MAS205 Complex Variables 2004-2005

Exercises 6

Exercise 23: Find the Laurent series of the function

[0 pap—

(z+3)(z — 2)2

on a punctured disk centred at the point zy = 2.

Where is this Laurent series valid (i.e. absolutely convergent)?
What is the principal part of this Laurent series?

What type of singularity does f have at z, = 27

What is the residue of f at zy = 27

Exercise 24: Locate the singularities for each of the following functions, and determine the
nature of each singularity:

(a) z4 i 16 (®) (z—1)4

+e—1/(z+3) (C) z2(el/z2_1) (d)

Exercise 25: (a) List the singularities of the function f(z) = e™%/(2% — #2) and deter-
mine the nature of each singularity. Compute the residue of f at each
singularity.

(b) List the singularities of the function f(2) = €'/?/(1+z) and determine the
nature of each singularity. Compute the residue of f at each singularity.

Exercise 26: Let f and g be holomorphic on a disk D centred at zo, and let k be holomorphic
on the punctured disk D' = D\ {20}. Suppose f and g both have zeros of order
m 2> 1 at z and h has a pole of order n > 1 at z.

(a) Does fh have a zero or pole at z? If so, what is its order?

(b) Does f + g have a zero or pole at z? If so, what is its order?
Exercise 27: Let E denote the set of all entire functions.

(a) Is E a group under addition (i.e. (f +g)(2) = f(2) + 9(2))
(b) Is E a group under multiplication (i.e. (fg)(z) = f(2)g(2))?
Fg(2)))?

(c) Is E a group under composition (i.e. (f o g)(z
Prove your answers.

Note: determining the type of singularity means finding out whether it is a pole
(if so, which order?), an essential singularity, or a removable singularity.
Please hand in your solutions (to the yellow Complex Variables box on the ground
floor) by 11am Tuesday 23rd November
Thomas Prellberg, November 2004
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