LECTURE 3. HYPERBOLIC GEOMETRY AND KLEINIAN GROUPS

3.1 The hyperbolic plane: half-plane and disc models, isometries

Around 300BC Euclid of Alexandria wrote a thirteen volume treatise entitled The
Elements, in which he developed geometry and number theory from a set of azioms. His
five axioms for geometry in the plane were:

1. A straight line may be drawn from any point to any other point.

2. A finite straight line may be extended.

3. A circle may be drawn with any given centre and radius.

4. All right angles are equal.

5. If a straight line intersects two other straight lines and the sum of the interior
angles on one side is less than two right angles, then the two straight lines, if extended
indefinitely, meet on the side on which the sum of the angles is less than two right angles.

The fifth postulate is equivalent to:

5. Given any straight line and point not on it, there exists a unique straight line
through the point, not meeting the given line.

There were many attempts in the following two thousand years to show that the fifth
axiom can be deduced from the first four. It appears to be Gauss who was the first to
realise that there existed a geometry satisfying axioms 1 to 4 but not 5. He called this
a non-Euclidean geometry, but though he investigated its properties for ten years in the
early 19th century, he did not publish any of his results. It was Lobachevsky (1829) and
Bolyai (1832) who first published the discovery of what we now call hyperbolic geometry,
which has in place of Euclid’s axiom that ‘there exists a unique parallel’, the new axiom
that ‘there exist infinitely many parallels’ to a given line, through a given point not on it.

Beltrami (1868) introduced a Euclidean disc model of the hyperbolic plane

><§7\>‘fsem%we lines

which he used to prove formally that Euclid’s fifth axiom is independent of the first four.
Klein (1871) gave an interpretation of this model in terms of projective geometry. Beltrami
had also introduced conformal disc and upper half-plane models in 1868,

i

R

and Poincaré (1882) identified the congruences of the hyperbolic plane with the group
PSL(2,R) of the upper half-plane, the key to a host of subsequent developments in math-
ematics and physics in the subsequent century (from relativity to string theory).

19



The upper half-plane model

H>=H,={z+iy:zcR,yc R’} cC

Define an infinitesimal metric on H* by
1
ds = 5((456)2 + (dy))?

in other word the ‘length’ of a path v in ‘H, is defined to be the integral of this quantity
ds along ~.

Lemma 3.1 ds is invariant under PSL(2,R).
Proof

az+b_a T

cz+d c+cz+d

where r = b — ad/c, so it suffices to check invariance under the following three types of
transformation: (i) z > z+ A (A€ R); (ii) 2 —» Az (A € R>Y); (iii) 2 — —1/2. This is
an easy exercise. QED

Definition A path v is called a geodesic from P to @ in # if it is a path of shortest
length from P to (). A proof of the following elementary proposition can be found in any
textbook on hyperbolic geometry.

Proposition 3.2 There is a unique geodesic between any two distinct points P and QQ in
Hy. It is the segment between P and Q) of the unique (Euclidean) semicircle through P

and Q which meets R = R U 0o orthogonally. The (hyperbolic) distance from P to Q is
|In(P,Q; A, B)| where A and B are the points where the semicircle meets R.

Any isometry of the hyperbolic plane H? must send geodesics to geodesics, and so
in the upper half plane model it must send semicircles orthogonal to R to semicircles
orthogonal to R. It can be shown that such transformations must have either the form

az+b
cz+d

a,b,c,de R,ad —bc >0

or the form
aZ+b
cz 4 d

z = a,b,c,de R,ad —bc <0

An example of the second type is z — —Z (reflection in the imaginary axis).
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The disc model

An alternative model to the upper half plane is given by regarding H? as the points
of the unit disc D? = {z: |2| < 1} C C and taking as the infinitesimal metric on this disc

)2 211/2
ds — ((dz) 1‘4‘_(??29) ) (r2 = 22 + ¢?)

in which case the geodesics are arcs of circles meeting the unit circle (the boundary of D?)
orthogonally. To pass from the upper half plane model to the disc model to the disc model
we simply conjugate by any element of PSL(2, C) which sends H to D?, for example the
map

z+1

zZ+1

zZ —r

which sends —1,0,1 to —1, —i, 1 respectively and hence sends R to the unit circle (and
moreover sends the upper half plane to the interior of this circle since it sends i to 0).

The orientation-preserving isometries of the hyperbolic plane are the elements of
PSL(2,R), acting as fractional linear maps

az+b
cz+d

z —

in the upper half-plane model. We use their fixed points to classify them into types.

Definition A non-identity element o € PSL(2,R) is said to be
elliptic if it has a fixed point in H;
parabolic if it has precisely one fixed point on R;
hyperbolic if has two fixed points on R.

If we normalise our matrix representing o € PSL(2,R) so that ad — bc = 1, we can
distinguish the three types by the trace, a + d of « as follows. The fixed points of « are
the solutions of the equation

2+ (d+a)z—b=0

This has a complex conjugate pair of roots < (d+a)?+4bc < 0 & (d+a)? -4 <0 &
ltr(a)| < 2, it has one (repeated) real root < |tr(a)| = 2, and it has two (distinct) real
roots < |tr(a)| > 2. Thus

Lemma 3.3 « is elliptic/parabolic/hyperbolic < |tr(a)| < 2,=2,> 2

(Note that we must normalise o to determinant 1 before we compute the trace.)

The trace of a matrix is a conjugacy invariant, and hence so is the type of an isometry of
the hyerbolic plane (this is also obvious from the definition of type in terms of fixed points).
In calculations and proofs it can often be useful to conjugate an isometry to a standard
form. The following can easily be verified:

Lemma 3.4 If o € PSL(2,R) is parabolic then o is conjugate (in PSL(2,R)) to z — z+1
ortoz—z—1.

21



Lemma 3.5 In the disc model, the elliptic elements fixing the origin 0 are the Euclidean
rotations of the disc.

Lemma 3.6 If o € PSL(2,R) is hyperbolic then « is conjugate (in PSL(2,R)) to z — Az
for some A € R>C.

We may change A to A~! by further conjugating our map by z — 1/z (interchanging 0 and
00), but since the eigenvalues of @ are A and A1, and these are conjugacy invariants of o,
the value of A in Lemma 3.6 is unique up to replacement by A~1.

3.2 Hyperbolic 3-space and its isometries

Definition %3 = {(z1,%2,73) € R3: 23 > 0}

Just as in the two-dimensional case we may define an infinitesimal metric:
1
ds = m—((d$1)2 + (diL'Q)z + (d.173)2)1/2
3

With this metric #3 becomes the upper half-space model of hyperbolic 3-space. The
geodesics are the semicircles in #2 orthogonal to the plane z3 = 0.

Now think of the plane 3 = 0 in R3 as the complex plane C ((z1,%2,0) <> , +izs), add
the point ‘c0’, and think of C as the boundary of H3. Every fractional linear map

az—+b
cz +

(a,b,¢,d € C,ad — bc # 0)

mapping C to C, has an extension to an isometry from #3 to H3. One way to see this is
to break down « into a composition of maps of the form

(1) z—z4+1 (AeC)
(i1) z—= Xz (AeQ)
(444) z—>—1/z

We extend these as follows on H3 (where z denotes z1 + izs):

(1) (z,23) = (z+ A\, z3)

) (z,z3) = (A2, |A|z3)

(i) (z,:m)——)( 2 zs )

|22 + 23 |2|? + 22
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The expressions above come from decomposing the action on C of each of the elements
of PSL(2,C) in question into two inversions (reflections) in circles in €. Each such
inversion has a unique extension to > as an inversion in the hemisphere spanned by the
circle and composing appropriate pairs of inversions gives us these formulae. It is now
an exercise along the lines of Lemma 3.1 to show that PSL(2, C) preserves the metric ds
on H3 and another exercise, along the lines of Lemma 3.2 to show that the geodesics are
the arcs of semicircles as claimed. Moreover every isometry of H2 can be seen to be the
extension of a conformal map of C to itself, since it sends hemispheres orthogonal to C
to hemispheres orthogonal to C, hence circles in € to circles in C. Thus all orientation-
preserving isometries of H?® are given by elements of PSL(2, C) acting as above, and all
orientation-reversing isometries are extensions of anti-holomorphic M6bius transformations

of C.

