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Abstract

In this paper we describe our computer construction of the largest
of the 26 sporadic simple groups, the so-called Monster.

1 Preliminaries

1.1 Introduction

Many of the sporadic simple groups were originally constructed on a com-
puter, for example as groups of matrices or as groups of permutations, but
the Monster was far too big to be constructed in this way, so had to be done
by hand [3].

By now matrix representations are available on computers for 25 of the
26 sporadic simple groups [14], but the Monster is still too big for a simple-
minded computer construction. Its smallest faithful representation is of de-
gree 196882 over GF'(2), which would require approximately 10GB to store
two generators as matrices.

In this paper, we describe a method for constructing this representation in
a more compact form, which will enable some calculations to be performed in
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the Monster. It is enormously faster than matrix multiplication, but rather
less flexible, and it remains to be seen how effective it will be in helping to
answer real questions about the Monster.

The bulk of the paper is divided into five parts. In Sections 2 and 3
we present a variety of background material, theoretical, algorithmic and
computational. In Section 4 we construct the appropriate representation of
the maximal subgroup N(34) = 3'712:2-Sy2:2, and in Section 5 we study
the restriction to the subgroup 3*™19:(M}; x 22). Finally in Section 6 we
find an automorphism which normalizes the subgroup 3**°T19:(M;; x 22) to
32H5H10:(My; x Dg), and extends 3'712:2:Suz:2 to the Monster.

1.2 The general strategy

Our choice of construction method was based on three overiding considera-
tions. Firstly, the huge size of the group meant that the extra efficiency of
calculations over GF'(2) would be absolutely crucial, and could make the dif-
ference between success and failure. Second, we could never afford the time
to perform a single matrix multiplication, and therefore everything should
be based on acting on vectors by matrices. Third, we cannot afford the time
to read in a 5GB matrix for each vector-matrix operation, so a compact way
of storing at least the generators is necessary.

It seemed to us that all these conditions could be satisfied by utilizing a
3-local analogue of the 2-local Griess construction [3].

We recall first the basic ideas of the 2-local construction. We start with
the involution centralizer, a subgroup of the shape 2172*Co;. The desired
196884-dimensional ordinary representation of the Monster restricts to this
group as

(2" ® 24) @ 98280 @ 300.

Here the 2'? denotes the natural (i.e. the faithful irreducible) representation
of 21724 extended to a group 21***:Co; (not isomorphic to the involution
centralizer in the Monster), and 24 denotes the representation of 2:Co; on
the Leech lattice. The representation 98280 is a monomial representation of
224-C'o; which can be obtained from the 196560 = 2 x 98280 minimal vectors
of the Leech lattice, while the final 300 is simply the symmetric square of the
Leech lattice representation.
We now imagine restricting this representation to a subgroup 2211+ pf)

obtained by centralizing a second involution. We find that both the repre-



sentations 2'2 and 24, and therefore also the 300, are monomial for this
subgroup. The actual decomposition is as follows:

(2"a ® 24) @ (2'b ® 24) & 49152 B 48576 B 276a & 276b & 276¢ & 24.

This subgroup has index 2 in its normalizer in 2'*2*-Co;, which fuses the
constituents 2''a ® 24 with 2Mb ® 24, and 276a with 276b. The problem
now is to find another invertible linear map which normalizes the subgroup,
and permutes these constituents in the correct way, that is, extending the
action from S, to S3 on the three constituents of degree 2!1.24 = 49152,
and on the three of degree 276. If one utilizes all the available information,
it can be shown that there is a unique such extension—this is essentially
Thompson’s proof of the uniqueness of the Monster, assuming the existence
of this representation [9].

In the 3-local version of this, we start with the 3A-normalizer, which
is a group of the shape 3'*12:2:Suz:2. The representation restricts to this
subgroup in a similar way to the above, although it is technically more com-
plicated for at least three independent reasons.

First, we really want to work over the field of order 4, in order to be able
to write elements of the normal 3-subgroup as monomial matrices, but then
the required outer automorphism of 3'7!2-2-Suz acts semi-linearly on the
space. (In other words, if g € 3'712:2:Syz:2\ 3'712:2:Syz, then g(Av +w) =
Ag(v) + g(w) for all vectors v and w, and all scalars A € GF(4), where
A = A2) We solve this problem by translating between several different
notations for the same thing, according to context: thus a particular space
may be regarded simultaneously as an n-dimensional space over GF'(4), a 2n-
dimensional space over GF'(2), or (the span of) a collection of n 2-dimensional
spaces over GF'(2).

Second, the representation of 6:Suz which corresponds to the Leech lat-
tice representation of 2°C'o; in the 2-local construction is not irreducible, but
turns out to be a uniserial module with composition factors 12, 66, 12 in or-
der. Here the 12 denotes a reduction modulo 2 of the complex Leech lattice,
and the 66 denotes the skew-square of its dual. We shall prove later on that
there is (up to automorphisms) a unique module of this shape, and show how

it can be constructed. 1o

Third, the tensor product corresponding to 212 ® 24 is now 3° ® 66 over
12
GF(4), but both factors have a Frobenius automorph (or dual), so there
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are four representations of this shape. If we forget the GF'(4) structure and
regard the module as having twice the dimension over GF'(2), this has the
effect of fusing these four cases in pairs. There remains the question, which is
the correct one of the two cases? It turns out that these two cases represent
non-isomorphic groups of the shape 3'*12:2-Suz, one of which is a subgroup
of the Monster, while the other one is not. We show later (in Section 5.2)
how to distinguish these two groups and how we ensure that we have the
right one.

We can now describe the structure of the representation restricted to the
subgroup 3'"12:2:Suz as

12
3°® 66 | @ 32760 @ 142.
12

Here the final 142 is a GF(2)-irreducible for Suz obtained by tensoring the
reduction modulo 2 of the complex Leech lattice with its dual, and removing
a trivial module from the top and the bottom. The other modules are all
GF(4)-modules as loosely interpreted above. The 32760 is a ‘semilinear-
monomial’ representation of 3'2:2-Suz, again obtained from the 196560 =
6 x 32760 minimal vectors of the (complex) Leech lattice. (All dimensions
given here, except 142, are over GF'(4).)

Restricting further to 3'1H5+5+5 V[, we find that 3¢ = 729 breaks up as
243a+ 2430+ 243c, while 12 and 66 remain irreducible. From [11] we see that
the semi-linear monomial 32760 breaks up as 16038 +2916a> + 178248910 +
198 (again, dimensions are given over GF'(4)), while the 142 breaks up as
132+10. Roughly speaking, we now have to fuse together the 16038 with one
of the 243 ® 66 modules, and both the 2916 modules with 243 ® 12, as well as
mixing the 198-dimensional GF'(4) semilinear part with the 132-dimensional
GF(2) part. (A more mathematical description will be given below.)

In fact, we decided to keep as many automorphisms of these groups as
possible, in order to reduce the number of cases to consider at the end. Thus
we constructed first the representation of 3'12:2- Suz:2, then restricted to the
subgroup 31555 (M) x 2%), and adjoined an automorphism extending
this to 3>T5T1%:(M;; x Dg). The precise structures of the modules for these
groups are given in Section 5.4.

Before we embark on the details of the construction, we describe some of
the important concepts and techniques which play a significant role. The first
of these concerns the interplay between GF'(2) and G F'(4)-vector spaces, and
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the vital but technical ‘semilinear-monomial’ (a particular type of induced
representation) and ‘semitensor product’ (a particular direct summand of a
tensor product). The second concerns the adaptation of the concept of a
standard (or canonical) basis to deal with such representations.

2 Background

2.1 Some representation theory

If we have a group G containing a subgroup H, with N normal in H and
H/N = S3, then we can take the 2-dimensional irreducible representation of
S (over GF'(2)), lift to H, and then induce to G. The resulting representa-
tion is what we shall call a ‘semilinear-monomial representation’, and it has
the following properties. First, each element of G can be represented as the
product of a block-diagonal matrix with 2 x 2 blocks on the diagonal, and a
permutation of these blocks. Second, each of the 2 x 2 blocks occurring is an
element of S3 = GLy(2) = I'L1(4). The underlying GF(2)-vector space has a
natural decomposition as a direct sum of |G : H| two-dimensional subspaces.
We can identify each of these 2-spaces with a 1-space over GF'(4), and then
identify the 2 x 2 matrices with semilinear maps on this 1-space. Hence the
name ‘semilinear-monomial’.

We apply this construction to the group G = 3'2:2-Suz:2 and the sub-
group H =2 3.319(S3 x U;(2):2). The latter has a unique S3 quotient, and if
we lift and induce its 2-dimensional irreducible representation we obtain a
‘semilinear-monomial representation’ on |G : H| = 32760 ‘points’. Thus the
underlying space may be regarded either as a 65520-dimensional space over
GF(2) on which G acts linearly, or as a 32760-dimensional space over GF'(4)
on which G acts ‘semilinearly’—unfortunately the meaning of the term ‘semi-
linear’ in this context is more general than the usual meaning. That is, a
given element of G will act linearly on part of the space, and semilinearly
on another part. So in the expression ‘semilinear-monomial representation’
it should be understood that ‘semilinear’ governs ‘monomial” and not ‘repre-
sentation’.

