Finite simple groups

Exercise 1. For a permutation $\pi \in S_{n}$ define

$$
\varepsilon(\pi)=\prod_{1 \leq i<j \leq n} \frac{i-j}{i^{\pi}-j^{\pi}} \in \mathbb{Q} .
$$

Show that $\varepsilon= \pm 1$ and that ε is a group homomorphism from S_{n} onto $C_{2}=$ $\{1,-1\}$. Hence obtain another proof that the sign of a permutation is well-defined.

Exercise 2. Let $G<S_{n}$ act transitively on $\Omega=\{1, \ldots, n\}$ and let $H=\{g \in$ $\left.G: a^{g}=a\right\}$ for fixed $a \in \Omega$. Prove that $\phi: a^{g} \mapsto H g$ is a bijection between Ω and the set G : H of right cosets of H in G.

Prove also that $H g=\left\{x \in G: a^{x}=a^{g}\right\}$.
Exercise 3. Prove that the orbits of a group H acting on a set Ω form a partition of Ω.

Exercise 4. Show that A_{n} is not ($n-1$)-transitive.
Exercise 5. Let G act transitively on Ω. Show that the average number of fixed points of the elements of G is 1 , i.e.

$$
\frac{1}{|G|} \sum_{g \in G}\left|\left\{x \in \Omega \mid x^{g}=x\right\}\right|=1 .
$$

Exercise 6. Verify that the semidirect product $G:_{\phi} H$. Show that the subset $\left\{\left(g, 1_{H}\right): g \in G\right\}$ is a normal subgroup isomorphic to G, and that the subset $\left\{\left(1_{G}, h\right): h \in H\right\}$ is a subgroup isomorphic to H.

Exercise 7. Suppose that G has a normal subgroup A and a subgroup B satisfying $G=A B$ and $A \cap B=1$. Prove that $G \cong A{ }_{\phi} B$, where $\phi: B \rightarrow$ Aut A is defined by $\phi(b): a \mapsto b^{-1} a b$.

Exercise 8. Prove that if the permutation π on n points is the product of k disjoint cycles (including trivial cycles), then π is an even permutation if and only if $n-k$ is an even integer.

Exercise 9. Determine the number of conjugacy classes in A_{8}, and write down one element from each class.

Exercise 10. Show that if $n \geq 5$ then there is no non-trivial conjugacy class in A_{n} with fewer than n elements.

Exercise 11. Let S_{5} act on the 10 unordered pairs $\{a, b\} \subset\{1,2,3,4,5\}$. Show that this action is primitive. Determine the stabilizer of one of the 10 pairs, and deduce that it is a maximal subgroup of S_{5}.

Exercise 12. The previous question defines a primitive embedding of S_{5} in S_{10}. Show that this S_{5} is not maximal in S_{10}.
[Hint: construct a primitive action of S_{6} on 10 points, extending this action of S_{5}.]

EXERCISE 13. If $k<\frac{n}{2}$, show that the action of S_{n} on the $\binom{n}{k}$ unordered k-tuples is primitive.

Exercise 14. If G acts k-transitively on $\{1,2, \ldots, n\}$ for some $k>1$, and H is the stabilizer of the point n, show that H acts $(k-1)$-transitively on $\{1,2, \ldots, n-$ $1\}$.

EXERCISE 15. Let G be the group of permutations of 8 points $\{\infty, 0,1,2,3,4,5,6\}$ generated by $(0,1,2,3,4,5,6)$ and $(1,2,4)(3,6,5)$ and $(\infty, 0)(1,6)(2,3)(4,5)$. Show that G is 2-transitive. Show that the Sylow 7-subgroups of G have order 7, and that their normalisers have order 21. Show that there are just 8 Sylow 7subgroups, and deduce that G has order 168. Show that G is simple.

Exercise 16. Let x be an element in S_{n} of cycle type $\left(c_{1}^{n_{1}}, \ldots, c_{k}^{n_{k}}\right)$, where c_{1}, \ldots, c_{k} are distinct positive integers. Show that the centralizer of x in S_{n} has the shape $\left(C_{c_{1}} 乙 S_{n_{1}}\right) \times \cdots \times\left(C_{c_{k}} \backslash S_{n_{k}}\right)$.

EXERCISE 17. Show that if $H \cong \mathrm{AGL}_{3}(2) \cong 2^{3}: \mathrm{GL}_{3}(2)$ is a subgroup of S_{8}, and $K=H^{g}$ where g is an odd permutation, then H and K are not conjugate in A_{8}.

Exercise 18. Prove that S_{k} 2 S_{2} is maximal in $S_{2 k}$ for all $k \geq 2$.
Exercise 19. Prove that $S_{k} \backslash S_{m}$ is maximal in $S_{k m}$ for all $k, m \geq 2$.
EXERCISE 20. Prove that the 'diagonal' subgroups of S_{n} (as defined in the notes) are primitive.

Exercise 21. Show that if H is abelian and transitive on Ω, then it is regular on Ω.

Exercise 22. Use the O'Nan-Scott theorem to write down as many maximal subgroups of S_{5} as you can. Can you prove your subgroups are maximal?

Exercise 23. Do the same for A_{5}.