Comments

1. The fact that the orientation-preserving isometry group of #3 is PSL(2,C) was first
observed by Poincaré.

2. The disc model for hyperbolic three-space is the interior D of the unit disc in Fuclidean
three-space R2, equipped with the metric

((dz1)? + (dz2)? + (dz3)?))Y/?

ds =
5 1—17r2

(where r? = 22 + 22+ 22). Geodesics are arcs of circles orthogonal to the boundary sphere.

3. One can construct higher dimensional hyperbolic spaces H™ in the analagous way.
In each case the conformal transformations of the boundary extend uniquely to give the
isometries of the interior.

Types of isometries of hyperbolic 3-space

Non-identity elements o € PSL(2, C) are of four types.

Definition « is said to be

elliptic & a fixes some geodesic in H3 pointwise;

parabolic <> o has a single fixed point in C;

hyperbolic < o has two fixed points in C, no fixed points in 7-[3 and every hyperplane
in #3 which contains the geodesic joining the two fixed points in C is invariant (mapped
to itself) under «;

lozodromic < o has two fixed points in C, no fixed points in H3, and no invariant
hyperplane in #?2.
Note The distinction between hyperbolic and lozodromic is not always made: some authors
use either word for an isometry having two fixed points in € and none in H3.

Lemma 3.7 « is elliptic/parabolic/hyperbolic/lozodromic
& (tr(a))? €[0,4) c R2%, =4, R2% - [0,4),c C — R2°
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Proof
If o has two fixed points in C we may assume (after conjugating o by an appropriate
Mobius transformation) they are at 0 and oo and that « has the form z — Az (and
tr(a) = A2 £ \"1/2),

Case 1: |A] = 1, say A = €. Then on C « is a rotation about 0 through an angle 6,
and fixes the z3-axis in H2 pointwise. As a matrix, normalised to determinant 1,

ei9/2 0
o= ( 0 e‘i9/2>

and so (tr(a))? = 4cos?(0/2) € [0,4).

Case 2: |A| # 1. then « acts on the zs-axis in H® as multiplication by |A|. Writing
A = |\e? we have
|\|1/2¢6/2 0
a = 0 |/\|——1/2e—-z’9/2

so (tr(a))? € C — [0,4]. Now if A is real (i.e. @ = 0 or 7) « is hyperbolic and (tr(a))? €
R=29 — [0,4] and if X is not real, « is loxodromic and (tr(a))? € C — R20,

Finally if o has a single fixed point in C then we can place this fixed point at oo (by
conjugating « if necessary) in which case « has the form z — z + A (indeed we may even
conjugate it to z — z+ 1). Then « is parabolic and (¢r(a))? = 4. QED.

Dynamics of Mé&bius transformations on #3 U C

z — e2™9 (6 real)

Here the fixed points 0,00 on C are neutral. For z — ¢z with 0 real, all orbits on
3 have finite period if € is a rational multiple of 7, and densely fill circles around the z3

axis if not.

z — ke?™0z (k > 1,0 real)

Here all orbits in 3 head away from a repelling fixed point 0 and towards an attracting
fixed point oo, spiralling around the z3 axis as they go. The nature of the spiralling depends
on #: in particular if # = 0 or 7 each orbit remains in a hyperplane.

z—=>z+1

In this example the (unique) fixed point oo is neutral (multiplier 1) and all orbits on
#3 head towards the fixed point under both forward and backward time. Any parabolic
map « will have this behaviour.
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3.3 Kleinian groups, ordinary and limit sets, and their properties
Definition A Kleinian group is a discrete subgroup G < PSL(2,C).

Thus for a subgroup G < PSL(2,C) to be called Kleinian we require that there be
no sequence {g,} of distinct elements of G tending to a limit ¢ € PSL(2,C). Here the
topology on PSL(2,C) is that induced by the norm

a b
1(% )= VP T BP T o

on SL(2,C) (so that two elements of PSL(2,C) are close together if and only if they are
representable by A;, Ay € SL(2,C) with ||As — A;]| small).

Note If G is discrete then for any N > 0 the number of elements of G having norm < N
is finite, since every infinite sequence with bounded norm has a convergent subsequence.
Hence every discrete G is countable.

Definition The action of G is discontinuous at z € C if there exists a neighbourhood U
of z such that g(U) N U = ( for all but finitely many g € G.

Example ‘ / )

-1 ,_,1).1 o

G = PSL(2,Z) acts discontinuously on C — R. For z in the shaded region above, each
z # 4,+1/2 +41/3/2 has a neighbourhood U such that ¢g(U) N U = § for all non-identity
g € G, the point z = i has a neighbourhood U such that ¢(U)NU = @ for all g € G—{1, S}
where S : z — —1/2, and the point z = —1/2 + iv/3/2 has a neighbourhood U such that
g(U)NU =0 for all g € G — {I, ST, (ST)?*} where ST : z — —1/(z + 1), etc.

Definition The set of all z € C at which the action of G is discontinuous is called the
reqular (or ordinary or discontinuity) set Q(G).

Comments
1. It follows at once from the definition that Q(G) is open and G-invariant.
2. In the example above observe that the origin 0 is not in Q(G), since any U containing

0 has g(U)NU # 0 for all
/10
I9=\n 1

with n sufficiently large. In fact in this example Q(G) = C — R (as we shall prove later).

A subgroup G < PSL(2,C) acts on H3 as well as on its boundary C. The following
theorem establishes an important relationship between these actions.
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Theorem 3.8 A subgroup G < PSL(2,C) is discrete if and only if it acts discontinuously
on H3

Proof. If G is not discrete there exists {g,} € G with limit g € PSL(2,C). So for all
z € H3, 9 gn(x) — x as m,n — co. Thus for any z € H> and neighbourhood U of z, for
m and n sufficiently large ¢,.19,(U) N U # §. Hence G does not act discontinuously at z.

Conversely, if G does not act discontinuously at z € 3, then for any neighbourhood
U of z there exist a sequence {z,} € U and (distinct) g, € G such that each g,(z,) € U.
Take U compact. Then by passing to subsequences we may assume the z,, tend to a point
y and the g,(z,) tend to a point z (with both y and z in U). Now let k¥ be an isometry
of H? having k(z) = y and let {h,}, {jn} be sequences of isometries, both tending to the
identity, and having h,(y) = x, and j,gn(z,) = z respectively. Cousider f, = kjngnhn.
For each n this fixes y (by construction). But the isometries of #2 fixing a common point
of #3 are a compact group (the Euclidean rotations, in the Poincaré disc model with the
common point the origin). Hence the {f,} have a convergent subsequence. Hence so do
the {gn}, in other words G is not discrete. QED

Limit sets of Kleinian groups

One can define the notion of the limit set A(G) of a Kleinian group G, either in terms
of its action on 3, or in terms of the action on the boundary C of #3. We shall see later
that the two definitions are equivalent.

