
Finite simple groups Problem sheet 1

Hints and solutions to selected exercises

Exercise 1. For a permutation π ∈ Sn define

ε(π) =
∏

1≤i<j≤n

i− j

iπ − jπ
∈ Q.

Show that ε = ±1 and that ε is a group homomorphism from Sn onto C2 =
{1,−1}. Hence obtain another proof that the sign of a permutation is well-defined.

Exercise 2. Let G < Sn act transitively on Ω = {1, . . . , n} and let H = {g ∈
G : ag = a} for fixed a ∈ Ω. Prove that φ : ag 7→ Hg is a bijection between Ω and
the set G : H of right cosets of H in G.

Prove also that Hg = {x ∈ G : ax = ag}.

If ag = ak then agk−1
= a so gk−1 ∈ H so g ∈ Hk, whence Hg = Hk, so φ is

well-defined. The same argument in reverse shows φ is one-to-one. Clearly φ is
onto, so φ is a bijection.

The second part is essentially the same: if x ∈ Hg then x = hg for some
h ∈ H, so ax = ahg = ag and conversely.

Exercise 3. Prove that the orbits of a group H acting on a set Ω form a parti-
tion of Ω.

Exercise 4. Show that An is not (n− 1)-transitive.

If the n − 1 points 1, 2, 3, . . . , n − 2, n − 1 are mapped to 1, 2, 3, . . . , n − 2, n
respectively, then n is mapped to n− 1, and the permutation is (n− 1, n), which
is not in An.

Exercise 5. Let G act transitively on Ω. Show that the average number of fixed
points of the elements of G is 1, i.e.

1

|G|
∑
g∈G

|{x ∈ Ω | xg = x}| = 1.

Count the pairs (x, g) ∈ Ω × G such that xg = x in two ways. In one way it
is

∑
g∈G |{x ∈ Ω | xg = x}|. In the other way it is (where H is a point stabilizer)∑

x∈Ω |{g ∈ G | xg = x}| = |Ω|.|G : H| = |G| by the orbit–stabilizer theorem.

Exercise 6. Verify that the semidirect product G :φ H is a group. Show that
the subset {(g, 1H) : g ∈ G} is a normal subgroup isomorphic to G, and that the
subset {(1G, h) : h ∈ H} is a subgroup isomorphic to H.
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(Sorry, part of the question was missing.)
We need to check the identity law, the inverse law and the associative law.

The associative law is the hardest: on the one hand

((g1, h1)(g2, h2))(g3, h3) = (g1g
φ(h−1

1 )
2 , h1h2)(g3, h3)

= ((g1g
φ(h−1

1 )
2 )g

φ(h1h2)−1

3 , h1h2h3)

and on the other

(g1, h1)((g2, h2)(g3, h3)) = (g1, h1)(g2g
φ(h−1

2 )
3 , h2h3)

= (g1(g2g
φ(h−1

2 )
3 )φ(h−1

1 ), h1h2h3)

= (g1g
φ(h−1

1 )
2 g

φ(h−1
2 )φ(h−1

1 )
3 , h1h2h3)

which is the same thing since φ is group homomorphism.
The map (g, 1H) 7→ g is an isomorphism because (g, 1H)(k, 1H) = (gk, 1H)

and similarly (1G, h) 7→ h is an isomorphism because (1G, h)(1G, l) = (1G, hl). In
particular the given sets are groups. The first is normal because

(1G, h−1)(g, 1H)(1G, h) = (1G, h−1)(g, h) = (gφ(h), 1H).

Exercise 7. Suppose that G has a normal subgroup A and a subgroup B satis-
fying G = AB and A ∩ B = 1. Prove that G ∼= A:φB, where φ : B → AutA is
defined by φ(b) : a 7→ b−1ab.

Look it up in a suitable textbook.

Exercise 8. Prove that if the permutation π on n points is the product of k
disjoint cycles (including trivial cycles), then π is an even permutation if and
only if n− k is an even integer.

If k = n then π = 1 and the result is true. Now use induction on n − k. To
reduce the number of cycles by 1, multiply by a transposition that straddles two
cycles: thus (a1, a2, . . . , ar)(b1, b2, . . . , bs)(a1, b1) = (a1, a2, . . . , ar, b1, b2, . . . , bs).
Thus each time the number of cycles decreases by 1, the permutation changes
from even to odd or vice versa.

Exercise 9. Determine the number of conjugacy classes in A8, and write down
one element from each class.

The cycle types of even permutations are 71, 62, 53, 5111, 44, 4211, 3311,
311111, 3221, 221111 and 11111111. Of these, just 71 and 53 consist of dis-
joint cycles of distinct odd lengths, so split into two classes in A8. In par-
ticular, there are exactly 13 conjugacy classes in A8. Thus (1, 2, 3, 4, 5, 6, 7, 8)
and (1, 2, 3, 4, 5, 6, 8, 7) are in different classes, as are (1, 2, 3, 4, 5)(6, 7, 8) and
(1, 2, 3, 4, 5)(6, 8, 7). In the other cases, any element will do, e.g. (1, 2, 3, 4, 5, 6)(7, 8),
(1, 2, 3, 4, 5), (1, 2, 3, 4)(5, 6, 7, 8), etc.
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