εδγβα1 . . . α6 are in lexicographic order and

j = (h(ghgh2)2)((gh)2gh2(gh)2(ghgh2)2)6)

and

k = ((gh)2gh2(gh)2(ghgh2)2gh2)((gh)2gh2ghgh(ghgh2)2)−2).
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5.2 The complete standard basis matrix

We now have three standard basis matrices B850, B48576 and B147456. We also have a monomial

base change matrix B98280 which reorders the basis elements for the monomial representation of G

into a more useful order.

We see that B−1
98280 conjugates the images in 98280 of generators for K to matrices of the form


∗552 0 0

0 ∗48576 0

0 0 ∗49152a


where ∗ denotes certain invertible matrices.

We can now write down the complete basis change matrix

B196882 =


B850 0 0

0 B48576 0

0 0 B147456




I850 0 0

0 B98280 0

0 0 I98304

 .

Of course, B196882 cannot be written down in practice, as it is not monomial and therefore would

not fit into our computers, but it will be useful when starting to calculate in the Monster to think of

it in this way although it is actually stored in several different pieces.

6 Extending K to H

We know that T must act on the group K by mapping the generators a, b, u, v, w to a, b, w, u, v

respectively, and we can now determine how it acts on the underlying vector space. It permutes the

three summands 276a, 276b and 276c, and 49152a, 49152b and 49152c. We also know that it

acts trivially on 22 and maps the different bases for 48576 to each other.

In this section, we construct a matrix with one of the possible actions on 196882. The other cases

will be obtained from it in Section 8.
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6.1 The monomial part of an element T ′ extending K to H

When our generators of K are in standard basis the 850-dimensional matrices look like this:

a850 = a276 ⊕ a22 ⊕ a276 ⊕ a276

b850 = b276 ⊕ b22 ⊕ b276 ⊕ b276

u850 = M ⊕ I22 ⊕M ⊕ I276

v850 = M ⊕ I22 ⊕ I276 ⊕M

w850 = I276 ⊕ I22 ⊕M ⊕M

where M = u276a (= u276b = v276a = w276c= w276b = w276c) is some 276-dimensional matrix of

order 2.

T ′850 can be described as a matrix which will conjugate the four elements a850, b850, u850, v850 to

a850, b850, w850, u850. Such a matrix could be produced by using standard basis programs, but in this

case it is obvious that one such matrix is



0 0 I276 0

0 I22 0 0

0 0 0 I276

I276 0 0 0


.

Moreover, we know that T850 acts trivially on 22 as this is a representation of M24, and the only

elements of K with non-trivial images in this representation are contained in 〈a, b〉, the subgroup

centralised by σ. (Here we use the fact that T has order 3, but by Schur’s Lemma σ, and hence T ,

acts as a scalar ±1 on 22.)

The matrix T ′147456 will look very similar to T ′850. Here the standard generators for K act as

a147456 = a49152 ⊕ a49152 ⊕ a49152

b147456 = b49152 ⊕ b49152 ⊕ b49152

u147456 = M ⊕N ⊕R

v147456 = N ⊕R⊕M

w147456 = R⊕M ⊕N

with respect to the standard basis, where M , N and R are three particular 49152-dimensional matrices
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of order 2.

Again, we can write down one suitable matrix

T ′147456 =


0 I49152 0

0 0 I49152

I49152 0 0

 .

6.2 The non-monomial part of T ′

Unlike the other direct summands of T ′, this part is not in a format that we already have programs

to calculate with. This is because it must conjugate images for the generators of K in essentially

different monomial representations to each other. Indeed, it must conjugate the diagonal matrices

representing W to proper monomials representing V .

In Section 5 we gave the first standard basis as the set of images of a seed vector under a set of

48576 words in a, b, u, v and w. The other two standard bases can be obtained by replacing u, v, w

with w, u, v and v, w, u in these words. The three bases will be distinct as the words are not symmetric

in these three generators. As we know that σ acts by mapping u→ w → v and centralising a and b it

is obvious that it will act as required on these three bases.

Recall that the first element of the first basis was defined to be the centralised vector of

C1 = 〈W, v2,4,8, v2,3,5,6, v3,5,9, v7,3,2,1,11, v7,5,4,2,1,10,

u2,4,8, u2,3,5,6, u3,5,9, u7,3,2,1,11, u7,5,4,2,1,10, z1, z2, z3, z4, z6, z7, z5,8, z5,9, z5,10, z5,11〉.