Definition 1. Let x be any point of #3. Then set
Alx) ={we C:3g, € G with g,(x) > w as n— oo}

(where convergence is taken in the Euclidean metric on the Poincaré disc model of H3).
Note that the {g,(z)} cannot have accumulation points in #3, since G acts discontinuously

there. Thus an alternative description of A(x) is as the accumulation set in H3 U C of the
orbit Gr on H3. This accumulation set is independent of the initial point z € H2, since
if we choose another initial point y the hyperbolic distance from g(z) to g(y) is constant
for all g and therefore the Fuclidean distance from g(z) to g(y) tends to zero as g(z) and
g(y) approach the boundary C of the Poincaré disc. We define A(G) to be A(z) for any
z € H3.

Definition 2. Let z be any point of C. Set

Az)={weC:3g,€G with gn(z) 2w as n— oo}

(where convergence is taken in the spherical metric on C). It can be shown that when G
is non-elementary (see below for definition) A(z) is independent of z € C. We define A(G)
to be A(z) for any z € C.

Comments

1. The restriction that G be ‘non-elementary’ is included in definition 2 in order to exclude

just one class of examples where the limit A(z) depends on z. Consider G = {g" : n € Z},
where g is loxodromic, with fixed points zg and z;. The limit set by definition 1 is AG) =
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{20} U {21}, but definition 2 gives A(29) = 2¢, A(z1) = 21 (although A(2) = {20} U {21} for
any other choice of z).

2. We shall adopt definition 2 until we have proved the equivalence of the two notions (later
in this section). Meanwhile we remark that the underlying reason that the definitions are

equivalent is that to an observer inside H® an orbit of G' of H? is viewed as accumulating
at A(G) on the ‘visual sphere’ C.

3. A third equivalent definition is that A(G) consists of the points z € C where the family
g € G fail to be a normal family (with respect, as always, to the spherical metric). We
shall prove this too later in the present section.

4. Tt follows at once from definition 2 (or indeed from definition 1) that A(G) is both closed
and G-invariant.

It is clear from the definitions of Q(G) and A(G) that Q(G) N A(G) = 0, but we shall
prove the stronger statement that A(G) is the complement of Q(G) in C. First we deal
with some special cases.

Elementary Kleinian groups

Definition A Kleinian group G is called elementary if there exists a finite G orbit on
either #3 or C.

All elementary Kleinian groups G belong to the following three classes. For a proof see
for example Beardon’s book ‘Geometry of Discrete Groups’ or Ratcliffe’s book ‘Foundations
of Hyperbolic Manifolds.’

(i) G is conjugate to a finite subgroup of SO(3) acting on the Poincaré disc by rigid
rotations fixing the origin (for example the symmetry group of a regular solid). In this
case A(G) = 0.

(ii) G is conjugate to a discrete group of Euclidean motions of C (i.e. fixing oo € )
(for example G =<z — 2z+1,z = z+i>). Then |A(G)| = 1.

(iii) G is conjugate to a group all of the elements of which are of the form z — kz or
z— k/z for k € C. Then |A(G)| = 2.

It is not hard to see that if G is Kleinian then A(G) = 0 = G elementary of type (i),
|A(G)| =1 = G elementary of type (ii), and |A(G)| = 2 = G elementary of type (iii), so
elementary groups are characterised by the size of their limit sets. Indeed
Proposition 3.9 A Kleinian group G is elementary if and only |A(G)| < 2, and non-
elementary if and only if A(G) is infinite.

Proof. If A(G) is finite and non-empty then any G orbit in A(G) is a finite G orbit on C
so G is elementary by definition and has |A(G)| =1 or 2 by the above classification. QED

We state, without proof, the following properties of ordinary and limit sets of Kleinian
groups:

Theorem 3.10 Any Kleinian group G acts discontinuously on C- A(G). Hence C is the
disjoint union of Q(G) and A(G).

Proposition 3.11 Let G be a non-elementary Kleinian group. Then any non-empty closed
G-invariant subset S of C contains A(G)
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Corollary 3.12 Let G be a Kleinian group. Then either A(G) = C or A(G) has empty
interior.

Corollary 3.13 Let G be a non-elementary Kleinian group. Then A(G) is the closure of
the set of all fized points of loxodromic and hyperbolic elements of G.

Comment. If G has any parabolic elements their fixed points must lie in A(G), but elliptic
elements may have fixed points in either Q(G) or A(G).

Corollary 3.14 Let G be a non-elementary Kleinian group. Then A(G) is perfect (and
hence, in particular, uncountable).

Corollary 3.15 Definitions 1 and 2 for the limit set A(G) of a non-elementary Kleinian
group G are equivalent.

Proof. We show that the limit set as defined by definition 1 has exactly the same charac-
terising property as that specified by Proposition 3.11 for A(G) (where we used definition
2). Let S be any closed G-invariant subset of C (note that S must be infinite, since G is
non-elementary). Then C(S), the convex hull of S in #3UC, is also closed and G-invariant.
Take any z € C(S) N H3. Its orbit Gz is contained in C(S) and the accumulation set of
this orbit is contained in C(8) N C = S. Hence S contains the definition 1 limit set of G.
QED

The results stated above for ordinary and limit sets of Kleinian groups exhibit a very

close analogy with our earlier results on Fatou and Julia sets for rational maps. This raises
the question as to whether we can make the definitions analogous too. The answer is yes.
Proposition 3.16 Let G be a Kleinian group. Then Q(G) is the largest open subset of C
on which the elements of G form an equicontinuous family.
Proof. Assume G non-elementary (as usual elementary groups can be dealt with on a case
by case basis). Then A(G) contains at least three points (in fact infinitely many) so Q(G)
is contained in the equicontinuity set by Montel’s Theorem. But given any z € A(G), by
Corollary 3.13 there must be a repelling fixed point of some g € G arbitrarily close to z,
so the family of maps G cannot be equicontinuous at z. QED

We deduce the following two consequences (useful for plotting A(G)).

Theorem 3.17 Let G be a non-elementary Kleinian group, and U be any open subset of
C meeting A(G). Then
U gU = C

Proof. The union | geq 9U covers all of C except at most two points (else the family G
would be equicontinuous on U by Montel’s Theorem). But the complement of this union
is a finite G-invariant set and therefore empty (since G is non-elementary). QED

The following corollary is immediate.

Corollary 3.18 Let G be a non-elementary Kleinian group, and U be any open subset of
C meeting A(G). Then

U 9@Wna@) =)
e
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Comments

1. A discrete subgroup of PSL(2,R) is called Fuchsian. All our results for Kleinian groups
in this chapter have obvious specialisations to the Fuchsian case, with 2 replaced by H?,
and C replaced by R.

2. There are many analogies between rational maps and Kleinian groups; methods and
results in each area suggest anoalogous techniques and conjectures in the other, but by no
means everything that one might expect to be true or provable turns out to be so. Together
the analogies make up the “Sullivan Dictionary” between the two subjects. For the state
of this dictionary around five years ago see the book Holomorphic Dynamics by Morosawa,
Nishimura, Taniguchi and Ueda (CUP 2000), but more entries have been resolved since
then: for example the Ahlfors 0 — 1 Conjecture (that the limit set of a finitely generated
Kleinian group has Lebesgue measure zero if it is not the entire sphere) has recently been
proved, and even more recently it has been shown that there exists a polynomial map with
Julia set of positive Lebesgue measure.

3.4 Fundamental domains for Kleinian groups, Poincaré’s polyhedron theorem

Let G be a Kleinian group, acting on H3, on C, or on H3 U C, and let Q(G) be the
regular set for the action.

Definition A fundamental domain for the action of G on Q(G) is a subset F' of Q(G) such
that

W U 9(F) = 9(G) and
g€eG
€] g(F)Nh(F)=0 when g#h (g,heG)

(where in (i), F denotes the closure of F').
Thus the images of F' tessellate 2(G) (they cover it without overlapping).