For the sake of precision, we give here our identifications of the various
fields, spaces and groups. Many other identifications are possible, but all



give equivalent results.

GF(2)|(0,0) (0,1) (1,0) (1,1)
GF4)| 0 1 w w

6@ (o 1) (1 o) (V1) 0 1) G 1) (Vo)

I'Ly(4) 1 w W 1* w* w*

Now we are in a position to describe our various different notations for rep-
resentations of groups G of the shape G = 3.H.2. To exclude degenerate
cases we assume that G has trivial centre, while 3.H = N, say, has cen-
tre of order at least 3. We let w be a particular element of order 3 in the
centre of N, and suppose that we are given a GF(2)-representation of G
in which w acts fixed-point-freely. Then restricting to N, we may identify
w with scalar multiplication by w € GF(4). This gives the underlying n-
dimensional GF'(2)-space the structure of an n/2-dimensional G F(4)-space,
on which N acts linearly, and the elements of G\ N act semilinearly, in the
usual sense that (Av)g = A(vg) for g € G\ N and scalars A\ € GF(4).

In practice we can perform this translation by using a standard basis al-
gorithm for w (see Section 2.3), so that w is represented by a block diagonal

) ) 1
matrix with (1 0

ements g of G into 2 x 2 blocks, and each non-zero block is either one of

(o 1) (0 1) (4 o) Groemoroneat (3 o). (; 1) (o 1)
(if g & N). We then translate the notation using the above tables.

The two cases where we carried out this procedure (in both directions!)
were the representation of 3'712:2-Suz:2 of degree 2 x 3% = 1458 over GF(2),
and the 180-dimensional representation of 6-Suz:2. If we regard these both as
(non-faithful) representations of 3'7!2:6: Suz:2, then we can imagine tensoring
them together.

For clarity, we return to our general notation, and suppose that we have
two suitable representations of GG, of dimensions 2k and 2m, treated in the
above way, for possibly different central elements w; and ws of N. Then
these correspond to GF'(4)-representations of N of dimensions k& and m,
whose tensor product has dimension km over GF(4), or 2km over GF(2). It
follows that the GF(2) tensor product, which has dimension 4km, splits as
the direct sum of two submodules of dimension 2km. We call these the two
‘semitensor products’ of the original representations. In general these two

> on the diagonal. Then we divide the matrices for el-
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submodules are not isomorphic—indeed they may have completely different
structures.

There remains the question, how do we find these submodules in practice?
One of them corresponds to identifying w; and wy with the same element of
GF(4) (so that wjw; ! is in the kernel of the representation), while the other
corresponds to identifying them with different elements of GF'(4) (so that
wyws is in the kernel).

Replacing wo by its inverse if necessary we may assume that we are in
the first case, and that in the first representation w; is represented by a

block diagonal matrix with (1 (1J

the second representation. Then elements of N are represented by matrices
whose non-zero 2 x 2 blocks are identified with GF(4)-elements as above.
Thus to obtain the desired semitensor product we simply multiply all the
2 x 2 blocks in the first matrix by all the 2 x 2 blocks in the second matrix,
and arrange them in the usual form of a tensor product.

The elements of G \ N, on the other hand, are represented by matrices
whose non-zero 2 x 2 blocks are of the form \*, for A\ € GF(4). Now we want
to interpret the semitensor product of \* and p* as (Au)*, because the effect
should be to multiply by the scalars A and p € GF(4), and then apply the

) on the diagonal, and similarly for w, in

: . : . (1 1 .
field automorphism. Since we are interpreting * as the matrix (O 1 ), this

translates to multiplying the 2 x 2 blocks together with (é 1) in between

them—in either order, since all three elements are involutions.

This ‘semitensor’ construction can be interpreted in the language of the
representation theory of 3%:2 = 2(S3 x S3). The 2 x 2 blocks in the two
representations of GG correspond to elements in two different 2-dimensional
representations of 3%:2. Now the latter group has exactly four 2-dimensional
irreducible representations, and the tensor product of any two of them is the
direct sum of the other two. We simply need to make a consistent choice
of one of these direct summands. (We neglect the degenerate case when
wy = wi', which can be simply explained by the representation theory of
53.)

We apply this construction to certain 180- and 1458-dimensional repre-
sentations of 3'712:6: Suz:2. The only problem (which is solved in Section 5.2
below) is that there is no distinction between w; and wy ', or between wy and

wy ', so that until we consider them both together we cannot tell which of



wywy or wiws, ' should act trivially. All we know is that the tensor product
of the two representations is the direct sum of two indecomposable modules
of degree 131220, one of which represents the 3A-normalizer of the Monster,
while the other represents a different group.

2.2 Standard basis algorithms

We will use many variants of the standard basis algorithm throughout the
construction, for purposes as diverse as:

1. converting GF'(2) representations to GF'(4) representations, and vice
versa;

2. adjoining outer automorphisms to groups;
3. finding invariant symplectic forms;

4. constructing (split or non-split) extensions of a vector space by a group
acting on it.

In this section we describe the original matrix-group standard-basis algo-
rithm of [7], and the modifications of it that we have used for other types
of representations, and for specific purposes. In the following section we
describe briefly the main types of applications that we have used.

The original motivation for the standard basis algorithm was to provide
an isomorphism test for simple modules (i.e. irreducible group representa-
tions). The idea is to take ‘standard’ (i.e. fixed, or determined up to isomor-
phism) generators for the group, and construct a ‘standard’ (i.e. determined
up to isomorphism) basis, with respect to which the matrices representing
the group generators assume a ‘standard’ form. Isomorphism can then be
tested by comparing these standard forms. In practice, the usefulness of this
algorithm lies mainly in the fact that it produces an explicit isomorphism
when one exists.

We describe first the corresponding algorithm for primitive permutation
groups (G, as this is technically simpler. Suppose G permutes n points, and is

generated by the ‘standard’ generators (or indeed, any generators) gi, . .., gk,
and that one of the point stabilizers is generated by hq, ..., h,,, where the h;
are given by certain words in the g;, say h; = w;(g1,...,gx). Then we may

take the fixed point P; of (hy, ..., h,,) as a ‘seed’ point. (If there is more than
one fixed point, then the fixed points form a block, but G acts primitively,
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and therefore regularly, so has prime order, and we neglect this trivial case.)
Then we ‘spin’ this point under the group generators, in some fixed order,
until we have all the n points: for example, we may define inductively P; to
be the first point distinct from P, ..., P,_; in the list

Pl,Plgl,Png,...,Plgk,ngl,...,ngk,....

(Of course, many other orderings are possible, as we shall see later on.) If
we now write the generators gy, ..., gy as permutations of the subscripts of
Py, ..., P,, then they assume a standard form. Thus running the algorithm
twice produces an explicit isomorphism between two equivalent permutation
representations of a given abstract group (with a fixed set of generators).

Next we may generalize to arbitrary transitive permutation groups G on
n points. In this case the stabilizer H of a point will in general have d fixed
points, where d = |Ng(H) : H| is the index of H in its G-normalizer. But
now the centralizer in S, of G is a group of order d, isomorphic to Ng(H)/H,
and acting regularly on these d points. It follows therefore that we can take
any one of them as the seed point, and the standard form will be the same
in each case. Sometimes this is an advantage, in that we can choose the seed
point arbitrarily, and sometimes a disadvantage, if all possible seed points
need to be checked, as happens for example in Section 6.2.

Finally we generalize to arbitrary permutation groups by working in each
orbit separately, and then concatenating the orbits in a suitable order.

The second type of standard basis algorithm applies to matrix groups, or
matrix representations of abstract groups. There are several extra compli-
cations here. Firstly, there are more ways of choosing a suitable seed vector
v1. The original version (which is particularly useful if little is known about
the group beforehand) took v; to be the (or a) nullvector of a suitable linear
combination of words in g1, ..., gx. In this context, ‘suitable’ means one with
smallest possible non-zero nullity. Later enhancements using characteristic
polynomials provide good ways of finding such linear combinations of words
quickly. It is also possible to use fixed vectors of subgroups as in the permu-
tation group case. Secondly, in the ‘spinning’ part of the algorithm we define
v; to be the first vector in the list

U1,V191,---,V10k, V201, - - -

which is linearly independent of {v1,...,v;_1}. Thirdly, not all modules are
direct sums of simple modules, and to produce a suitable standard basis for
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a module with a complicated structure it may be necessary to use more than
one seed vector. (This last problem does not arise in our context.)

So far in this section we have only described what is well known. Now we
need to generalize the methods to our ‘semilinear-monomial” representations.
In fact there are two quite distinct problems we need to solve. Both problems
are to construct isomorphisms, just as in the previous cases. However, one
considers isomorphism within the category of ‘semilinear-monomial’ repre-
sentations, while the other considers isomorphism in the wider category of
matrix representations.