As T ′ must fix z and conjugate w to v, u to w and v to u, the first element of the second basis must

be the vector centralised by

C2 = 〈V, u2,4,8, u2,3,5,6, u3,5,9, u7,3,2,1,11, u7,5,4,2,1,10,

w2,4,8, w2,3,5,6, w3,5,9, w7,3,2,1,11, w7,5,4,2,1,10, z1, z2, z3, z4, z6, z7, z5,8, z5,9, z5,10, z5,11〉.

When the generators for K are written with respect to the first basis the first coordinate vector

X1 = (1 0 0 . . . . . . 0)

is centralised by C1. Thus the first row of the matrix which changes this basis to the second one is a
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centralised vector X2 of C2.

As the first 64 elements of the first standard basis were defined in Section 5 to be the images of

±X1 under the elements of H1 = 〈v1, v2, v3, v4, v5, v7〉, the first row of the matrix will be

X2 = ± (1 . . . 1 0 . . . . . . . . . 0)

← 64→ ← 48512→

The next 63 rows of the matrix are given by taking the images of this vector under H2 =

〈u1, u2, u3, u4, u5, u7〉 in the same order we used to give the first 64 rows of the first basis.

With respect to the first standard basis, each element of U is the product of an element of V and

a diagonal element in W . So, while the first 64 entries of the image of X2 under these elements may

have different signs, they will all be non-zero and the final 48512 coordinates will remain as zeroes.

This gives the first 64 rows of the matrix as:

↑

64

↓

 A
... 0

← 64→ ← 48512→



where A is the non-zero part of this matrix.

Recall from section 5.1 that the set of 64 images of X1 under 211+11+11 had 759 images under

certain words in a and b, and that a and b acted (modulo signs) as permutations of these 759 sets

of vectors. With respect to the first standard basis, the words preserved the ordering of the vectors

in each set, but shifted the non-zero coordinates a multiple of 64 places to the right. Thus taking

the images of the matrix shown above under these same words will give us the remaining rows of the

matrix 
A 0

. . .

0 A


in which A is repeated 759 times down the diagonal.

We know that T48576 will have order 3. This allows us to determine the sign of X2, the first row

of the matrix. If we choose “+”, the order of the matrix is 6, but “−” gives order 3 as required.

In practice, there is no need to store the whole matrix as all the information required is contained

in the 64× 64 matrix A.
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7 Calculating in 〈G, T 〉

All the candidates for T can be obtained from T ′ by multiplication by certain diagonal matrices which

will be determined in the next section. This means that any methods which can be used to calculate

in 〈c, d, T ′〉 will work for any possibility for T .

The only main operation that can feasibly be performed in 〈c, d, T ′〉 is that of finding a factor of

the order of elements. The matrices are too large to use standard programs, but we can find a factor of

the order of a word α(c, d, T ′) by calculating the size of an orbit of α(c, d, T ′) on a 196882-dimensional

vector. Any sufficiently random vector will suffice. If the word contains two adjacent letters which are

elements of G, these can be multiplied together in the usual way. The only pairs of elements which

cannot be multiplied together are pairs consisting of T ′ (or its inverse) and one element of G. As the

image of a vector under a word can be found by multiplying the vector once by each of the elements

in the word in order, the question of how to multiply a vector by a word reduces to one of how to

multiply it by a product C1T
′ε1C2T

′ε2 ... for some elements C1, C2, ... ∈ G.

7.1 Inventory

Before describing the method used to multiply vectors by matrices, it is worth remembering how our

generating matrices are stored.

At this stage we have the following files. For each of the two generators of G we have

• a 298× 298 matrix

• a 24× 24 matrix

• a 4096× 4096 matrix

• a 98280× 98280 matrix stored in monomial format.

and for T ′ and its inverse we have

• an 850× 850 matrix

• a 147456× 147456 matrix in monomial format

• a 64× 64 matrix.

We also have some base change matrices:

• a 98280× 98280 monomial format matrix
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• a 48576× 48576 monomial format matrix

• a 147456× 147456 monomial format matrix

• an 850× 850 matrix.

Throughout the rest of the section, let C be some element of G.