Example The set {x+iy : 0 < z < 1} is a fundamental domain for the action of 2 — z+1
on the complex plane C (as indeed is the set {z +iy: 0 <z < 1}).

Note The precise definition of the term ‘fundamental domain’ varies from author to author:
some require F' to be closed - in which case of course one must modify condition (ii) above
to require only that g(F) N h(F) be contained in the boundary of both g(F) and h(F),
rather than it be empty.

Dirichlet domains

The simplest construction of fundamental domains makes use of a metric. So for the
time being we consider an action of G on H3 (or, if G is Fuchsian, on #?).

Choose = € H? such that for all g € G except the identity, gz # . (Exercise: show
that there are at most a discrete set of points z € H3 which do not have this property.)
Now for each g € G define the half-space

Hy={yeM:d(y,z) <d(y,gz)}
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where d(y, x) denotes the hyperbolic distance from y to z.

Definition The Dirichlet domain centred at x is the set

D,= [\ H,
geG—{1}

Thus D, consists of those points of #® which are nearer to x than they are to any gz
(9 € G- {I}).

This construction was introduced by Dirichlet in the 1850’s for the study of Euclidean
groups, and later adapted by Poincaré for the hyperbolic case.

Proposition 3.19 For any Kleinian group G, a Dirichlet domain D, is a fundamental
domain for the action of G on H3.

Proof. We must prove that D, satisfies conditions (i) and (ii) of the definition of a
fundamental domain. We first observe that

9(Dz) ={y : d(y,g7) < d(y,hz) Yhe G—{g}}

since
y € 9(Ds) & g7y € Dy & d(g7 Yy, x) < d(g™ 'y, kz) © d(y, 9z) < d(y, gkz) Vk € G— {I}

Now take any y € #%. Take g € G (not necessarily unique) such that d(y, gz) is minimal.
Then y € g(D;) so property (i) holds. Moreover it is clear that g(Dy)Nh(D;) =0 if g # h
so property (i) holds too. QED

Recall that a subset X C H3 is said to be convez if given any z,y € X the segment
of geodesic joining z to y is entirely contained in X.

Proposition 3.20 A Dirichlet domain D, for a Kleinian group G is convex and locally
finite (i.e. each compact subset K of H® meets only finitely many g(Dy)).

Proof. Convexity is obvious since D, is defined to be an intersection of half-spaces, each
of which is convex.

For local finiteness, take the Poincaré disc model of H* and without loss of generality
take = to be the origin and K to be the closed ball with centre the origin and (hyperbolic)
radius p. We claim that if g is any element of G such that gDy N K is non-empty then
d(0, g0) < 2p, which will prove local finiteness since G, being discrete, contains only finitely
many elements with d(0,g0) < 2p (else the orbit of 0 would have an accumulation point
in H3, contradicting discontinuity of the action of G there). To prove the claim, take any
y € gDo N K; then d(0,y) < p (since y € K) and d(g0,y) < d(0,y) (since y € gDy) so
d(0,90) < p+p =2p. QED
Definition A convex region P obtained as the intersection of countably many half spaces
Hj in 3, with the property that any compact subset of P meets only finitely many of the

hyperplanes 0H; is called a polyhedron (and a subset of 7? with the analogous property
is called a polygon).
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Thus Proposition 3.20 says that a Dirichlet domain is a polyhedron. Note that the
proposition does not say that D, has only finitely many faces, at least it only says this
when D, is compact. When D, has finitely many faces (for some z) we say that G is
geometrically finite.

Now consider any point y on the boundary of D, so y is on the boundary of Hy for
one of the half-spaces defining D, in other words d(y, z) = d(y, gz) for some g € G. Then

d(g 'y, g7 z) = d(y,z) = d(y, 9z) = d(g™ 'y, z)

so g~ 1y also lies in the boundary of D,. Thus each face of D, is carried to another face of
D, by an appropriate element of G. We call these elements side-pairing transformations.
For an example consider the action of PSL(2,Z) on #H?2.

Proposition 3.21 Let G = PSL(2,Z) act on the complex upper half-plane in the usual
way. Then for any point tv on the imaginary azis, with v > 1, the Dirichlet domain
s the region illustrated below, and the side-pairing transformations are T : z — z + 1,
S:iz——-1/z. ‘

Proof. Let P = {z : |Re(z)| < 1/2,|2| > 1} (the region illustrated) and let D;, denote
the Dirichlet region, centred on iv, for G. We first observe that D;, C P since P is the set
of points nearer to 7v than to v — 1,%v + 1 and ¢/v (in the hyperbolic metric).

It remains to show that there no are points 2’ in P which are nearer to g(¢v) than to v
for some other g € G. Suppose there is such a 2. Then 2’ € h(D;,) for some h € G (since
the translates of D;, cover the upper half-plane, by Proposition 5.1). Let 2 = h=12' € D;,.
Now both z and hz lie in P, and we obtain a contradiction as follows. Suppose

az+b
cz+d

h(z) =

(with the matrix normalised to have determinant one). Then by an easy exercise

Im(z)
Im(h(z)) = 2
m(h(2)) lcz + d|?
But
lcz +d|?* = |z|* + 2Re(2)cd + d? > ¢ 4 d? — |ed| = (|| — |d))? + |ed)|

(since |z| > 1 and [Re(z)| < 1/2). However (|c| — |d|)? + |ed| is a positive integer (since
¢ =d = 0 is ruled out by ad — bc =1). So |cz+d| > 1, and hence Im(h(z)) > Im(z). But
the same reasoning applied to h(z) and h~! in place of z and h yields Im(z) < Im(h(z))
and hence a contradiction. QED
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Poincaré’s Polyhedron Theorem

We have seen that given a Kleinian group G, Dirichlet’s construction allows us to
find a fundamental domain on which G acts by side-pairing transformations. Poincaré’s
Polyhedron Theorem takes us in the opposite direction: given a convex polyhedron in H3
(or polygon in H?) and a set of side-pairing transformations for that polyhedron, it gives
us necessary and sufficient conditions for the group generated by those transformations
to be discrete (i.e. Kleinian) and for the given polyhedron to be a fundamental domain
for the group action. (Note that for a polyhedron, the ‘side-pairings’ identify faces of
the polyhedron.) The key condition is that the translates of the polyhedron under the
group generated by the side pairings should fit together “without overlaps” along each
edge and around each vertex. Poincaré’s theorem then yields a presentation of the group,
~ with the side-pairing transformations as generators, and a relation for each edge, in the
3-dimensional polyhedron case. In the 2-dimensional polygon case the side-pairings iden-
tify edges and we have a relation for each vertex. We refer the reader to Beardon’s book
on discrete groups, or to Ratcliffe or Maskit, as the precise conditions, though conceptu-
ally straightforward, are a little cumbersome to state. Our main concern here will be to
understand examples.

3.5 Examples of Fuchsian and Kleinian groups
Examples in PSL(2,R) (Fuchsian groups) Sy No arvnd %,
1. PSL(2,Z) (the modular group) .' g(,\/>

Y

TN cu*au.rwe L.
s(nL)

Around z; the picture is just that around zq, conjugated by T. The vertex yg = oo is
ideal, and T is parabolic (z — 2+ 1). Hence P is a fundamental domain for PSL(2,Z),
as we have already proved earlier. Poincaré’s Polygon Theorem tells us that

PSL(2,Z) =< S,T:8*=1,(ST)*=1>

2. Surface groups

In the picture P is a regular octagon with vertex angles all 7/4. (To find such an octagon
in the Poincaré disc model, just take a small regular octagon centred at the origin and
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blow it up steadily in size unit the angles are 7/4: this case must occur, by continuity,
since in the limiting case when all vertices are ideal the angles are 0). Let A, B,C, D be
the side pairings shown. Then P is a fundamental domain for the group

G =< A,B,C,D:[A,B]C,D|=1I>

(where [A, B][C,D] = ABA-'8-*CDC~1D~1). Note that H2/G is a a surface of genus
two: .