The first problem can be solved by a combination of the algorithms al-
ready described. Moreover, the method applies to an arbitrary induced rep-
resentation. Thus we let G = (g1,...,gx) be a group, H = (hy,..., hy) be
a subgroup of G with h; = w;(g1,...,9x), and U be a fixed H-module of
dimension d. We write the action of an element of G on the induced module
U 1¢ as a permutation of the n images of U, followed by a list of n d x d
matrices giving the action on the appropriate image of U. Our task now is
to put such a representation into a standard form, in order to construct an
explicit isomorphism between two equivalent representations.

First we consider the permutation action of G on the n images of U. In
this action H is by definition a point stabilizer, and we choose U; (the ‘seed
point’) to be one of the fixed points of H. Next we use the matrix version
of the standard basis algorithm to determine a standard basis B; for U; (as
a module for H, with standard generators hi,...,hy,). Finally, we use the
permutation version to order the ‘points’ as Uy, ..., U,, with standard bases
attached. More explicitly, we may define B; to be the first basis in the list

Bl, B191, <oy Blgk; B2917 P

with the property that (B;) is distinct from each of (By), ..., (B;i_1).

In our case, d = 2, and each B; can be represented as an invertible 2 x 2
matrix over GF'(2), i.e. as an element of GLy(2) = S5.

Our final version of the standard basis algorithm concerns the case where
the module U which is induced up, or the subgroup H from which it is
induced, may not be fixed by the G-isomorphism which we are trying to
construct. In other words, we need to work in the category of all modules,
rather than the category of induced modules. In this case our method is
somewhat ad hoc, and may not generalize very easily. We merely refer to
Section 6.3 for a description.
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2.3 Application of standard basis algorithms

There are many situations where the construction of an explicit isomorphism
between two different G-modules is useful. We describe a few which we will
use later on, namely:

1. finding G-invariant forms;

2. adjoining an outer automorphism to G,

3. constructing non-split extensions of a vector space V by G}

4. extending or restricting the underlying field of a representation.

Our first application is to finding G-invariant forms. Suppose we have a
self-dual G-module V', and for each group generator g; let M; be the matrix
giving its action on a standard basis of V. Then the inverse-transposed
matrices (M;')! give an equivalent action of G, which therefore has the

same standard form. In other words, if S is a standard basis matrix obtained
by applying the algorithm to the matrices (A, )?, then

S(M;)'S™ = M;

or equivalently
M;SM} = S.

Thus S is the matrix of a bilinear form invariant under GG. By letting S
run through all possible standard basis matrices, we obtain all G-invariant
bilinear forms on V. In particular, if V' is a simple module, we obtain the
G-invariant symplectic form, or symmetric bilinear form.

Similarly, if V' is unitary, then with the same notation the matrices (M, l)t

give an action of G equivalent to that of the M;, where  denotes the field
automorphism of order 2. In this case, the standard basis matrix S has the
property that

S(M; S = M,
or equivalently

M;SM, = S.

Our second application, which is crucial and which we use frequently, is
to adjoin outer automorphisms to groups. Suppose we have as usual a group
G with standard generators g¢i, ..., gx, in a representation which is invariant
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under an outer automorphism 7. We first have to find words w;(g1, ..., gx)
for 1 < i < k such that the k-tuple (wi(g1,...,9x),---, wr(g1,...,9x)) is
conjugate in G to (7(g1),...,7(gx)). For this reason it is important to choose
our generators in such a way that such words will be easy to find. See [13]
for a fuller discussion.

Now suppose that gy, .. ., gr are represented by (matrices, permutations or
whatever) Mj, ..., Mj with respect to a suitable standard basis. Then we ap-
ply the standard basis algorithm again to wy (M, ..., M), ..., wg(My, ..., My).
The resulting standard basis matrix/permutation/etc. will then conjugate
My, ..., My to wy(My, ..., My),...,we(Mi,..., My), so realises an automor-
phism 7o of G, where « is an inner automorphism. As in many applications
of the algorithm, we may need to consider all possible standard bases in order
to find one with the properties we require. In this case, all standard bases
will give a group isoclinic to G.(T), but in general not all (or even, not any)
will give a group isomorphic to G.(T).

While the above construction produces upward extensions of a group
G, our third application produces downward extensions. Specifically, we
produce (split or non-split) extensions V.G where V' is some specified G-
module. In the general construction, V' is a tensor product module, but
since every module is a tensor product of itself with the trivial module, this
is not a restriction in principle. However, sometimes we need not just to get
the group extension V.G correct, but also its representation. Thus it may be
useful to construct a group of the form W.G, where W is a proper submodule
of a non-trivial tensor product V', and this may not be easy to find.

We first consider the easiest case, where matrices M; representing the
action of the group generators g; on V' are available. Then the matrices

(5 1)
v 1)°

where v ranges over all row vectors in V', generate a split extension V:G, in
which the matrices with v = 0 generate a subgroup isomorphic to G.
Now the same group V:G is represented by the inverse transpose matrices

(M 0)7) = (0 0y = (e -y

which on moving the last coordinate to the beginning becomes



Suppose now that V' is self-dual, so that by the above method we can find
a matrix S conjugating (M; ')* to M; for all i. Thus conjugating the above

matrices by
(o s)
0 S
we obtain
(1 0)( 1 0 )(1 0)_( 1 O)
0 S\ (MYt (M7 )\o S)  \-MS "t M;)’

since ST M;1)'S = M;. What happens if we now paste these matrices
together, overlapping on the M;? We obtain matrices of the form

1 |
—MiS’lvt | Ml | 0
| v 1

)

and clearly the top-right matrix entry should be 0. Thus by assigning all
possible values to the bottom-left entry we obtain a group F.V.G, where F'
is the underlying field.

In the case when S is a symplectic form, and the underlying field has
characteristic not 2, we find that this is a non-split extension, since the fact

that S* = —S implies that the commutator of the two matrices
1 0 0 1 0 0
St T 0 and —S~twt T 0
0 v 1 0 w 1
is
1 0 0 1 0 0
0 I 0| = 0 I 0
—vS7twt +wS Wt 0 1 2wS~ ot 0 1

For example, if V' is a 2n-dimensional representation over GF'(p), where p is
a prime bigger than 2, then we obtain a (2n 4 2)-dimensional representation
of a group p!*?":G in this way.

A generalization of this construction takes a subgroup of V:G rather than
the whole group. For example, it may be possible to take a representation of
G itself in this form, and then the construction gives rise to a representation

of F.G, which may or may not be split.
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A further generalization can be obtained by replacing the trivial rep-
resentation of G by some other representation, or indeed by two distinct
representations. Thus we may have a group G with two modules, such that
a submodule of one is isomorphic to a quotient of the other. Using the
standard basis algorithm very much as above, we can obtain the matrices
representing the group generators in the forms

(50 = (58
B, C, a D, E)

Then we can paste them together to form matrices

A, 0 0
Bi Cz 0 )

where * denotes an unknown part of the matrix. If all possibilities for x
are taken, then an extension V.G is formed (where V is the appropriate
G-module), which again may be either split or non-split.

Our final application of the standard basis method is to change the field
of definition for a matrix representation.

If a matrix representation is written over a large field F', but is equivalent
to a representation over a subfield Fj, than an appropriate base-change can
be found by use of the standard basis algorithm. Provided the seed vector is
found by a process which does not involve the use of any elements of F'\ Fy,
the standard basis matrix will automatically conjugate the group generators
to matrices over Fy. This is the case, for example, if the seed vector is the
nullvector of an Fj-linear combination of words in the group generators, or
a fixed vector of a subgroup which has fixed space of dimension 1.

On the other hand, if a matrix representation is written over a small field
Fy, but is equivalent to a representation of smaller dimension over an exten-
sion field F', then we can first use the standard basis algorithm to find the
centralizer of the representation. Then we can choose an appropriate identi-
fication of a fixed-point-free element X of the centralizer with a generator &
for the multiplicative group of F. Now we use the standard basis algorithm
again, this time applied to the element X alone, so that X is conjugated
into block diagonal form, with all diagonal blocks equal to x, say. This im-
plies that the group generators are conjugated into a form in which all the
blocks of the matrices are either zero or powers of x. Thus the blocks can be
identified with (zero or) the corresponding powers of £ in F.
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A slight generalization of this method will work when the representation
is only semilinear over F', rather than linear.

3 The Suzuki group

3.1 Standard generators

In order to understand the details of the construction of the Monster below,
we need a fair amount of detailed information about the Suzuki group, and
the action of its sixfold cover on the complex Leech lattice. Many of these
details can be found in [11]. For example, the orbits of the monomial sub-
group on the minimal vectors of the lattice are described in Table 1(a) of
[11], and will be important later on.

In addition, it is worth here describing the ‘standard generators’ that
we use, and the details of the technique employed to adjoin outer auto-
morphisms. These will be used in several places later on. We follow [13] in
defining standard generators for the simple group Suz to be elements a € 25,
b € 3B, with ab of order 13 and abab? of order 15. Such generators are unique
up to automorphisms, which means there are two conjugacy classes of such
pairs in the group itself. We now take pre-images A, B, of these generators
in the various covering groups that we need, and in order to specify them up
to automorphisms in each case we demand that A has order 2 or 4, B has
order 3, and AB has order 13.