7.2 An outline of the method

The method used for multiplying a vector X by CT ′ or CT ′−1 is as follows:

1. Cut X into the three pieces X298, X98280 and X98304.

2. Multiply each vector Xn by the corresponding matrix Cn.

3. Multiply X by the inverse of the base change matrices in order, cutting, pasting and changing

format where necessary.

4. Calculate XT ′ or XT ′−1 as appropriate.

5. Change basis on the vector again, this time multiplying it by the base change matrices them-

selves.

This process can be repeated for each such pair of adjacent factors in the word α(c, d, T ′).

After T has been fully determined, it will be possible to shorten the process by writing all three

generators with respect to a “compromise” basis. We can conjugate T147456 and T850 by B147456

and B850 respectively, and c98280 and d98280 by B−1
98280.

7.3 The details of the method

Multiplication of X850 by T ′850 and of X298 by C298 is trivial, and so is calculating the vector–

monomial products X98280C98280 and X147456T
′
147456, but we need another method for the other

parts of the matrices.

As the 48576-dimensional matrix for T ′ has 759 identical matrices A on the diagonal and zeroes

everywhere else, we have only stored A. Also, using standard multiplication programs on such large

matrices would not have been an option. But we can multiply vectors by T ′48576 by “folding” X48576

into a 759× 64 matrix, postmultiplying this by A, then “unfolding” the result.

There is a similar method for multiplying vectors by the images of elements of 21+24
+
·Co1 in the

98304-dimensional tensor product space. A standard method would not be practical as our computers
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are unable to deal with 98304-dimensional matrices. Instead, we multiply the vector X98304 by the

tensor product C4096 ⊗ C24 by folding X98304 into X ′, a 24× 4096 matrix, calculating Ct24X
′C4096

and then unfolding the result.

Multiplying vectors by words is a lot slower in this construction than in the GF (2) construction

of [5]. It takes approximatesly six seconds to multiply a vector by the word cT ′ using a Pentium

II/450MHz processor with 384 MB of RAM, while a similar computation in the other construction

takes about a hundredth of this time.

8 Generating the Monster

8.1 What are the cases?

The different cases for 〈c, d, T 〉 arise because T is not uniquely determined by the action of σ on K.

This section looks at the various possibilities.

It is obvious that the action of T ′ on K is fixed by conjugation of T ′ by any matrix centralising

the generators of K. This means that we can conjugate T ′ by any element of the elementary abelian

group of order 28 generated by elements acting as −1 on any one of the summands of the module for

K, and +1 on the other seven summands.

The only elements of this group which can possibly act non-trivially on T ′ are the elements of the

subgroup of order 26 generated by elements acting as −1 on any one of 276a, 276b, 276c, 49152a,

49152b or 49152c. This group then contains a subgroup of order 4, generated by the element acting

as −1 on 276a, 276b and 276c and the one acting as −1 on 147456 = 49152a+49152b+49152c,

which will also centralise T ′. Modulo this subgroup, we are left with 24 possibilities to consider.

Now suppose we have chosen to conjugate T ′ by some element κ centralising c and d. This will

not give us an essentially different group as

〈c, d, Tκ〉 ∼= 〈cκ, dκ, Tκ〉 ∼= 〈c, d, T 〉κ ∼= 〈c, d, T 〉.

We now consider what the different choices for T are, and eliminate those which do not give a

different group.

Consider the two matrices

−I276 ⊕ I22 ⊕ I276 ⊕ I276 and I276 ⊕ I22 ⊕−I276 ⊕ I276
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Conjugation of T ′850 by either of these matrices or by their product will not affect the action on

K as they centralise the image of K itself in this representation. So conjugation by any one of them

gives a viable alternative to T ′850.

Four possibilities also arise for T147456 in a similar manner. These are T ′147456 and conjugation

of it by any one of the three matrices ω, χ and ψ which act as −1 on 49152a, 49152b, and 49152c

repectively and as the identity elsewhere.

As any candidate for T147456 can be chosen independently of the one for T850, this gives us a total

of 4× 4 = 16 cases to consider, as stated above.

8.2 Which of the cases give different results?

Let us first consider T147456.

Modulo the element −I147456 which centralises both T ′ and the generators for K, the cases

described above correspond to conjugation of T ′147456 by the matrices

I49152a ⊕−I49152b ⊕−I49152c, −I49152a ⊕ I49152b ⊕−I49152c

and

−I49152a ⊕−I49152b ⊕ I49152c.