Higher genus surfaces may be obtained similarly.

Comment The octagon need not be regular: all that is really needed is that the angles
add up to 27 and that the sides paired be of the same length. This is the beginning of the
Teichmiiller theory of hyperbolic stuctures on surfaces.

3. Triangle groups

We can always draw such a triangle in %2 by taking a small Euclidean triangle at the origin
in the Poincaré disc model and gradually enlarging it until the angles are those desired.
The (hyperbolic) area of such a triangle is m minus the angle sum.

Now let G be the group generated by reflections in the sides of the triangles, and let Gy
be its orientation-preserving subgroup (products of even numbers of reflections).

0y
{\Lgtp\) - R !\f:_, P R , ' 0(&’ . ‘gw’ é&’
\ &MA&(JM\’/\}C‘" '%a"ﬂ“’ ' A o
q (union o 2 copies af Erwf/ﬁ{e>
AN

Gy has generators g1 = Ry R3 and go = R3R;. By Poincaré’s Theorem Gy is discrete, the
quadrilateral shown is a fundamental for Gy, and a presentation for Gy is

Go=<g1,92: 9 =95 = (9192)" =1 >

(Note that if 1/p+1/q+ 1/r > 1 we can construct a spherical triangle and the group Gg
is then finite.)
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4. Limit sets of triangle and truncated triangle groups

v

When the fundamental polygon for G is compact, the limit set of G is the entire boundary
circle S* of the Poincaré disc (the translates of P get smaller and smaller in the Euclidean
metric as we move towards the boundary circle, so the orbit of of any point inside the disc
accumulates everywhere on S1).

When the fundamental domain has ideal vertices (that is to say vertices on the boundary
of hyperbolic space) the limit set remains the entire circle:

As before let G be the group generated by reflections Ry, R, R3, and G be the orientation-
preserving subgroup (generated by RsR3, R3R;). Now R3Rj3 is hyperbolic and the ‘gap’
between its fixed points is in 2(Go) C S*. hence A(Gy) # S*, so A(G) has empty interior in
S1. hence A(G) is totally disconnected, But A(G) is infinite, perfect, closed and bounded.
Hence A(G) is a Cantor set.

Note that Gq is freely generated by RoR3 and R3R;: there are no vertices so no
relations.

Examples in PSL(2,C) (Kleinian groups)
1. Tetrahedron groups

Our ‘polygon’ now becomes a tetrahedron in H> rather than a triangle in #2, and we
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consider the group G generated by reflections in its faces, and the orientation preserving
subgroup Go.

A tetrahedron in H? is determined by its six dihedral angles (the angles between adjacent
faces). To satisfy the conditions of Poincaré’s Theorem we require them all to be of the form
m/n with n integer. A vertex inside H3® must have 1/p; +1/ps +1/p3 > 1, an ideal vertex
must have 1/p;+1/pa+1/ps = 1, and a truncated vertex must have 1/p;+1/pa+1/ps < 1.
Where there is a truncated vertex the tetrahedron must meet the boundary of H? in a

7/p1, /P2, ™/p3 triangle.

One can show that all combinations of dihedral angles are actually realised by tetrahedra
or truncated tetrahedra. If all the vertices are internal or ideal then A(G) = C. If one or
more vertices is truncated then A(G) is a circle-packing (we get a circle as limit set for the
triangle group around the truncated vertex, and then other elements of G move this circle
around).

2. ‘Strings of beads’

Here C1, ..., C, are circles in C, each of the same size, touching the circle on each side and
orthogonal to the circle S;. Let R, denote inversion in C,, and extend R, to a reflection
in the hemisphere H,, spanning C,, in H3.

Now, by Poincaré’s Theorem, the part of #3 remaining after ‘scooping out’ all the hemi-
spheres is a fundamental domain for the action of G =< Ry, ..., R,, > and the only relations
are an =1 >.

Note that the limit set here is S', but that if we pull the circles Cy, apart the limit set
becomes a Cantor set, and that if we perturb the sizes and positions of the circles Cpy,
but keeping them touching adjacent circles, the limit set becomes a quasicircle (a fractal
homeomorphic to a circle). Going up in dimension an analogous construction can be used
to obtain a group having limit set a wildly embedded circle in S3.
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LECTURE 4. QUADRATIC MAPS AND THE MANDELBROT SET

4.1 The Mandelbrot set and its connectivity

Proposition 4.1 Every quadratic map f(z) = az? + Bz + v with « # 0 is conjugate to
gc(2) = 2% + ¢ for a unique c.

Proof The conjugacy h must send oo to itself, and hence have the form h(z) = kz + 1.

hf(z) = k(az® + Bz +7)+1  gh(z) = (kz+1)%2+¢c

These are equal (for all z) if and only if ko = k2, kB = 2kl and ky + 1 = 2 + ¢. Thus we
must have k = o,l = 8/2 and ¢ = ay + B/2 — B?/4. QED

Another useful parametrisation of the quadratic maps is given by the logistic family
pa(z) = Az(1 = 2)

Clearly p, is conjugate to ¢ if and only if ¢ = A/2 — A2/4 (by Proposition 4.1).

The q. parametrisation is more convenient when we are dealing with critical points,
and the p parametrisation is more convenient when we are dealing with fixed points and
their multipliers. Note that ¢. has critical points 0, co, the latter a superattracting fised
point, and py has fixed points 0 and 1 — 1/A, with multipliers A and 2 — X respectively.

Definition
The Mandelbrot set is the subset of parameter space defined by

M = {c: J(g.) connected} C C

Theorem 4.2 M 1is the set of values of the parameter ¢ such that the orbit ¢2(0) of the
critical point 0 does not tend to the point co

Proof If the orbit of 0 does not tend to co then there is no obstruction to extending
the Bottcher coordinate to the whole of the basin B, of attraction of co. Hence B, is
homeomorphic to the open unit disc and its complement C- B is connected as is their
common boundary 0B.,. But 0B is closed and completely invariant, and cannot contain
any points of the Fatou set (since any point in B, has bounded orbits, yet arbitrarily
close to it are points with orbits going to co): hence 8B, is the Julia set J(q.).

Conversely, if the orbit of 0 does go to co then J(g.) is totally disconnected (a Cantor
set) by the argument sketched earlier for the example |c| large. QED

Definition The filled Julia set of ¢, is K(g.) = {z : ¢*(0) /4 oo}
(Note that if ¢ ¢ M, K(q.) = J(g.) =Cantor set.)

Theorem 4.3 (Douady and Hubbard 1982) The Mandelbrot set M is connected

Proof In fact they proved a much stronger result, that there is a conformal bijection
between the complement C — M of the Mandelbrot set and the complement C — D of the
open unit disc. It is an immediate consequence of this that M is connected.
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When c € M, the Bottcher coordinate defines a conformal bijection
¢.:C—K(g) > C-D

c c c
(/;C(zo) = Zo(l 4 _2)1/2(1 + _2)1/4(1 4+ _2)1/8“.
20 21 22
(conjugating ¢. to z — 2?). When ¢ ¢ M the map ¢, though not defined on the whole of
the complement of K is nevertheless defined on a neighbourhood of co and as far as the

critical value c of g.. Define A A
¥:C-M—-C-D

U(c) = ¢e(c)

This is a conformal bijection (see Douady and Hubbard, Comptes Rendues 1982, for more
details). QED

Conjecture (‘MLC’) M is locally connected

If M is locally connected then by a theorem of Carathéodory the map ¥~! extends
to a continuous map from the boundary of C — D (a circle) onto the boundary M of the
Mandelbrot set. This would give us a purely combinatorial description of M and many
open questions concerning M would be resolved.