Similarly, we define standard generators for the automorphism group
Suz:2 to be ¢ € 2C, d € 3B, with cd of order 28. In the group 6 Suz:2
we take pre-images C' and D with D of order 3 and C DC D? of order 7. Note
that this group is the one whose character table is printed in the ATLAS [2],
rather than the isoclinic one. An equivalent definition of standard generators
for this group is as follows. First, C' is in class 2C, and D is in class +3B,
that is, that pre-image of class 3B in Suz which has order 3 and character
value 3 on the degree 12 characters. Finally, C'D has order 56. It is not hard
to show that this defines the pair of generators (C, D) up to automorphisms.
It must however be borne in mind that the outer automorphism group of
6-Suz:2 has order 2, and acts by multiplying elements in the outer half of
the group by the central involution. In terms of the standard generators,
this can be expressed by replacing C' by C®. Since this outer automorphism
does not preserve the 12-dimensional representation, it is necessary to make
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a consistent choice of C' in the different representations.

Finally, we note that we can recover standard generators for 6-Suz from
those of 6:Suz:2 by putting A = (CDD)*(CD)"**(CDD)? and B = D.
(Note however, that (due to carelessness) in later sections, in particular Sec-
tion 3.3, we actually used the inverse of this A instead. This change only ever
has the effect of multiplying elements by the central involution of 6Swuz:2 so
has little impact. We felt it safer not to try to change the words we used, for
fear of introducing fresh mistakes.)

3.2 Adjoining outer automorphisms

For technical reasons we need to adjoin an outer automorphism to many of
the groups constructed below. The main reason is to ensure that the various
representations are absolutely irreducible over GF(2), in order to minimize
the number of cases we need to consider later on.

The method is standard, and is described in Section 2.3 above. If we
take a, b as standard generators for the Suzuki group, then it turns out that
the pair o/, V' given by o' = (ab) 2a(ab)? and b’ = (ab?)~2b(ab?)? is a pair
of standard generators in the other conjugacy class. Therefore we can use
the standard basis algorithm to conjugate the pair (a,b) to the pair (o, '),
thereby obtaining a matrix which realises the outer automorphism of Suz.
Adjoining this matrix to the group Swuz therefore generates a group which
is isoclinic to, but not necessarily isomorphic to, Suz:2. Therefore we may
need to multiply this matrix by some element which centralizes the given
representation of Suz. But these elements are usually easy to write down.

The same method works for all the covering groups of Suz, by replacing
a, b by the standard pre-images A, B.

The most important example of this method in the sequel is however
adjoining a specified automorphism to 3*7T19(Mf}; x 22). This is in principle
the same, though in practice much more complicated: we have 6 generators
instead of two, 13 indecomposable summands rather than one or two, and a
very large representation, and, in addition, three or four different versions of
the standard basis algorithm are required.

3.3 Standard generators for 3!712:6: Suz:2

All the representations we are going to make will be made with a particular
set of ‘standard generators’ for 3'*12:6: Suz:2. Here we define these, as they
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are crucial for resolving various subtle questions.

We first find a complementary subgroup 6°Suz:2 (which is unique up to
conjugacy, as it is contained in the involution centralizer (3 x 6'Suz):2), and
take standard generators C, D as defined in Section 3.1. We next make gen-
erators A = (CDD)2(CD)*(CDD)? and B = D for the subgroup 6-Suz,
and find a subgroup 2 x Us(2) generated by (AB(ABAB?)?)* and

((AB)*BAB)°((AB)*B(AB)’B(AB)*B)*((AB)* BAB) ™.

Then our third generator for 3'712:6-Suz:2 is defined as the element F in
31712 which is centralized by the given group Us(2) and inverted by the
central involution of (A, B) = 6'Suz. Thus E' is determined up to inversion,
but there is an inner automorphism which centralizes C' and D, and inverts
E. In other words, C', D, E are determined up to automorphisms, except for
the problem mentioned earlier, that C' might need to be replaced by C3. This
is equivalent to replacing the action of 6:Suz:2 on 32 by the dual action.

We also denote by C'; D and E the images of these generators in the
various quotient groups that appear in the construction. For certain purposes
we also need standard generators for the subgroup 3'*12:6-Suz of index 2,
and various quotients thereof, and we take these to be A, B and E as defined
above.

3.4 A 38-dimensional module for 3'!2:6:-Suz:2

Just as the 2-local construction is most easily described in terms of a double
cover of the involution centralizer, so this 3-local construction is most easily
described in terms of a triple cover of the 3A-centralizer. This may be de-
scribed as the split extension of an extraspecial group 3712 by the covering
group 6°Suz of the Suzuki group, in which the action is given by the natural
action of 2-Suz on the complex Leech lattice modulo § = v/—3. Thus the
commutator map in the extraspecial group corresponds to the symplectic
form on the 12-space over GF'(3), and the central 3-element in 6'Suz acts
trivially. (We note in passing that the Schur multiplier of 3'2:2-Suz is 32,
since the multiplier of 2-Suz is 3, and any covering of the 3'2 corresponds to
a symplectic form invariant under 2" Suz.)

This group has a centre of order 3%, and therefore has four distinct quo-
tients by cyclic groups of order 3. Clearly one of these is a split extension
31+12:2- Suz, while another has shape 3!2:6:Suz. The other two both have
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the shape 3'712:2:Suz, but it turns out that they are not isomorphic. (It is
not too hard to prove this theoretically, by observing that the outer automor-
phism group of 3'712:6-Suz has order 2, but we also prove it computationally
in Section 5.2.) One of them is isomorphic to a subgroup of the Monster,
while the other is not.

In order to study these groups closely, and find a way to distinguish
them, we made a 38-dimensional representation of 3'712:6-Suz:2 with module
structure

1

12
@ 12
12 1

as follows. First, take the 24-dimensional representation of Conway’s group
2:Co; on the Leech lattice, reduce modulo 3, and restrict to a subgroup
6'Suz:2. This gives a 24-dimensional representation of 6:Suz:2 over GF(3),
which is a uniserial module with two 12-dimensional constituents. These con-
stituents are dual to each other, but restrict to isomorphic self-dual modules
for the subgroup of index 2.

Next, we take another copy of one of these 12-dimensional constituents,
and ‘glue’” a copy of the trivial module at top and bottom (see the next para-
graph for a precise description): in principle this gives a group 3'*24:2- Suz:2,
in which we found a subgroup 3'7!2:2-Suz:2 as follows, by utilizing the sym-
plectic form on the 12-space, which (up to sign) is preserved by the group.

Suppose that S is the matrix of the symplectic form fixed by 2-Suz on
the 12-space over GF(3), so that M*SM = S for all elements M of 2-Suz (or
M'SM = —S for elements M of 2:Suz:2\ 2:Suz). Then we take all matrices
of the form

1 0 0
v M 0
== |

where v is any column vector, \ is any scalar, and v' is the transpose of
v. Also, M is any element of 2-Suz:2, and the sign is + if and only if
M is in 2:Suz. All we need to check then is that this set of matrices is
closed under multiplication, and so forms a group with the correct structure.
(An alternative method of constructing this representation would be to use
the method of Section 2.3—starting from a 13-dimensional representation of
312:2: Suz:2. In theoretical terms this boils down to the same thing, but the
practical steps are somewhat different.)
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Taking the direct sum of these two representations of dimensions 24 and
14 gives a 38-dimensional representation of 3'712:6-Suz:2. We use the stan-
dard generators C, D of 2-Suz:2 here to ensure that we get the correct
subdirect product, rather than the full direct product, of the groups. At this
stage it is not important which of C' or C?® we use, as long as we make a
consistent choice later on.

Note that we have here a direct sum of 3-modular representations of
the groups 3'7'2:2-:Suz:2 and 6'Suz:2, while ultimately we require tensor
products of 2-modular representations of these two groups.

We can now see the normal 32 clearly, and observe the effects of factoring
out particular subgroups of it. Moreover, since we have defined standard
generators for the group, we can label and eventually distinguish the elements
of the centre, and decide which one must be factored out to obtain a subgroup
of the Monster.

4 The representation of 3!71%:2: Suz:2

4.1 The 3%°-dimensional module for 3'712:2: Suz

The natural representation of the extraspecial group 312 is easy to write
down. If we label the 3% basis vectors e, by vectors v in V = GF(3)°, then
we have a group of translations T, : e, — e, for each w € V', together
with a group of diagonal elements D, : e, wXWe, for each linear character
X € V*, where w denotes a generator for the multiplicative group of GF(4).
Each of these groups has order 3%, and together they generate 3'+12.

The symplectic form on 3'? is given by (x,w) = x(w), corresponding to
the commutator map [D,, T,,] = wX®) on 312, For simplicity we choose a
basis wy, . .., we for V and the dual basis x1, ..., xe for V*, so that (x;, w;) =
0ifijand 1ifi=j.