Note that these are respectively the involutions (xy)147456, x147456 and y147456, and that the image

of these involutions is the identity in all the other represenations. So conjugating T ′147456 by one of

these three matrices has the same effect as conjugating T ′ by the corresponding element of Z(K).

It is obvious that the group 〈c, d, T ′〉 must be equal to 〈c, d, T ′α(c,d)〉 as for any word α

(T ′)α(c,d) ∈ 〈c, d, T ′〉

and

T ′ = ((T ′)α(c,d))(α(c,d)−1) ∈ 〈c, d, (T ′)α(c,d)〉

and therefore all four possibilities for T obtained by choosing T147456 differently will extend 〈c, d〉 to

the same group.

This argument does not apply in 850 as no central elements of K are visible, but we can still show

that there are only two different cases arising here.
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Let κ be the matrix

−I276 ⊕ I22 ⊕ I276 ⊕ I276 ⊕ I98280 ⊕ I98304

It is shown below that T ′κ = T ′τ for some matrix τ which centralises not only K but the whole of

G, and it has already been noted that conjugation of T ′ by any such matrix will not afford anything

new.

The matrix κ acts uniquely on T ′ up to multiplication by any element centralising T ′. For example,

replacing the submatrix I22 by −I22 will not affect this action. This gives the matrix τ which acts as

−1 on the 298-dimensional constituent of the module for G and +1 elsewhere. It will thus centralise

any element of G.

The third and fourth choices of T850 act in the same way modulo κ, and so now we can see that

they both are in effect the same case. This leaves us with a total of only two cases to consider instead

of the original 16.

8.3 Determining which is the case that we want

We must now differentiate between the two cases and decide which one is our third Monster generator.

This is done computationally, using the method given in Section 8 to find factors of element orders.

This is sufficient to distinguish between the cases as we know that the largest element order in the

Monster is 119, whereas in most subgroups of GL196882(3) it is a much greater figure. So if some

element can be found in one of the cases with order greater than 119, this case cannot be the Monster.

We find that T = T ′, as by using this choice we find the words cT , cdT and cd2T to have orders

60, 87 and 46 respectively, but in the second case no non-trivial words were found with order less than

120.

9 Conclusions

We have now constructed three matrices, the first two of which generate an involution centraliser in

M, and the third which extends this group to the Monster itself. We have also found a practical

method of calculating within our new representation.

One application of the construction is to help to determine the maximal subgroups of M. It has so

far been used to classify the subgroups of M isomorphic to L2(23), to find a subgroup L2(29) contained

in the new maximal subgroup L2(29):2, and also to show that there are no subgroups isomorphic to

L2(13) which contain elements of class 13B (see [4]). We hope to extend this work to classify several
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other isomorphism types of possible maximal subgroups.

10 Index of Notation

Here is a list of the notation which is used frequently throughout, together with brief definitions. All

modules are over GF (3) unless stated otherwise.
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22 a module for M24

24 a module for 2Co1

24f2 a module for Co1 over GF(2)

276a,b,c isomorphic modules for three different quotients 211:M24 of K

298 a module for Co1

850 a module for 222:(M24 × 3)

4096 a module for a group 21+24
+ Co1 not isomorphic to G

48576 a module for 211+22·(M24 × 3)

49152a,b,c isomorphic monomial modules for three different quotients 21+11+22·M24 of K

98280 a monomial representation of 224·Co1

98304 24⊗4096

147456 a monomial representation of 22+11+22·(M24 × 3)

196882 the module for M

a, b generators for CG(T ) ∼= 211·M24

B a basis change matrix

c, d generators for G

E O2(G) ∼= 21+24
+

G CM(z) ∼= 21+24
+
·Co1

H 〈T,K〉

g1, . . . , g24 generators for E

K CG(y) ∼= 22+11+22·M24, normalised by T

P permutation representation of Co1 on 98280 points

T the third generator of M

T ′ a candidate for the third generator of M

u, v, w involutions in E extending 〈a, b〉 to K

U,V,W,Z subgroups of O2(K) containing u, v, w, z respectively

x an element in class 2B centralized by G

y an element of E in class 2B

z an involution in O2(〈a, b〉)

Λ an orbit of 98280 vectors in 24f2
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