Definition A component of the interior of M is said to be hyperbolic if for every c in the
component g, has an attracting or superatiracting periodic orbit.

Conjecture (‘Hyperbolicity is dense’) Every component of the interior of M is hy-
perbolic

Douady and Hubbard showed in their 1985 Orsay lecture notes that ‘MLC’ implies
‘Hyperbolicity is dense’.

Both conjectures seem to be very difficult to resolve. Over the last 15 years there has
been a great deal of work on them. The set of points of 8M at which local connectivity
is known to hold has been steadily increased: Yoccoz has proved it for ‘all but infinitely
renormalizable points’ and Lyubich has extended this result to certain of the remaining
points. Most experts seem to believe that MLC should be true, but it is known that the
analogous set for cubics in place of quadratics is not locally connected (Lavaurs, Milnor),
and it is known that there exist quadratic maps g. having non-locally-connected Julia sets.
As far as ‘Hyperbolicity is dense’ is concerned, this has been proved for components of M
meeting the real axis (Lyubich, McMullen, Swiatek: see McMullen’s 1994 book ‘Complex
Dynamics and Renormalization’) but the general question is still unresolved. Another
recent development is Shishikura’s proof (1994) that the boundary M of the Mandelbrot
set has Hausdorff dimension 2.

4.2 The geography of the Mandelbrot set

We examine some of the more prominent features of M.
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Let Mo = {c: g. has an attracting (or superattracting) fized point }
= {c: J(g.) is a (topological) circle}
Lemma 4.4 My = {c:c = A/2 — A2/4 for some A with |A| < 1}
Proof Consider the logistic map px. The multipliers of its fixed points are A\, 2 — . Hence
My ={c:c=A/2—)?/4 for some X with |\| <1 or |2 — )| < 1}
But A\/2 - A%2/4=(2—-))/2— (2— A)?/4. QED
Thus My is a cardioid (with a boundary that is smooth except at the cusp ¢ = 1/4).

Note that there is a bijection between points of My and values of A such that |\ < 1.
Thus M) is parametrised by the multiplier of the fixed point of g..

The intersection of M with the real axis

We consider how the behaviour of ¢, varies as we vary the parameter ¢ along the real
axis.

For ¢ > 1/4, J(q.) is a Cantor set (it is an easy exercise to show that the orbit of 0
under ¢, tends to co).

At c = 1/4, there is a neutral fixed point z = 1/2, with multiplier 1.

Loen %.—:- L
ol
For —3/4 < ¢ < 1/4 q. has an attractive ﬁxed point and J(q.) is a (topological, indeed
quasi-conformal) circle, with dynamics conjugate to that of the shift. In particular J(q.)
contains a dense set of repelling periodic orbits.

At ¢ = —3/4, both points on the repelling period 2 orbit collide with the attracting

fixed point, at a neutral fixed point (having multiplier —1): W{”lii"g “Eﬁ{f_ai pounts
- abtbmcking — neubrs . .
’r&P@t(ll’\‘a/? 1 4{»&8 m\ﬂ ‘(',qu_\ e s
PP S w . poak o -
2-eyele % ] pont po- : '
PR 2N, G 2925 ¢
For —5/4 < ¢ < —3/4, qc has an attractive period 2 orbit, and the topology of J(q.)
is the same as that (plotted earlier) for the special (superattractive) case ¢ = —1.
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We digress briefly to justify the bounds —5/4 < ¢ < —3/4:
Lemma 4.5 g. has an attracting period 2 orbit if and only if [1+¢l<1/4

Proof The points of period 1 or 2 are the solutions of ¢2(z) = z. Expanding q2(2) — z we
have

2c(qe(2)) — 2z = ((z2+c)2+c—z = (zz—z+c)(zz+z+1+c) = (z—a)(z—B)(z—u)(z—v)

where a, 8 are the fixed points and u, v is the period 2 cycle. The multiplier of the period
2 cycle is g.(u)q.(v) = 4uv = 4(1 + ¢). The period 2 cycle is attracting if and only if this
has modulus less than 1. QED.

Returning to our journey in parameter space along the real axis, for —2 < ¢ < —5 /4,
as ¢ decreases through this range, we have a sequence of period doublings until we reach
the Feigenbaum point. This is followed by the whole Milnor/Thurston sequence of periods,
in particular containing the Sarkovskii sequence, the most prominent component of int(M)
along the axis being that corresponding to a period three attracting orbit, and we finish
at ¢ = —2 where the Julia set is the real interval [—2,+2] (and ¢. is semi-conjugate to
z — z%: see the exercise early on in these notes). For ¢ < —2, it is easily proved that the
orbit of the critical point 0 tends to co and hence the Julia set is again a Cantor set.

The behaviour for ¢ at different points along the real axis is is no surprise since the
quadratic family is conjugate to the logistic family. However with ¢ complex we can now
leave the main cardioid My at other points than just ¢ = —3 /4. When c is on the boundary
of My at the point where A = e2"P/4_ g has a neutral periodic point with this as multiplier,
and when c passes into the adjoining component q. has an attracting period ¢ orbit. There
are then further bifurcations as we pass along a path through different components of Mj.
We shall have more to say about this in the next section.

Ezercise Compute the values of ¢ where g. has a superattractive period three orbit (that
18, where the point 0 has period three).

4.3 Internal and external rays: the ‘devil’s staircase’

When ¢ € M, for any 6 € [0,1), the radial line arg(z) = 276 on C — D (where D is
the unit disc) maps under the inverse ¢! of the Bottcher map to the external ray Ry of

argument 276 on C — K(q.).

Similarly, in the parameter plane, the radial line arg(z) = 276 on C-D maps under
the inverse ¥~! of the Douady-Hubbard map to the external ray Ry of argument 278 on
C—- M.

The combinatorics of these rays can tell us a great deal about the structure of M.

A ray is said to land, if it accumulates at a unique point of J(g.) (in the dynamical
case) or OM (in the parameter case). If J(g.) (or OM respectively) is locally connected
then all external rays land (by Carathéodory’s criterion). Unfortunately there are examples
where J(q.) is known not to be locally connected, and where certain external rays do not
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But supposing we have found this orbit Ap/q, how are we to know which of its points
are the special points 4 (p/q) 7 This turns out to be very straightforward.

Lemma 4.7 Any ordered orbit of t — 2t on the circle R/Z is contained in a semicircle

Proof Since ¢ — 2t doubles distance, any three points on the circle have images in the same

order around the circle if and only the three original points lie in a common semi-circle.
QED

As a consequence it makes sense to refer to the least and greatest points of the orbit
Ap/q- We identify the points 64 (p/q) by observing that the dynamical picture requires
that the least point of A,/, be (61(p/q))/2 and the greatest be (0_(p/q))/2+1/2 (see the
picture above for the case p/q = 1/3: the inverse image of the component of int(K(g.))
containing the critical value c is that containing the critical point 0).

Algorithm for 04 (p/q)

There is a simple algorithm constructing the binary sequence of each of 6, (p/q) and
0-(p/q):

Draw a line of slope p/q, through the origin in R2. To construct 0_(p/q), take the integer
‘staircase’ lying just below this line, but not touching it, and starting at the point (1,0)
write 1 for each horizontal step which is followed by a vertical step, 0 for a horizontal step
followed by another horizontal one. To construct 0,(p/q) do the same with the staircase
touching the line.