Now we take the 12-dimensional representation of 2-Suz over GF(3),
and write it with respect to an ordered symplectic basis which we might as
well label {wy, ..., we, x1,---, X6} as above. We then have to find 729 x 729
matrices over G F'(4) which act by conjugation on {7, Dy, } in the same way
(modulo scalars) that our generators for 2-Suz act on the given (ordered)
basis.

To find such a symplectic basis for the 12-space explicitly, we first use the
standard basis method to find a matrix S conjugating the group generators
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to their transposed inverses: thus S7'¢;S = ((¢;)!)~' so ¢:S(g;)! = S, and
therefore S is the matrix of a symplectic form invariant under the action of
the group generators g;. Now the orthogonal space to a subspace generated
by the rows of a matrix U is the span of the vectors w such that USw' = 0,
that is, the ‘nullspace’ of US. Thus we may find our symplectic basis by first
choosing inductively x; to be any vector orthogonal to {x1,...,x;—1}, then
choosing w; orthogonal to {wy,...,w;_1,x; | j # i}, and finally changing
sign on w; where necessary to make x;(w;) = 1.

Now we make 729 x 729 matrices corresponding to our generators A and
B of 2°Suz by another application of the standard basis method. Note first
that our basis for 729-space may be defined by choosing a seed vector such
as the fixed vector of (D, ), and taking its images under the 3° elements of
(Ty), in a specified order.

Given an element g of 2-Suz, therefore, we may write

6 6
gles) = Y ajwi+ > Bijx;
i=1 =1
6 6
g(fi) = Do viwi+ D 0ix;
=1 i=1

and construct corresponding elements of 31112 as

6 6
Ui = [[Tos 11 Dy

J=1 J=1

6 6
— Vi dij
Vi = 1701105

J=1 J=1

Thus g must act on 312 by conjugating T,,, to a scalar multiple of U; (for
each i), and D,, to a scalar multiple of V; (for each 7). Notice that we have
12 independent choices of scalars here, corresponding to multiplying ¢g by an
element of 3'+12/3.

Without loss of generality we choose all the scalars to be 1, which means
that ¢ maps the standard basis for the standard generators {T,,,, D,, | 1 <
i < 6} to the standard basis for the generators {U;, V; | 1 < ¢ < 6}. Thus the
top row of the matrix for g is simply the fixed vector of (V; | 1 < ¢ < 6) (which
involves another arbitrary choice of scalar multiple, making 13 in all), and
the other rows are obtained by multiplying by the elements of (U; | 1 < i < 6)
in the predetermined order.
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As we have seen, the elements that we make are really only defined up to
13 independent choices of scalars, and therefore we end up with an arbitrary
element of the given coset of 3'7!2. This can be corrected afterwards, by
finding standard generators A, B, E for the group as defined in Section 3.3.

Next, we need to adjoin the outer automorphism in the standard way.
That is, we first make the direct sum of this representation and its dual,
and then put it into standard basis with respect to the standard generators
A, B, E. Then we make the elements A" and B’ defined above, and find
the element E’ defined by putting dashes on everything in the definition of
E above (Section 3.3), and find the matrix putting the representation into
standard form with respect to these new generators. Correcting, if necessary,
by scalars on the two constituents of the original representation, we obtain
a 1458-dimensional representation of 3'71%:2-Suz:2, written over GF'(4).

To write this over GF(2), we use the standard basis method again, as
described in Section 2.3. Then we need to find standard generators equivalent
to C', D, E for the group.

Finally, we want to ensure that our basis exhibits the GF'(4) semilinear
structure, so we arrange that a generator for the normal subgroup of order

3 in each case acts as a block diagonal matrix with 2 x 2 blocks ((1) 1)

In technical terms, what we do here is write the representation with respect
to a standard basis for the normal subgroup of order 3 (with a specified
generator).

4.2 The 90-dimensional module for 6:-Suz

This representation has to be a suitable reduction modulo 2 of the ordinary
representation 12 @ 78, in which the 12 denotes the natural representation
of 6:Suz, and the 78 is the dual of its symmetric square (or the symmetric
square of its dual). This implies that, modulo 2, the constituents are 12, 66,
all%d 12. We show first that this must be a uniserial module with structure

66, and then show that there is a unique such module, up to equivalence

12
and field automorphisms.

Now Clifford theory tells us that any representation in the given 2-block
of 31712:2: Suz can be written as the tensor product of a 3°-dimensional rep-
resentation of the split extension 3!7!2:2-Suz and a faithful representationof
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6-Suz. Also, as we can easily check with the Meataxe, the 78 can be reduced

modulo 2 both as ?g and as éé Since the whole representation is unitary,

the 90-dimensional factor must be symmetrical. Moreover, the central in-
volution of 6'Suz acts non-trivially, so the 90-dimensional module is either

12 19
uniserial of shape 66, or of shape P 66.
12 12

The latter can be easily eliminated by showing that 6-Swuz does not have

1; over GF(4). This is because the full

(4 )

A M)’

where M is a 12 x 12 matrix in a fixed representation of 3-Swuz, has the shape
2288:3- Suz. Factoring out by the centre, we obtain a group 22%¢:Suz, in which
there is a unique class of complementary Suz—we calculate this explicitly

by the same method used below to classify complements in 2'%%*:Suz. In
particular, all such complements lift to 22 x 3-Suz in 22%8:3- Suz.

a faithful representation of shape

group of matrices

. . . .12
Next we show that there is a unique non-split extension 66 for 3-Suz.

By general nonsense, this is equivalent to showing that there is a unique
non-split extension of 12 ® 66* by the trivial module for Suz. This in turn is
equivalent to showing that there are just four classes of subgroups isomorphic
to Suz in the split extension V:Suz, where V' is the module 12 ® 66* for Suz
over GF(4).

We now take a,b to be standard generators for Suz acting on V', and
construct this split extension V:Suz. Now any copy of Suz in V:Suz is
generated by a’ = avy and V' = wvyb, for some vy,vy € V, such that a’ and
b’ satisfy the same relations as a and b. Moreover, ab has order 13, so by
Sylow’s theorem we may as well assume that ab = a’t/. This implies that
vivy = 1, s0 v = vy = v, say. Since a?> = 1, we must have (a/)* = 1,
which implies that v € Cy(a). Since v* = 1, we have (V)? = (vb)® = 1,
which implies that v € [V,b]. Similarly, the relation (babab)'® = 1 implies
(Va't'a't')® = (vbabab)'® = 1, which in the more usual additive notation
becomes

v € ker(1+ (babab) + (babab)® + - - - + (babab)'*)
= im(1 + babab)
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= [V, babab.
Using the relations
(b(ab)*)™ = (b(ab)*)*" = (b(ab))"® =1

in a similar fashion, we deduce that

11

v € Cy(a) N[V, b N[V, babab] N [V, b(ab)*] N [V, b(ab)®] N ker (Z(b(ab)?’)i) )
i=0

We calculate this subspace W, say, of V' explicitly, and find its dimension,

which happens to be 61.

On the other hand, such a pair (¢’ = av,t/ = vb) with ab = a'b’ is
conjugate to (a,b) exactly when a’ = a* (or, equivalently, &' = b*), for some
w € Cy(ab). But a¥ = afa,w] = alw, a], so this condition is equivalent to
v € [Cy(ab),al, which we denote by U. Since U has dimension 60, and the
conjugacy classes of complements are in one-to-one correspondence with the
vectors of W/U, it follows that there are at most 4 classes of complements.
On the other hand, we already know that there is at least one non-split

extension é?j’ so the required result follows.

At this stage, therefore, we know that the 90 x 90 matrices for the group
generators can be written in the form

My 0 0
A M66 0 ’
* B M12

where M,, denotes an n X n matrix. In principle we know everything about
the representation except what happens in the bottom left 12 x 12 block of
these matrices. Unfortunately, this still leaves us with 2288 possibilities for
each group generator, and so we had to devise a method for ruling out most
of these possibilities.

To make our first approximation to this representation, we take the 12-
dimensional representation of 3-Suz over GF(4), and make both the sym-
metric square of its dual, and the dual of its symmetric square. One of these

1

62 and the other ?g We use the Meataxe to put the two
constituents into standard basis, so that we can paste together the matrices
for these two representations, overlapping on a 66 x 66 block in the middle.

has the structure
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The resulting matrices generate some subgroup of 22%%:3-Suz which is
likely to be nearly all of it. To find the subgroup 6-Suz we adopted a some-
what inelegant approach, after failing to find any reasonable alternative.

The idea is to find generating subgroups of reasonably large odd order
for 3-Suz, so that their centralizers in 22%% are reasonably small, then ‘apply
the formula’ to find corresponding subgroups of odd order in 22%8-3- Suz, and
finally to run through all the cases which are left (given by double cosets of
two of these centralizers in a third) to see which one gives 6:Suz. In this
case, the ‘formula’ is as follows. If a, b are conjugate elements of odd order
m in a group of the shape 2":m, then (ba)mT_1 conjugates a to b.

