MAS205 Complex Variables 2004-2005

Exercises 6

Exercise 23: Find the Laurent series of the function

$$f(z) = \frac{1}{(z+3)(z-2)^2}$$

on a punctured disk centred at the point $z_0 = 2$.

Where is this Laurent series valid (i.e. absolutely convergent)?

What is the principal part of this Laurent series?

What type of singularity does f have at $z_0 = 2$?

What is the residue of f at $z_0 = 2$?

Exercise 24: Locate the singularities for each of the following functions, and determine the nature of each singularity:

$$(a) \quad \frac{1}{z^4-16} \qquad (b) \quad \frac{1}{(z-1)^4} + e^{-1/(z+3)} \qquad (c) \quad z^2(e^{1/z^2}-1) \qquad (d) \quad \frac{\sin(z^2)}{z^2}$$

- Exercise 25: (a) List the singularities of the function $f(z) = e^{-iz}/(z^2 \pi^2)$ and determine the nature of each singularity. Compute the residue of f at each singularity.
 - (b) List the singularities of the function $f(z) = e^{1/z}/(1+z)$ and determine the nature of each singularity. Compute the residue of f at each singularity.
- Exercise 26: Let f and g be holomorphic on a disk D centred at z_0 , and let h be holomorphic on the punctured disk $D' = D \setminus \{z_0\}$. Suppose f and g both have zeros of order $m \ge 1$ at z_0 and h has a pole of order $n \ge 1$ at z_0 .
 - (a) Does fh have a zero or pole at z_0 ? If so, what is its order?
 - (b) Does f + g have a zero or pole at z_0 ? If so, what is its order?

Exercise 27: Let E denote the set of all entire functions.

- (a) Is E a group under addition (i.e. (f+g)(z) = f(z) + g(z))?
- (b) Is E a group under multiplication (i.e. (fg)(z) = f(z)g(z))?
- (c) Is E a group under composition (i.e. $(f \circ g)(z) = f(g(z))$)?

Prove your answers.

Note: determining the type of singularity means finding out whether it is a pole (if so, which order?), an essential singularity, or a removable singularity. Please hand in your solutions (to the yellow Complex Variables box on the ground floor) by 11am Tuesday 23rd November

Thomas Prellberg, November 2004

23)
$$\int_{0}^{1} (z) = \frac{1}{(2+3)(2-2)^{2}} = \frac{1}{(2-1)^{2}} \frac{1}{5+(2-2)}$$

$$= \frac{1}{5(2-2)^{2}} \frac{1}{5^{n+1}} \frac{1}{(2-2)^{n-2}} = \frac{20}{5^{n+2}} \frac{1}{(2-2)^{n}}$$

$$= \frac{1}{5} \frac{1}{(2-1)^{2}} - \frac{1}{15} \frac{1}{(2-1)^{2}} + \frac{20}{5^{n+2}} \frac{1}{(2-2)^{n}} = \frac{3}{3}$$
who converged part
$$= \frac{1}{5} \frac{1}{(2-1)^{2}} - \frac{1}{25} \frac{1}{(2-1)^{2}}$$

$$= \frac{1}{5} \frac{1}{5} \frac{1}{(2-1)^{2}} - \frac{1}{25} \frac{1}{(2-1)^{2}}$$

$$= \frac{1}{5} \frac{1}{5$$

24) (a) saple poles at
$$\pm 2, \pm 2i$$
 5

(c) exactal singularity at 0
$$\left(\int_{0}^{\infty} \left(\frac{1}{2}\right)^{2} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{2^{-2n}}{n!}\right)$$
 5

(1) removable singularity at 0
$$f(z) = \frac{1}{z^2} \left(z^2 - \frac{z^6}{3!} + \dots \right) 5$$

25) (a) simple poles at
$$z=\pm \pi$$

$$\int_{0}^{1} (z) = e^{-iz} \left(\frac{1}{z-6} - \frac{1}{z+\pi} \right)$$

residu at $\pi: + \frac{e^{-i\pi}}{z\pi} = -\frac{1}{z\pi}$

$$+ \frac{e^{-i\pi}}{z\pi} = -\frac{1}{z\pi}$$

3

Hesidus at $-\pi: -\frac{e^{-i\pi}}{z\pi} = +\frac{1}{z\pi}$

3

(b) simple pole at $z=-1$, consolid sony at $z=0$ 4

$$\int_{0}^{1} (z) = \frac{e^{\sqrt{z}}}{1+z}$$

residus at $-1: -e^{-1} = -\frac{1}{e}$

3

residus at $0: \sum_{n=0}^{\infty} \frac{1}{n!} z^{n} \sum_{n=0}^{\infty} (-z)^{n}$

3

confinint of z^{-1} is $\frac{1}{1!} - \frac{1}{z!} + \frac{1}{z!} - \frac{1}{z!} = e^{-1}$

G)
$$\int \{z\} h(z) = F(z)H(z) (z-z_0)^{m-n}$$
 = 4 holi on D'

Fight (z_0) = 0 2

m>n: 2ero of order m-n (removable sugalarity) 2

m=n: neither sero nor pole

n < n: pole of order n-m

2

(b)
$$f(e) + g(e) = [F(e) + G(e)](e - e)$$
 = $F(e) + G(e) = 2$ 2

200 of Albart order in 2 $F(e) + G(e) = 2$ my be 200 2

(a) yes. 2 and 2

clown / 2

idely
$$e(z) = 0$$
 / 2

non $(-1)(z) = -1(z)$ / 2

(b) no , in one doesn't wrist 2: takely
$$e(z) = 1$$

note $(f')(z) = \frac{1}{f(z)}$ not when $f(z) = 0$)

(c) no , more dan't wrist 2, while
$$e(z) = 2$$

proble is led of enjectivity: involve of e.g. $f(z) = 2^2$ not entire.