Example p/q = 2/5

B peiinn

0_(2/5) = .01001 = 9/31  6.(2/5) = .01010 = 10/31

(For a justification of this algorithm see Bullett and Sentenac.)

Every point on 0Mj at the end of internal rays of irrational argument v is the landing
point of a single external ray, of argument 6, = limy/q_,,0+(p/q). The assigment of
internal angles to external angles as we make a circuit of the boundary of the cardioid M,
has graph a ‘devil’s staircase’ (see the graph on the next page).
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land; moreover the conjecture ‘MLC" is still unproved so we cannot be sure that all external
rays in the parameter space land. However it has been proved by Douady and Hubbard
that for all ¢ € M — int(Mo) (where M is the cardioid) the fixed point o of gc (the fixed
point in the dynamical plane which does not correspond to the external ray of argument
zero) is the landing point of a finite set of external rays, and that in the parameter plane
all points on the boundaries of hyperbolic components of int(M) are landing points of
external rays: we shall restrict ourselves to these rays in the discussion below.

We start by considering the external rays which land on the boundary of the main
cardioid, My. Recall that M, is itself parametrised by the unit disc and we can therfore
define internal rays inside My. The internal ray of argument v is the set of values of ¢ € M,
for which the multiplier of the fixed point of g, has argument 2. Consider the end point
on 0Mjy of the internal ray of argument v = 1 /3. This is the value of ¢ for which the fixed
point & of g, has multiplier e?™%/3 (this ¢ lies at the top of the cardioid: it is where the
first period-tripling occurs). The external rays in the dynamical plane landing at o, and
one of their inverse images, are as ts;how_n below:

Note that we can pick out two particular rays, which together enclose the component
of int(K(q.)) containing the critical value. These we have labelled §_ (1/3) and 64(1/3).
It can be shown that in the parameter space the corresponding external rays with the same
arguments, 6_(1/3) and 0, (1/3), land at ¢ (an example what Douady calls ‘ploughing in
the dynamical plane but harvesting in the parameter plane’).

More generally, for ¢ at the end of each internal ray in My of rational argument p/q,
the map ¢. has a (neutral) fixed point a of rotation number p/q and we can pick out the
pair of external rays enclosing the component of int(K(g.)) containing the critical value
c. How do we compute the values of §_(p/q) and 6, (p/q) ? Since o is a fixed point of
rotation number p/q there are necessarily ¢ external rays landing at a and the effect of g,
on these rays is to permute them in cyclic order. But the action of g, on arguments of rays
is simply that of t — 2t (mod Z), so our search for candidates for 6 (p/q) is reduced to a
search for finite orbits of ¢ — 2¢ on the unit circle R/Z, arranged in the same order around
the circle as an orbit of a rigid rotation through 27p/q. This is a purely combinatorial
question and was answered (though in a slightly different context) by Morse and Hedlund
in their pioneering work on symbolic dynamics in the 1930’s:

Theorem 4.6 For each rational p/q there is a unique finite forward invariant orbit Ap/q
of t — 2t of rotation number p/q on the circle R/Z.

(For a proof of this and other results concerning order-preserving orbits of the shift, see
Bullett and Sentenac, Math. Proc. Cam. Phil. Soc. 1994.)
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We draw the graph this way round (rather than that assigning external angles to
internal angles) in order to have a continuous function. It is not difficult to prove that
the horizontal steps in the graph above have total length 1 (see Bullett and Sentenac).
A ‘devil’s staircase’ is the graph of a continuous function that is constant on a set of full
measure without being globally constant,.

Remark For all ¢ in the ‘p/g-limb’ of the Mandelbrot set (the subset of M attached to
the main cardioid My at the point of M, of internal angle p/q) the a-fixed point of ¢, is
the landing point of q external rays permuted cyclically with rotation number p/q by g..
(We say that the a-fixed point of g. has combinatorial rotation number p/q). The devil’s
staircase can be thought of as the assignment of this combinatorial rotation number as ¢
circles once around the boundary dM of the Mandelbrot set (at least it can be though of
this way if M is indeed locally connected).

4.4 The combinatorial Mandelbrot set

We sketch an algorithm due to Lavaurs (Comptes Rendues 1986) which, if OM is
locally connected, gives M as the quotient of the unit disc by an equivalence relation
defined via a lamination.

Lavaurs’ Algorithm

1. Connect 1/3 to 2/3 (on 0D) by an arc in D.

2. Connect pairs of peints p/q¢ in order of increasing ¢, and increasing p for each ¢,
each time connecting a point to the first subsequent point possible without crossing arcs
already constructed.

The (combinatorial) Mandelbrot set is now obtained by shrinking each of the arcs
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to points. One can also obtain combinatorial models of filled Julia sets by shrinking
appropriate laminations of the disc.

4.5 Kneading sequences and internal addresses in the Mandelbrot set

We have dealt with the external rays landing at points on the boundary of the main
cardioid My. What can we say about the arguments of external rays landing at other
points on the boundary of M 7 A first step is to consider those landing on the boundary
of a component of int(M) immediately adjacent to My, say that corresponding to rotation
number p/q. This component (which we shall label M,,,) has the property that corre-
sponding maps ¢. each have an attractive period q orbit. We can parametrise M, /q DY
the multiplier of this orbit and hence define internal rays inside M,,/, in just the same
way as we did for My. The r/s internal ray in My, is the landing point of external rays
0+(p/q,7/s) obtained from 04(r/s) by replacing the digit 0 by the repeating block (of
length ¢) from 6_(p/q) and the digit 1 by the repeating block from 6 (p/q).

Example
6_(1/3,1/2) = .001010 6,(1/3,1/2) = .010001

By repeating the same process (which is known as ‘tuning’) we can compute the
arguments of external rays landing on the boundary of any component which is accessible
from My by a finite number of boundary crossings. But there are of course components
of int(M) which are much further away than this from Mjy: for example all components
beyond the Feigenbaum point on the real axis are an infinite number of boundary crossings
away from My. We conclude this section with a brief discussion of the method of Lau and
Schleicher assigning ‘internal addresses’ to all the hyperbolic components of int(M) (SUNY
Stony Brook preprint 1994): a related method was developed independently and earlier
by Penrose (Warwick thesis 1990).

Internal addresses

Any hyperbolic component A of int(M) is accessible from My by a path in M passing
through a unique (though possibly infinite) sequence of components. We write down
the sequence of ‘least periods corresponding to components further down the path’: this
sequence of least periods constitutes the internal address of A.

Examples The internal address of the Feigenbaum point is (1,2,4,8,.....). The internal
address of the period 3 component on the real axis is (1,2, 3).

A further refinement is the angled internal address where one attaches to each ‘least
period’ the internal angle at which one departs from the corresponding component. Lau
and Schleicher showed that angled internal addresses determine components uniquely, and
they gave algorithms for eonverting internal addresses into kneading sequences and vice
versa.

Kneading sequences
The kneading sequence K (6) of an external ray of argument 6 is the sequence obtained

from the orbit of § (under the map ¢ — 2¢ on the circle) by writing ‘1’ when the point
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lies in the semicircle (6/2,6/2 4 1/2) and ‘0’ when it lies in the semicircle (6/2 +1/2,6/2)
(there are conventions for what happens on the boundaries, but these need not concern
us here). By the kneading sequence of a hyperbolic component 4 we mean the limit of
K(0) as 8§ — 6_(A) downwards, which can be shown to be equal to the limit of K(#) as
0 — 0, (A) upwards. For example each of our M, /q attached to My has kneading sequence
111...10 ((g — 1) 1’s followed by a 0).