We chose to generate Suz by subgroups 11:5 and 5 x 3 intersecting in
5. It was not easy to find such subgroups given by words in the standard
generators—details can be found in [10]. Next we calculate the same words
in any preimages of the standard generators in our group 2™ 3 Suz, to obtain
certain preimages of the subgroups 11:5 and 5 x 3. To remove the unwanted
2-groups, we first power up our elements until they have odd order, and then,
as described above, we ‘apply the formula’, as follows.

Suppose that e, f satisfy the relations e!' = > = 1 and ¢/ = ¢ modulo
the 2-group. Then by the formula, (e®e/)® conjugates e/ to €, so that f’ =
f(e3e))® conjugates e to €3, whence (e, (f/)?) = 11:5 (here we need to square
f! since it might have order 10). The same idea applied to the other elements
will produce subgroups 11:5 and 5 x 3 in 2”3 Suz, intersecting in 5.

Since our generators now have odd order, and the action of the group
3'Suz on the 144-dimensional GF'(4)-module is uniserial with constituents
1, 142, 1 in order, it is easy to check that our group is now of the form
2286 3- Suz. However, it seems to be easier not to use this knowledge in what
follows.

To look at all possibilities for such configurations, we need to consider
conjugates of 11:5 or 5 x 3 by elements of the 5-centralizer. Of course,
conjugation by elements which centralize the 11 or the 3 will have no effect,
so the different cases correspond to the double cosets of C'(11:5) and C'(5 x 3)
in C'(5). These centralizers are all vector subspaces of the 144-dimensional
space over GF'(4), and their dimensions, 6, 16 and 32 respectively, can be
calculated from the character table. Since the two subgroups generate 3-Suz,
their centralizers intersect in the fixed space of 3-Swuz, which has dimension
1, so the total number of cases left to consider is 43276-16+1 = 411 This is a
large but manageable number of cases.

We check these cases by looking at the orders of certain words in our three
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generators, to see if they are compatible with the orders we already know for
the same words in the corresponding generators for 6-Suz. Most possibilities
are quickly eliminated, and we are left eventually with three generators for
the required 90-dimensional representation of 6-Suz.

Again, we take the direct sum of this representation and its dual, and ad-
join the outer automorphism by the same method as in the previous section,
find standard generators for the full group and write the result over GF'(2).
Finally, we write the representation as a G F'(4)-semilinear representation by
finding a standard basis for one of the two generators for the normal subgroup
of order 3.

Note that there is now a choice involved here, which is tied up with the
question of which group of order 3 to quotient out. (See Section 5.2 below.)

4.3 The semilinear-monomial representation on 32760
points

This is a representation of 3'2:2-Suz:2, so the problem of which group we
have does not affect this part of the representation.

The semilinear-monomial action of 3'712-2-Suz:2 on 32760 2-spaces can
be most easily described as the action by conjugation on a certain class
of 32-subgroups of 312, These are the subgroups which are stabilized by a
subgroup Us(2). The three cyclic subgroups in such a 32 which lie outside the
centre of 3'712 can be identified with the three non-zero vectors of GF(2)?,
and any permutation of these three cyclic subgroups (realised by an element
of 3'12:2:Su2:2) can be encoded as a permutation of the three non-zero
vectors of GF(2)?, and therefore as a 2 X 2 matrix over GF(2).

As we have just observed, the result is a representation of 3'2:2-Suz:2,
so we can equally well start from the split extension 3!7!2:2-Suz:2 rather
than one of the non-split ones. This means that there is a straightforward
construction from the 14-dimensional representation described in Section 3.4.

Indeed, there is an even simpler construction from the 13-dimensional
quotient thereof, which represents exactly the group 3'2:2-Suz:2 that we
need. We simply take the action on a certain orbit of vectors, and interpret
the results as follows. The first coordinate (A = 0, 1 or 2) is interpreted
as the non-zero scalar w? in GF(4) (that is, 1, w or @ respectively), and
the remaining 12 coordinates as one of the 2 x 32760 minimal vectors of
the complex Leech lattice modulo § = /—3. We choose arbitrarily one
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of each pair of vectors as the ‘positive’ one, and interpret negation as the
automorphism w — @ of GF(4).

5 The representation of 3*™10:(M; x 22)

5.1 The subgroup 315+ (M) x 22)

The next step is to find suitable ‘standard generators’ for the subgroup
31+1+5+5+5:(M11 % 22)

of 31712:2-Su2:2, so that the action of the desired outer automorphism is
clearly visible. We chose to take elements F, G, H, I, J, K defined as follows.
First take a complement M;; x 22, which is easily seen to be unique up to
conjugacy, and take H, I to be standard generators for M;i;, in the sense of
[13]. That is, H has order 2 and I has order 4, with HI of order 11 and
(HI)*(HIHI?*)*HI? of order 4. Then we take F' and G to be involutions
centralizing H and I. (To specify these precisely, we take F' to be the central
involution of 2-:Suz, and G to be the other involution which does not cen-
tralize the second central factor of the Os-subgroup. This ensures that the
required outer automorphism interchanges F' and G.)

Next, we take an element of order 8 in My, such as (HI)*ITHI, and
consider (non-trivial) elements of the Os-subgroup which are inverted by
this element of order 8. There are just four of them, up to inversion, and
we let J be the one which is centralized by F' (and inverted by G), and K
be the one which is centralized by G (and inverted by F'). As before, there
are inner automorphisms, given by G' and F’ respectively, which swap J with
J~1, and K with K~!, so all choices are equivalent.

To make these elements in practice, we calculated the following words in
the standard generators C', D, E.

(C (CDCD2)( D)2(CDCD2)2)“
(CD)~ (CD(CD(JD HH2(OD)°
(aﬁzaﬁ(aﬁaﬁ )%

(aBa 2) (aﬂaﬁ)

(@B) " ((aB)’B)°ax

M 2 @R
I

—
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= ((0e)’)"

6G

eG

(HI) IHI
(C(CY)’¢)H(¢Py)?
(D 1EDG)
(CncH T (n¢*)*¢

By construction, the outer automorphism that we need to adjoin now acts
by centralizing H and I (since these generate a complementary M), swap-
ping F with G (thereby extending 22 to Dg), and (consequently) swapping
J with K.

NS s~ TR
I

5.2 Which is which?

Or, as one of us quipped, which is witch? Clearly the witch performs magic
and brings forth the Monster, and we need to know therefore, which of the
two almost indistinguishable groups of the shape 3112:2-Suz is the witch?

In theoretical terms, we work as usual in the triple cover, and find the
corresponding triple cover of 311555 (Af;; x 22). We ask which quotient of
this triple cover admits an automorphism mapping F, G, H, I, J, K in order
to G, F,H,I, K, J. It turns out that only one of them does. The calculations
needed to see this can be done already in the 38-dimensional representation
described in Section 3.4. Here we find that the element

(HJIK)IK(HJIK)*IK(HJIKIK)?
has order 24, while its image under the required outer automorphism,
(HKIJ)CTJ(HKIJ)?IJ(HKIJIJ)?
has order 8. It follows that we must quotient by
(HJIK)IK(HJIK)?IK(HJIKIK)?)?®

in order to get the correct group 3'*12:2-Suz:2. This relation can now be
tested in any desired representation, to see if we have the correct group.
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5.3 The action of 3'712:2:Suz on vectors

At this stage we know the precise action of elements of the subgroup 3'*12-2- Suz
on vectors, and so is possible to code it up into a procedure. To avoid some
of the technical problems to do with ‘semi-tensor products’, we leave off the
outer automorphism, so that all we need to do is to take the correct Frobe-
nius automorphs of our representations. The changes of basis decribed below
will only change the data input to this procedure, not the procedure itself.

Thus we take the GF(4)-representations of degree 90 and 729 for 3'71%:6- Suz,
and first determine which of the two tensor products 90 ® 729 and 90 ® 729
represents a group satisfying the relation given at the end of Section 5.2.
(Here ~ denotes the Frobenius automorphism z +— z? of GF(4).)

To describe the action of the group on GF(2)-vectors of length 196882,
we first divide the vector into three pieces, of lengths 131220, 65520 and 142.
These will be acted on by the tensor product, the semilinear monomial, and
the residual 142 x 142 matrix, respectively. We next translate the GF'(2)-
vector of length 131220 into a G F'(4)-vector of length 65610 in the usual way,
and then fold it up into a 90 x 729 matrix. We can then apply an element of
the group to this by multiplying on the right by the corresponding 729 x 729
matrix, and on the left by the transpose of the corresponding 90 x 90 matrix.
Finally we translate the resulting 90 x 729 matrix over GF(4) back into a
GF(2)-vector of length 131220.

The semilinear-monomial part of the action can be described by a per-
mutation of 32760 subspaces of dimension 2, followed by suitable actions on
each of these 2-spaces. Finally, the last 142 coordinates of the vector are
acted on by a 142 x 142 matrix in the usual manner.