Converting internal addresses to kneading sequences and vice versa

Let A be a hyperbolic component with period n and internal address (1 = ny,na, ...,
ng = n). Then K(A) starts with a 1, and the first n;,; entries of K(A) are obtained
by continuing the first n; entries periodically then changing the n;yist entry. K(A) is
periodic with period n. Conversely, given K (.4) recover the internal address as follows.
Start with K = 1 and compare it with K (A); the position n of the first difference will be
the next entry in the internal address. Repeat the comparison, taking K as the periodic
continuation of the first n entries of K(.A), and continue until the period of A is reached.

Examples
1. The period 3 component with internal address (1,2, 3) has kneading sequence 100.
2. The Feigenbaum point has external angle 0110100110010110... (the first digit is ‘0’,
the second digit it the opposite to the first, the third and fourth digits are opposite to the
first and second,...etc.). It follows (exercise) that the kneading sequence of the Feigenbaum
point is 1011101010111011..., and hence that the internal address of the Feigenbaum point
is (1,2,4,8,...).

4.6 Further topics: polynomial-like maps and their applications (a brief intro-
duction)

One of the central tools in the study of both rational maps and Kleinian groups is
quasiconformal deformation theory, introduced in the 1960s by Ahlfors and Bers.

A homoeomorphism f between open domains in C is said to be K-quasiconformal if
locally it has distributional derivatives in L?, and its complex dilatation

_0f/oz
u(z) = 5/ /o7

satisfies |p| < (K —1)/(K +1) almost everywhere - in other words small circles are mapped
to small ellipses of bounded ellipticity. A key result is:

The “Measurable Riemann Mapping Theorem”: Any measurable ellipse field p on
C with ||ul|eo is realisable by a quasiconformal homeomorphism ¢ : C — C which has
complex dilatation p. This ¢ is unique if it fires 0 and 1..

Sullivan used quasiconformal deformation theory in his proof of the “no wandering
domains theorem”. Douady and Hubbard used in in their theory of “polynomial-like
mappings”, which explained the appearance of self-similarity in Julia sets and in the Man-
delbrot set. Their theory played has played a central role in the proofs of the existence
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of universal constants for Feigenbaum period-doubling, developed by Sullivan, McMullen
and Lyubich.

A polynomial-like map f : U — V is a proper holomorphic map between discs such
that U is a compact subset of V. The filled Julia set K(f) is defined to be

K(f)={1f"()

Two polynomial-like maps are said to be hybrid equivalent if there is a quasiconformal
conjugacy ¢ between f and g, defined on a neighbourhood of their filled Julia sets, such
that 0¢/0Z = 0 on K(f).

Theorem (the “Straightening Theorem” of Douady and Hubbard):
FEvery polynomial-like map f is hybrid equivalent to a polynomial map g of the same degree.
When K (f) is connected, the polynomial g is unique up to affine conjugation.

Another key ingredient in renormalization theory is that of a Yoccoz puzzle, which
provides a way to cut up a neighbourhhood of the filled Julia set of a polynomial, using
external rays and equipotentials, so that the Poincaré return map of certain key pieces
become polynomial-like mappings. McMullen’s book “Complex Dynamics and Renormal-
ization” is a good starting point to read about this technique.

4.7 Suggestions for further reading

The following list concentrates on topics covered in these notes and their further
development. Some of the references are easier to find than others. The list is somewhat
random, and far from complete.

Introductory survey articles on iterated rational maps:

P Blanchard, Complex analytic dynamics on the Riemann sphere, Bull AMS 11(1984)
85-141

M Lyubich, The dynamics of rational transforms: the topological picture, Uspekhi Mat
Nauk 41 (1986) 35-95; Russian Math Surveys 41 (1986) 43-117

Textbooks on iterated rational maps (Fatou-Julia theory and selected topics from more
recent work):

A Beardon, Iteration of rational functions, Springer Graduate Texts in Mathematics
No.132, 1991

L Carleson and T Gamelin, Complex Dynamics, Springer Universitext 1993

J Milnor, Dynamics in one complex variable, third edition, Princeton University Press,
January 2006

An advanced textbook on holomorphic dynamics, including rational maps, entire maps,
Kleinian groups and iteration in C™:

S. Morosawa, Y. Nishimura, M.Taniguchi and T. Ueda, Holomorphic Dynamics, CUP,
2000

Textbooks on various aspects of hyperbolic geometry and Kleinian groups:
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A Beardon, The geometry of discrete groups, Springer Graduate Text no. 91, 1983

B Maskit, Kleinian groups, Gpringer Grundlehren der mathematische Wissenschaft 287,
1987

J Ratcliffe, Foundations of hyperbolic manifolds, Springer Graduate Text no. 149, 1994
W Thurston, Three-dimensional geometry and topology, Princeton University Press, 1997
D Mumford, C Series and D Wright, Indra’s pearls: the vision of Felix Klein, CUP, 2002

The work of Douady, Hubbard and their colleagues on the dynamics of polynomial maps,
and polynomial-like mappings:

A Douady and J Hubbard, Itération des polynomes quadratiques complexes, Comptes
Rendus Acad Sci Paris 294 (1982) 123-126

A Douady and J Hubbard, Etude dynamique des polyndmes complexes (I et II), Publica-
tions Mathématiques d’Orsay, 1984/1985

A Douady and J Hubbard, On the dynamics of polynomial-like mappings, Ann. Ecole
Norm. Sup. 18 (1985), 287-343

Sullivan’s papers on quasiconformal deformation theory, including the proof of the ‘No
wandering Domains Theorem’:

D Sullivan, Quasiconformal homeomorphisms and dynamics I: solution of the Fatou-Julis,
problem on wandering domains, Annals of Math 122 (1985) 401-418

D Sullivan, Quasiconformal homeomorphisms and dynamics II, Acta Math. 155 (1985),
24-260

D Sullivan and C T McMullen, Quasiconformal homeomorphisms and dynamics IIT, Adv.
Math. 135 (1998), 351-395

The linearisation theorem of Siegel, Brjuno and Yoocoz:
J-C Yoccoz, Petits diviseurs en dimension 1, Astérisque 231, 1995

McMullen’s work on renormalization and on relations between the theories of rational maps
and Kleinian groups:

C T McMullen, Frontiers in complex dynamics, Bull AMS 31 (1994) 155-172

C T McMullen, Complex dynamics and renormalization, Annals of Math Studies No.135
(1994)

C T McMullen, The classification of conformal dynamical systems, in Current Develop-
ments in Mathematics 1995 (International Press) 323-360

C T McMullen, Renormalization and 3-manifolds which fiber over the circle, Princeton
University Press 1996

Real and complex 1-dimensional dynamics (including Sullivan’s proof of Feigenbaum uni-
versality):

W de Melo and S van Strien, One-dimensional dynamics, Springer 1993

Perhaps the most elegant and general statement and proof to date of Feigenbaum univer-
sality:

M Lyubich, Feigenbaum-Coullet-Tresser universality and Milnor’s hairiness conjecture,
Annals of Math. 149, 1999, 319-420

Internal addresses in the Mandelbrot set:
C Penrose, Quotients of the shift associated with dendrite Julia sets, preprint 1994
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E Lau and D Schleicher, Internal addresses in the Mandelbrot set and irreducibility of
polynomials, SUNY Stony Brook preprint 1994

The devil’s staircase:

S Bullett and P Sentenac, Ordered orbits of the shift, square roots and the devil’s staircase,
Math Proc Cam Phil Soc 115 (1994) 451-481

K Keller, Symbolic dynamics for angle-doubling on the circle III: Sturmian sequences and
the quadratic map, Ergod Th and Dyn Syst 14 (1994) 787-805

A collection of interesting papers on various topics concerning the Mandelbrot set:
Tan lei (editor), The Mandelbrot Set, Theme and Variations, LMS Lecture Notes 274,
CUP 2000
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