Thus an element of 3'¥12:2-Suz is stored as

a 90 x 90 matrix over GF'(4) (the transpose of our original matrix)

a 729 x 729 matrix over GF'(4)

e a permutation on 32760 points

a list of 32760 elements of S3 = GLy(2) = T'Ly(4)

e a 142 x 142 matrix over GF(2)

and the action on the space is as specified above.
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It follows that we can also perform multiplications in this group by a
straightforward procedure—remembering, among other things, to multiply
the 90 x 90 matrices in the reverse order, since they have been transposed.

5.4 The structure of the module

Let us now re-interpret what we have done, in the more usual language of
modules for the GF(2) group algebras. None of this material is required in
later sections, so we do not bother to prove anything. The reader who is only
interested in the proof is advised to skip this section. Nevertheless it may be
helpful to see the underlying structure behind all the machinery we develop.

The module of dimension 196882 for the group 3'7!2:2-Swuz:2 has the

following structure:
17496

96228 @ 65520 @ 142
17496

where each number stands for an absolutely irreducible module of the given
dimension. It is clear therefore that the centralizer of this group in G Ligsss2(2)
has order 2.

Restricting to 315555 (M x 2%), we find that 17496 becomes 5832 &
11664, while 96228 becomes 320766 64152. The 65520 is less easy to unravel,
but with the help of [11] and the Meataxe we can show that the restriction
is

5832 1782
32076 @ 58392 D 1789 @ 17820 @ 264 @ 132.

Since the 142 restricts as 132 @ 10, we have the complete decomposition as
follows:
5832ab 1782

583%ab D @ 17820 @ 264 @ 132ab & 10.

64512 @ 32076ab & 11664aa & 1789

Note that we have not proved that the gluing of the constituents is precisely
as stated here. This actually follows from explicit calculations in Sections 6.2
and 6.3, where we determine the centralizer of the module, and hence we can
eliminate all other possibilities for the module structure.

Our final task is to find the correct involution which normalizes this group.
It must swap the two constituents of degree 32076, and the two of degree
132, as well as the two uniserial summands of degree 11664 = 5832 + 5832.
Since there is an involution centralizing each of these two uniserial modules,
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and a group GLs(2) = S5 centralizing the direct sum of two isomorphic
modules of degree 11664, we have a total centralizer of order 48, which means
that there are in principle 48 cases to consider. However, half of these give
an automorphism which squares to a non-trivial automorphism of the non-
irreducible summands, so can be eliminated. One-third of those that are left
involve an element of order 3 in the GLy(2), so these can also be eliminated,
as we are looking for an involution. Thus we are left with just 16 involutions
to consider. These 16 cases reduce to 8 if we take into account the action of
the centralizer of the group 3!712-2-Suz:2.

6 The extension to 3*™"1Y: M x Dg)

6.1 First steps towards a standard basis

We now need to find a standard basis for the 196882-space in terms of the
original list of generators F, G, H,I,J, K, and then again in terms of the
automorphic list, G, F, H, I, K, J. It is neither sensible nor practical to try
to use the general-purpose standard-basis programs which exist in various
versions of the Meat-axe package. Instead we use various refinements of the
same general principle in order to ensure that our matrices remain as ‘nice’
and as sparse as possible. The most important thing turns out to be to
replace the usual ‘depth-first’ exploration of the space (i.e. applying all the
generators to one vector at a time) by a ‘breadth-first’ approach (applying
one generator at a time to all the vectors).

The first thing to note is that all the representations which go to make
up the ‘tensor product’ part of the space, become semilinear-monomial when
restricted to the subgroup. We therefore change basis on the 1548- and 180-
dimensional GF(2)-representations to exhibit this structure. This task, like
many, can be accomplished by a suitable standard basis algorithm, applied to
each irreducible constituent separately. For example, on the 24-dimensional
GF(2)-constituent, we find the fixed 2-space of a subgroup 3°:L,(11) of our
fixed 3%:M;, and find its 12 images under the latter group. On the 132-
dimensional constituent we do the same with the subgroup 3°:S5. On the
1458-space, we first need to find the unique subgroup of order 37 in 3!*12
which is invariant under our 3%:M;;. Then the fixed space of this 37 again
has dimension 2, and we take the 729 images of this 2-space to form our
basis.
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An important question to ask here is, given a semilinear-monomial repre-
sentation, is the basis with respect to which it is semilinear-monomial essen-
tially unique? In other words, is the set of permuted subspaces determined?
Such a question can be answered by looking in detail at the structure of the
group, as these representations are nothing more than representations in-
duced from the 2-dimensional representation of an Ss-quotient of a suitable
subgroup. We need to know, therefore, to what extent the subgroup from
which the representation is induced, and the representation which is induced,
are unique.

It turns out that in some cases they are unique, while in two, namely
those with GF'(2)-dimension 3564 and 17820, they are not.

The question can be re-phrased as, to what extent is the ‘diagonal” sub-
group of the ‘monomial’ group determined? In the 5832, for example, the
point stabilizer in 311555 (A, x 22) has index 5832, and has shape
SUFIH5H5:(Ly(11) x 22). Now this can be re-written in the form 3*10(S3 x
2 x Ly(11)), and since Lo(11) acts irreducibly on the 3°, there is a unique Ss
quotient to induce up from. Moreover, the point stabilizer is determined by
its index and the kernel of the representation, which has order 3.

In the 1782, on the other hand, the kernel of the representation has order
32, and modulo this the point stabilizer is 3>+ 44.2.2. Thus we have again a
unique S3 quotient from which to induce up. However, this time there are four
different subgroups of the same shape, permuted by the outer automorphism
group, and therefore there are four different ways of writing this group as a
semilinear monomial.

Each of the remaining cases is analogous to one of these.

In the cases where the basis is essentially unique, we adopt a variant
of ‘standard basis’ similar to one that is used for permutation representa-
tions. This is described in general terms in Section 2.2, and in more detail in
Section 6.2 below. In the small constituents, which have GF(2)-dimensions
132 and 264, we used the general purpose standard basis algorithm, on the
grounds that they are small and any method would do. In the other cases,
we devised an ad hoc method described in Section 6.3.

6.2 Semilinear-monomial standard basis

As explained in Section 2.2, this is essentially a variant of permutation stan-
dard basis. To put a permutation group into standard form with respect
to a set of ‘standard generators’, it is first necessary to choose a word, or
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set of words, in the standard generators, with the property that they have a
small number (preferably 1) of fixed points in common. This fixed point (or
one of these fixed points) then provides a ‘seed’ to the spinning algorithm,
which produces the remaining points in the orbit by applying the generators
in a specified order, and writing down in order all the points which are dis-
tinct from the previously obtained points. The result is a list of the points
in a canonical order, which can be used to conjugate the permutations into
standard form.

In our case, our ‘points’ are 2-dimensional spaces, so we also need to
specify one of the six bases for our seed point, and carry this basis with us
through the generators. The result now is a semilinear-monomial element
which conjugates our representation into standard form.

One slight problem which we encountered was that it was not always
possible to determine the seed point (with its basis) uniquely, and therefore
our choice of standard form was a little more arbitrary than usual. This also
means that in testing equivalence, or in finding all elements which exhibit an
equivalence, we must try all possible seeds for one of the representations.

On the other hand, we are free to choose our generators and our spinning
algorithm in any way we like, and we used this freedom to order the basis
vectors in a nice way, which enabled us to simply ‘write down’ a large part
of the extra generator for the Monster.

The representations which we have to deal with here are the semilinear-
monomial representations on 32076, 11664, 16038 and 5832 points, all com-
ing from the semitensor product, and those on 16038 and 5832 points com-
ing from the original semilinear-monomial on 32760 points for the group
31112:2- Suz:2. Those on 32076 and 11664 points are fixed by the extra ele-
ment which we are trying to construct, while those on 16038 and 5832 points
are interchanged in pairs.

In each case we need, as far as possible, to find words in the standard
generators which give the stabilizer of a point, in order to find a suitable seed
point for the standard basis algorithm. In practice, we only needed a single
element in the point stabilizer for these cases. The full stabilizer was needed,
however, in the semilinear monomials on 1782 and 8910 points, which are
discussed in the next section.

In the cases of 32076 and 16038 points, we took the element (HI)3((HI)*I)>*HI?
of order 5, which fixes six and three points respectively, while in the cases
of 11664 and 5832 points, we took the element HI of order 11, which fixes
four and two points respectively. We now briefly discuss these four cases
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individually.

Taking the two cases of 5832 points first, we find in one case that the two
fixed points of HI are swapped by F' and acted on by G as a transposition
of S3, and vice versa in the other case.

We take an arbitrary basis (6 choices) of an arbitrary fixed point (2
choices) as our seed in the first case, and conjugate the representation into
standard form. In the second case we try all 12 possibilities, to see which
ones conjugate the second representation into the same standard form. We
find that exactly two of the 12 seeds work (as expected from the discussion
in Section 5.4), and thus we have two possibilities for the element which in-
terchanges the two semilinear monomials on 5832 points (since it has order
2). We can order the points in such a way that one of these elements acts by
bodily interchanging the two blocks of 5832 points.

The 11664 case is very similar. In this case we have four fixed points of
HI, permuted regularly by (F,G) = 22. Taking an arbitrary seed for the
first ordering of the generators, we now need to check 24 cases for the second
ordering. It turns out that 6 cases conjugate the second representation into
the standard form, so there are apparently 6 possibilities for the action of the
extra element. However, two of them have order 6, while our desired element
is an involution, so we are left with four cases. Each of these can be written
as a semilinear monomial on 11664 points.

The 16038 case is actually the simplest. Of the three fixed points of the
element (HI)*(HIHI?)?HI? of order 5, just one is fixed by F', so we take one
of the 6 bases for this point as our seed. Thus we only need to check 6 cases
for the other ordering of the generators on the other 16038 representation,
and we find that exactly one of these six cases works. Thus the element
swapping the representations is uniquely determined.

Similarly on the 32076, we take one of the two fixed points of the element
FG(HI*(HIHI*)?HI? of order 10 as our seed, and check 12 cases to find
that again there is only one possibility.

The result of all this is that the action of the extra element on the corre-
sponding space of G F(4)-dimension

32076 4+ 11664 + 2 x (16038 4 5832) = 87480

(so GF(2)-dimension 174960) can be described as a semilinear monomial on
43740 points together with a bodily interchange of the remaining two blocks
of 21870 points.

33



6.3 A standard basis for the 1782 and 8910

In these two cases, we found that there were four essentially distinct bases
with respect to which the representation appeared as a semilinear monomial
(permuted by the outer automorphism group 2-Sy of 3*t5+1%:77},), and that
therefore we had to swap two of these. For the first basis, we simply applied
the same algorithm as above, with a careful choice of spinning algorithm.

In order to find the second basis, however, it was necessary to determine
the seed as a vector in the entire space, no longer restricted to being in one
of our favoured 2-spaces. This required a new idea.

We start by describing the 1782 case. In this case we use first the subgroup
(HT, Iy =2 Ag of Myy. This subgroup has two fixed points out of the
1782, which generate a 4-space over GF'(2). We can choose a basis for this
space such that F' and G each act as

?

— o O O

0
0
1
0

OO = O
SO O

and take (say) the first basis vector as our seed.

For the precise description of our spinning algorithm we need to define
the elements J,, = (HI)™"J(HI)" and K,, = (HI)""K(HI)". Our seed is
centralized by J = Jy and K, for all n. Finally we find that the element
((HI)®IHI) extends our Ag to My inside My;. Thus by applying all the
words

FeaP 00 I TS ((HT)ATHI) S (HI)"

for 0 <a<1,0<8<20<vy<20<0<20<8e<£20L¢<L
1,0 < 1 <10 to our seed vector we obtain 3564 linearly independent G'F'(2)-
vectors. We take this as our standard basis, in reverse lexicographic order of
the words afvyde(n.

Now we need to turn our attention to the second ordering of the gener-
ators, to get the second standard basis for the space. This is no longer in
the same semilinear-monomial representation, but all is not lost. Note that
our first seed vector was centralized by J and K,. Therefore our second
seed vector must be centralized by K and J,, which means that it is in the
space spanned by the first 162 points (i.e. the first 324 G'F'(2)-coordinates).
Moreover, it is fixed by H! and (HI?)~2I(HI?)?, which brings us into a 4-
dimensional subspace. Using the action of F' and [J;, K| on the first seed
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vector, and the action of G and [K7, J5] on the second, we can reduce the
number of possibilities to just two, which is what we would expect from
Section 5.4.

In both cases, therefore, we take the images of the appropriate GF'(2)-
vector of length 324 under

FOK\PKy KL K (HIDPTHI) S (HI)"

for0<a<1,0<<2,0<v<2,0<0<2,0<e<2,0<¢<1,
0 < n < 10. The fact that HI simply permutes 11 blocks of size 324 bodily,
means that this part of the action can be ‘hard-wired’, and only a single
324 x 324 matrix needs to be stored.

The 8910 case is very similar. We find by a random search that the group
generated by x = (HI)™H(HI)? and y = (HI?)"'I(HI?) has a unique orbit
of size 2 on the 8910 points, in which y interchanges the two points, while
x centralizes one and acts non-trivially on the other. We take the former as
our seed point, and choose one of the two vectors in it that are swapped by
F' as our seed vector. To get our full standard basis, therefore, we apply the
words

Fe I 0 TSy (I Y HI?) W (HI)(HITHI*)*HI?)
for0<a<1,0<<20<9<20<6<20<e<2,0<¢<1,
0 <n<10,0 <6 <5 Now to find the automorphic basis, we first find
the fixed space of J,, and x, which has dimension 3, and consider the action
of the other elements on this space. Spinning up the possible seed vectors
under the words automorphic to the above, we find only one case which gives
rise to an involutory automorphism. Thus there is a unique possibility for
the action of the automorphism on the corresponding 17820-space. Just as
before, our careful choice of standard basis enables us to specify the action
by a single 324 x 324 matrix.

6.4 The action of the standard basis elements

We have now constructed all the relevant standard bases, so we can write
down all possibilities for the element which maps the old standard basis to
the new one. As we have seen, such an element 7T; acts on the 196882-space as
follows. On the first 174960-space, it acts as a certain semilinear monomial,
as calculated in Section 6.2. The next 3564-space is acted on by a block
diagonal matrix, with the same 324 x 324 matrix repeated 11 times on the
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diagonal. Similarly, the next 17820-space is determined by another 324 x 324
matrix, repeated 55 times. Finally we lump together the last 538 coordinates,
and act on them by a 538 x 538 standard basis matrix in the usual way.

Thus the 16 possibilities 77, . . ., Tig for the extra generator of the Monster
are stored as quadruples:

e a permutation on 87480 points

e 3 list of 87480 elements of Ss

e a pair of 324 x 324 matrices over GF'(2)
e a 538 x 538 matrix over GF(2)

and the action on the vectors of 196882-space is as described.

6.5 Investigating the 16 cases

The 16 cases arise from the following ambiguities. First, the semilinear mono-
mial piece with GF(2)-dimension 3564 has the module structure of two iso-
morphic 1782-dimensional pieces glued one on top of the other. The standard
basis is therefore only determined up to multiplication by the involution in
the centralizer of this representation. Second, the two semilinear monomials
with GF'(2)-dimension 11664 each have two standard bases as defined above,
so we can swap them one way round or the other. Finally, the semilinear
monomial with GF(2)-dimension 23328 has four standard bases.

With hindsight, it is clear that these 16 cases occur in pairs, interchanged
by an involution which commutes with the entire group 3'712-2-Suz:2, and
that therefore there are only 8 cases to check. This involution can be de-
scribed by acting on the 90-dimensional GF'(4)-module in the same way as
the central involution of 6-Swuz, and acting trivially on all the other repre-
sentations, including the 729-dimensional GF'(4)-representation. (Thus its
action on the tensor product is not the same as the central involution of any
copy of 6:Suz.) However, we actually checked all 16 cases, as follows.

We took a random vector, and applied first the element A from 3'*12-2-Suz,
and then the extra generator 7;, and repeated 119 times, checking at each
stage whether the image vector was equal to the original vector. We found
that in 14 cases, the image vector was never equal to the original, which
means that AT; has order bigger than 119, so cannot be in the Monster. In
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the other two cases, the 60th image was equal to the original, which strongly
suggests that AT; has order 60 in these cases. For our peace of mind, we
then tested ADFET;, which has order (divisible by) 94, and ADEGT;, which
has order (divisible by) 71, in these two cases.

7 Conclusion

Since we know that the Monster does have a representation with all the
properties we have used, and since we have eliminated all possibilities except
one, it follows that this last case is in fact the Monster.

We can now calculate in the Monster in the following sense. We can make
any element of 3'712-2-Suz quickly, and apply it to an arbitrary vector. We
can also apply the extra generator T' to any vector. Thus we can work
with elements of the Monster written in the form S;7°S,T ..., for arbitrary
S; € 31712:2-Suz, provided these words do not get too long. We can guess
(correctly, we believe!) the order of such an element by acting on a random
vector by Si, then by T, then by S5, and so on, and repeating until the vector
returns to its starting point. This gives a divisor of the element order which
will in practice be equal to the element order, although we cannot prove this.

We can improve these ‘vector-order’ calculations to real calculations of
the order, at the cost of doubling the number of vectors. To do this, we use
the elements of orders 71 and 94 found above. First note that if a vector
is fixed by an element of order 71, than its full stabilizer is isomorphic to
a subgroup of Ls(71), since all maximal subgroups with order divisible by
71 are of this form. Second, a vector fixed by an element of order 47 has
its full stabilizer contained in 2B, for a similar reason. But if the latter
vector is not fixed by the element of order 94, then its stabilizer is a proper
subgroup of 2'B, which implies that it is a subgroup of 47:23. Now Ly(71)
has no elements of order 47 or 23, so the intersection of these two stabilizers
is trivial.
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